Цены снижены! Бесплатная доставка контурной маркировки по всей России

Уровень заряда акб по напряжению: Как узнать заряженность аккумулятора — Мобильные Электросистемы

Содержание

Как узнать заряженность аккумулятора — Мобильные Электросистемы

Содержание статьи

Напряжение аккумулятора

Проще всего оценить уровень заряда аккумулятора по напряжению на его клеммах. Для этого подойдет любой вольтметр, однако результат скорее всего окажется неточным. На измерения повлияют состояние материалов ячейки и ее температура. Наибольшая погрешность возникнет сразу после разряда или зарядки. Зарядное устройство или нагрузка выведут аккумулятор из устойчивого состояния, напряжение исказится и перестанет  точно соответствовать заряженности.

Обратно в состояние покоя аккумулятор возвращается долго. Чтобы напряжение точно отражало реальный уровень зарядки, аккумуляторная батарея должна находиться без нагрузки в течение не менее четырех часов. Производители свинцово-кислотных батарей рекомендуют выдерживать их перед проверкой в течении суток. Для работающего аккумулятора такой длительный период простоя не подходит

Свинцово кислотные аккумуляторы имеют различную конструкцию и химический состав пластин.

Их также нужно учитывать при оценке заряженности аккумулятора с помощью вольтметра. Например, добавки кальция, делающие аккумулятор малообслуживаемым, повышают напряжение на 5-8 %. А напряжение AGM аккумуляторов как правило выше, чем батарей с жидким электролитом.

Дополнительно вводит в заблуждение поверхностный заряд из-за которого напряжение сразу после зарядки оказывается выше нормального. Поэтому чтобы снизить ошибку, перед измерением от аккумулятора отключают всю нагрузку и в течении нескольких минут разряжают его небольшим током. Наконец на напряжение влияет окружающая температура. В теплом помещении или жарком климате оно возрастает, в холодном становится ниже.

Разрядные профили свинцово-кислотного и LiFePO4 аккумуляторов. У литиевого аккумулятора напряжение держится почти постоянным в течении всего разряда. Определить с помощью вольтметра его состояние сложно

Каждый тип аккумуляторов имеет собственную уникальную кривую разряда. У свинцово-кислотных она имеет явно выраженный наклон, поэтому напряжения более менее точно соответствует состоянию АКБ. У Li-марганцевых, LiFePo4 и NMC аккумуляторных батарей напряжение остается постоянным до тех пор пока аккумулятор не разрядится до 80 процентов от номинальной емкости. Разрядная кривая этих аккумуляторов идет горизонтально в течении всего времени работы, а затем резко обрывается. Для источника энергии такая характеристика подходит лучше всего, но оценить состояние аккумулятора по напряжению в этом случае почти невозможно. Напряжение указывает только на полный заряд и разряд, но ни как не выделяет важную среднюю часть графика.

Несмотря на неточности, по напряжению заряженность аккумуляторов определяют чаще всего. А чтобы снизить погрешность, современные устройства используют периоды отключенной нагрузки, для самонастройки и «обучения».

Ареометр

У свинцово-кислотных аккумуляторов с жидким электролитом заряженность можно определить с помощью ареометра. Принцип действия этого устройства основан на том, что во время зарядки концентрация серной кислоты возрастает и плотность электролита увеличивается.

При разряде серная кислота вступает во взаимодействие с пластинами аккумулятора, образует на их поверхности сульфат свинца и ее концентрация в электролите понижается. Плотность электролита в этом состоянии приближается к плотности воды.

Плотность электролита, заряженность и напряжение для стартерных аккумуляторных батарей.

Приблизительное состояние заряда аккумулятора, %Средняя плотность
Напряжение, В
26812
1001,2652,16,328,4312,65
751,2252,086,228,312,45
501,1902,046,128,1612,24
251,1552,016,038,0412,06
01,1201,0985,957,7211,89

Стандартами плотность электролита для полностью заряженного стартового свинцово-кислотного аккумулятора определена в 1,265.

Однако, чтобы повысить отдачу, производители аккумуляторных батарей иногда поднимают ее до 1,280 и выше. Заряженность такого аккумулятора, полученная по стандартной таблице, оказывается лучше, чем есть на самом деле. Кроме того, из-за повышенной плотности электролита возрастает коррозия и срок службы аккумулятора сокращается

На показания ареометра влияют не только состояние аккумулятора и концентрации кислоты, но и уровень электролита в аккумуляторной ячейке. Когда вода испаряется, электролит понижается, концентрации серной кислоты возрастает и ареометр показывает более высокое значение. У  перезалитого аккумулятора плотность электролита наоборот оказывается ниже.

Если электролит в ячейках идет почти не перемешивающимися слоями, то про такой аккумулятор говорят, что он стратифицирован.  Показания ареометра в этом случае также окажутся не точными из-за того, что на поверхность поднимется самый легкий слой, а тяжелые опустятся ближе ко дну.

Плотность электролита различна для разных типов аккумуляторных батарей. В аккумуляторах глубокого разряда максимальную удельную энергию получают при плотности 1,330. Авиационные аккумуляторы имеют плотность до 1,285, а тяговые аккумуляторы погрузчиков около 1,280. У стартовых аккумуляторов плотность ниже – 1,265. Самая низкая плотность электролита у аккумуляторов, предназначенных для буферного режима работы —  около 1,225.

Температура электролита, СПлотность при полной зарядке
401,266
301,273
201,280
101,287
01,294

Низкая концентрация серной кислоты уменьшает коррозию и продлевает срок службы аккумуляторных батарей, но снижает удельную энергию или емкость. Высокая искусственно повышает напряжение холостого хода, и приводит к неправильному определению состояния с помощью ареометра или вольтметра. Однако абсолютно правильных значений плотности не существует.

Так одна и таже модель аккумуляторов глубокого разряда в полностью заряженном состоянии может иметь плотность 1,277  —  1,305, а в полностью  разряженном 1,097  —  1,201.

Температура — это еще один фактор, влияющий на плотность электролита. Чем ниже температура, тем плотнее электролит. В таблице 3 представлена зависимость плотности электролита аккумулятора глубокого разряда от температуры

Ареометр покажет заряженность аккумулятора точнее, если измерять плотность не сразу после зарядки, разряда или добавления в аккумуляторную батарею воды, а спустя некоторое время.

Счетчик ампер-часов

Профессиональные портативные устройства, ноутбуки и медицинское оборудование определяют заряженность с помощью кулонометров, которые измеряют входной и выходной ток аккумулятора. Поскольку в качестве единицы измерения в них используется  Ампер-секунда (As), то кулонометры также называют счетчиками ампер-часов. Кулонометры получили название в честь Чарльза-Августина де Кулона, открывшего в восемнадцатом веке закон взаимодействия двух неподвижных электрических зарядов.

Счетчики ампер часов определяют заряженность точнее, чем вольтметры и ареометры. Однако они не учитывают потери энергии — аккумулятор всегда сохраняет меньше ампер часов, чем получает во время зарядки. У литиевых аккумуляторов кулоновская эффективность выше, а уровень саморазряда ниже, поэтому с этим типом АКБ счетчики ампер часов работают особенно хорошо.

Blue Sea 1830Sterling Power PMP1
  
Максимальный измеряемое напряжение, В70199
Максимальный измеряемый ток, А500199
Шунт500А/50мВ200А/100мВ
Количество подключаемых аккумуляторных батарей34
Измерение напряжения аккумуляторов, шт34
Измерение тока аккумуляторов, шт14
Измерение заряженности аккумуляторов, шт11
РелеВысокое и низкое напряжение, высокий ток, низкий заряд аккумулятора
ПодключениеОтрицательный проводникПоложительный или отрицательный проводник

 

Современные кулонометры учитывают саморазряд из-за старения аккумулятора и изменения окружающей температуры. Однако некоторым моделям требуется периодическая калибровка для того чтобы «цифровой аккумулятор» в их памяти совпадал с реальным «химическим аккумулятором».

Калибровку исключают с помощью алгоритма «обучения», подсчитывающего сколько энергии аккумулятор отдал за предыдущий цикл разряда. Другие устройства дополнительно контролируют время зарядки, поскольку считается, что потерявший емкость аккумулятор зарядится быстрее, чем хороший.

Импедансная спектроскопия

Импедансная спектроскопия – еще один способ определить заряженность аккумуляторной батареи. Это технология не нова, но до последнего времени ее развитие сдерживалось размерами устройств и их высокой стоимостью.

Сущность метода состоит в следующем. Тестер сканирует аккумулятор электрическим сигналом малой амплитуды частотой 20 — 2000 Гц. Полученный отклик измеряется и обрабатывается процессором, который составляет «портрет» аккумуляторной батареи.  Зависимость электрохимического импеданса аккумулятора от частоты сигнала позволяет исследовать различные свойства аккумулятора и выдавать данные о его емкости, токе холодного пуска и состоянии заряда в течении 15 секунд

Импедансная спектроскопия подходит для работы с аккумуляторами под постоянной нагрузкой в несколько десятков ампер. Поляризационное напряжения и поверхностный заряд в этом случае не влияют на показания прибора, поскольку состояние заряда аккумулятора измеряется независимо от напряжения. Метод  помогает отличить нормальный аккумулятор с низким уровнем заряда от аккумулятора с дефектом.

С помощью импедансной спектроскопии определяют заряженность новых аккумуляторов с хорошо известной постоянной емкостью. Измерения можно проводить под нагрузкой, но заряжать аккумулятор во время теста нельзя.

 

Заряд аккумулятора

Алгоритм заряда

Типы свинцово-кислотных аккумуляторов

На текущий момент на рынке аккумуляторов наиболее распространены следующие типы:

    SLA (Sealed Lead Acid) Герметичные свинцово-кислотные или VRLA (Valve Regulated Lead Acid) клапанно-регулируемые свинцово кислотные. Изготовлены по стандартной технологии. Благодаря конструкции и применяемых материалов, не требуют проверки уровня электролита и доливки воды. Имеют невысокую устойчивость к циклированию, ограниченные возможности работы при низком разряде, стандартный пусковой ток и быстрый разряд.

    EFB (Enhanced Flooded Battery) Технология разработана фирмой Bosch. Это промежуточная технология между стандартной и технологий AGM. От стандартной такие аккумуляторы отличаются более высокой устойчивостью к циклированию, улучшен прием заряда. Имеют более высокий пусковой ток. Как и у SLA\VRLA, есть ограничения работы при низкой заряженности.

    AGM (Absorbed Glass Mat) На текущий момент лучшая технология (по соотношению цена\характеристики). Устойчивость к циклированию выше в 3-4 раза, быстрый заряд. Благодаря низкому внутреннему сопротивлению обладает высоким пусковым током при низкой степени заряженности. Расход воды приближен к нулю, устойчива к расслоению электролита благодаря абсорбции в AGM-сепараторе.

    GEL (Gel Electrolite) Технология, при которой электролит находиться в виде геля. По сравнению с AGM обладают лучшей устойчивостью к циклированию, большая устойчивость к расслоению электролита. К недостаткам можно отнести высокую стоимость, и высокие требования к режиму заряда.

Существуют еще несколько технологий изготовления аккумуляторов, как связанных с изменением формы пластин, так и специфическими условиями эксплуатации. Не смотря на различие технологий, физико-химические процессы протекающие при заряде — разряде аккумулятора одинаковые. По-этому алгоритмы заряда различных типов аккумуляторов практически идентичны. Различия,в основном, связаны со значением максимального тока заряда и напряжения окончания заряда.

Например, при заряде 12-ти вольтового аккумулятора по технологии:

    — SLA\VRLA максимальный ток 0.1С, напряжение 14,2 … 14,5В

    — AGM максимальный ток 0.2С, напряжение 14,6 … 14,8В

    — GEL максимальный ток 0.2С, напряжение 14,1 … 14,4В

Значения приведены усредненные по рекомендациям различных производителей аккумуляторов. Конкретные значения необходимо уточнить у производителя.

Определение степени заряженности аккумулятора

Есть два основных способа определения степени заряженности аккумулятора, измерение плотности электролита и измерение напряжения разомкнутой цепи (НРЦ).

НРЦ — это напряжение на аккумуляторе без подключенной нагрузки. Для герметичных (не обслуживаемых) аккумуляторов степень заряженности можно определить только измерив НРЦ. Измерять НРЦ необходимо не раньше, чем через 8 часов после остановки двигателя (отключения от зарядного устройства), с помощью вольтметра класса точности не ниже 1.0. При температуре аккумулятора 20-25оС (по рекомендации фирмы Bosch). Значения НРЦ приведены в таблице.

(у некоторых производителей значения могут отличаться от приведенных) Если степень заряженности аккумулятора меньше 80%, то рекомендуеться провести заряд.

Алгоритмы заряда аккумуляторов

Существуют несколько наиболее распространенных алгоритмов заряда аккумулятора. На текущий момент большинство производителей аккумуляторов рекомендуют алгоритм заряда CC\CV (Constant Current \ Constant Voltage – постоянный ток \ постоянное напряжение).

Такой алгоритм обеспечивает достаточно быстрый и «бережный» режим заряда аккумулятора. Для исключения долговременного пребывания аккумулятора в конце процесса заряда, большинство зарядных устройств переходит в режим поддержания (компенсации тока саморазряда) напряжения на аккумуляторе. Такой алгоритм называется трехступенчатым. График такого алгоритма заряда представлен на рисунке.

Указанные значения напряжения (14.5В и 13.2В) справедливы при заряде аккумуляторов типа SLA\VRLA,AGM. При заряде аккумуляторов типа GEL значения напряжений должны быть установлены соответственно 14.1В и 13.2В.

Дополнительные алгоритмы при заряде аккумуляторов

Предзаряд У сильно разряженного аккумулятора (НРЦ меньше 10В) увеличивается внутреннее сопротивление, что приводит к ухудшению его способности принимать заряд. Алгоритм предзаряда предназначен для «раскачки» таких аккумуляторов.

Асимметричный заряд Для уменьшения сульфатации пластин аккумулятора можно проводить заряд асимметричным током. При таком алгоритме заряд чередуется с разрядом, что приводит к частичному растворению сульфатов и восстановлению емкости аккумулятора.

Выравнивающий заряд В процессе эксплуатации аккумуляторов происходит изменение внутреннего сопротивления отдельных «банок», что в процессе заряда приводит неравномерности заряда. Для уменьшения разброса внутреннего сопротивления рекомендуется проводить выравнивающий заряд. При этом аккумулятор заряжают током 0.05…0.1C при напряжении 15.6…16.4В. Заряд проводиться в течении 2…6 часов при постоянном контроле температуры аккумулятора. Нельзя проводить выравнивающий заряд герметичных аккумуляторов, особенно по технологии GEL. Некоторые производители допускают такой заряд для VRLA\AGM аккумуляторов.

Определение емкости аккумулятора

В процессе эксплуатации аккумулятора его емкость уменьшается. Если емкость составляет 80% от номинальной, то такой аккумулятор рекомендуется заменить. Для определения емкости аккумулятор полностью заряжают. Дают отстояться в течении 1….5 часов и затем разряжают током 1\20С до напряжения 10.8В (для 12-ти вольтового аккумулятора). Количество отданных аккумулятором ампер-часов является его фактической емкостью. Некоторые производители используют для определения емкости другие значения тока разряда, и напряжения до которого разряжается аккумулятор.

Контрольно-тренировочный цикл

Для уменьшения сульфатации пластин аккумулятора одна из методик это проведение контрольно тренировочных циклов (КТЦ). КТЦ состоят из нескольких последовательных циклов заряда с последующим разрядом током 0.01…0.05С. При проведении таких циклов, сульфат растворяется, емкость аккумулятора может быть частично восстановлена.

Таблица уровня заряда аккумулятора в зависимости от напряжения. Экопарк Z

В декабре 2018-го года наконец приобрёл в АВТО49 автомобильную зарядку с двумя USB-разъёмами, цифровыми вольтметром и термометром.  Проверил напряжение аккумулятора ПЛИМУТа — 11,9 В. Это означает, что осталось примерно 20 % номинального заряда. Пора забрать аккумулятор домой и поставить на зарядку.

Какова норма заряда аккумулятора автомобиля и как её проверить

Аккумулятор (аккумуляторная батарея или АКБ) является один из ключевых узлов автомобиля. Основная роль автомобильного аккумулятора – подача тока на стартер в момент пуска двигателя.

Кроме того, при неработающем двигателе АКБ обеспечивает функционирование различных устройств (подсветка, звуковая система, сигнал и другие потребители тока). На стоянке батарея обеспечивает работу охранной системы.

Да и во время поездки, когда генератор не справляется с нагрузкой, аккумулятор приходит ему на помощь.

Нормальное функционирование бортовой сети автомобиля возможно лишь с аккумулятором, у которого заряд в норме. Поэтому сегодня мы обсудим, какая же норма заряда для АКБ.

Содержание статьи
  • 1. Норма заряда АКБ
  • 2.  Как проверить заряд автомобильного аккумулятора?
  • 3. Что делать, если заряд аккумулятора не соответствует норме?

Норма заряда АКБ

Одним из основных параметров состояния автомобильной аккумуляторной батареи является напряжение. С помощью напряжения проверяется определённая норма заряда аккумулятора. Поэтому, владельцу автомобиля необходимо знать какое нормальное значение напряжения АКБ.

Если аккумулятор быстро разряжается, то следует проверить ток утечки на автомобиле.

Норма напряжения аккумуляторной батареи из шести банок в заряженном состоянии составляет 12,6─12,9 вольта. То есть, напряжение одного полностью заряженного элемента равно 2,1─2,15 вольта. Меньшее значение показывает, что аккумулятор разряжен.

Но это не значит, что его нельзя использовать. В идеале, конечно, нужно поддерживать батарею полностью заряженной. Но на практике такое можно осуществить, только если полностью зарядить аккумулятор, а затем подавать на выводы ток, равный саморазряду.

Так что АКБ редко находится в полностью заряженном состоянии. Ниже можно посмотреть зависимость напряжения и степени зарядки батареи.

Плотность электролита, г/см. куб. (+15 гр. Цельсия)Напряжение, В (в отсутствии нагрузки)Напряжение, В (с нагрузкой 100 А)Степень заряда АКБ, %Температура замерзания электролита, гр. Цельсия
Плотность электролита, г/см. куб. (+15 гр. Цельсия)Напряжение, В (в отсутствии нагрузки)Напряжение, В (с нагрузкой 100 А)Степень заряда АКБ, %Температура замерзания электролита, гр. Цельсия
1,1111,78,40-7
1,1211,768,546-8
1,1311,828,6812,56-9
1,1411,888,8419-11
1,1511,94925-13
1,16129,1431-14
1,1712,069,337,5-16
1,1812,129,4644-18
1,1912,189,650-24
1,212,249,7456-27
1,2112,39,962,5-32
1,2212,3610,0669-37
1,2312,4210,275-42
1,2412,4810,3481-46
1,2512,5410,587,5-50
1,2612,610,6694-55
1,2712,6610,8100-60

Что касается нормы заряда, то в большинстве случаев не рекомендуется эксплуатировать аккумулятор с напряжением менее 12 вольт. В этом случае его нужно ставить на зарядку.

Эксплуатация АКБ в таком состоянии отрицательно сказывается на состоянии батареи. Это способствует увеличению сульфатации пластин и как следствие, приводит к уменьшению ёмкости аккумулятора.

Критической нормой напряжения можно назвать 10,8 вольта. Ниже этого значения напряжение опускаться не должно. Это называется глубокий разряд АКБ, который очень вреден для батареи и сильно сокращает срок её службы.

Особенно вреден глубокий разряд для кальциевых необслуживаемых аккумуляторов. Для них 2─3 таких глубоких разряда приводят к выходу из строя. После такого падения напряжения они необратимо теряют часть своей ёмкости.

Как Вы видели в таблице выше, со степенью зарядки неразрывно связана плотность электролита. Это действительно так. Норму заряда аккумулятора можно проконтролировать не только по напряжению на его выводах, но и по величине плотности электролита.

У полностью заряженной аккумуляторной батареи значение плотности должно быть 1,27─1,29 гр./см3. Измеряется плотность электролита специальным прибором – ареометром.

Стоит отметить ещё один важный момент, связанный с нормой напряжения АКБ. Если быть точным в определениях, то величина, измеряемая на выводах аккумулятора в разомкнутой цепи (не подключён к автомобилю), называется ЭДС.

ЭДС, как и напряжение, измеряется в вольтах и представляет собой работу, затрачиваемую на перемещение плюсового заряда между выводами батареи.

Без электродвижущей силы на выводах аккумуляторной батареи не будет напряжения. Напряжение и ЭДС присутствуют на выводах источника питания даже без протекания тока в цепи.

Что это значит на практике? Допустим, вы зарядили аккумулятор и ЭДС на его выводах 12,6 вольта. После установки на автомобиль и замера напряжения величина будет 12,4─12,5 вольта. Это норма и не стоит беспокоиться по этому поводу. Теперь поговорим об инструментарии для измерения напряжения АКБ.

Как проверить заряд автомобильного аккумулятора?

Для проверки напряжения аккумулятора используется вольтметр или мультиметр в режиме измерения напряжения.

Для того чтобы измерить напряжение мультиметром, нужно перевести его в режим измерения напряжения. Затем щупами приложить к выводам батареи и прибор покажет значение напряжения.

Полярность в этом случае соблюдать необязательно, поскольку Вам нужна только величина. Если Вы приложите красный щуп на минус, а чёрный на плюс, то прибор просто покажет отрицательное значение.

На фото ниже показан результат измерения напряжения подсевшего аккумулятора.

Также норму заряда аккумулятора можно проконтролировать с помощью такого прибора, как нагрузочная вилка. В составе этого прибора имеется вольтметр, с помощью которого и проводится измерение.

Помимо нормы заряда АКБ, нагрузочная вилка даёт возможность оценить реальное состояние аккумуляторной батареи. Для этого делается измерение напряжения с сопротивлением в режиме замкнутой цепи.

Фактически вилка имитирует нагрузку на аккумулятор при пуске автомобильного мотора.

Перед тем как проводить тест, батарею нужно полностью зарядить. Чтобы провести тест нагрузочной вилкой, подключите клеммы к выводам аккумулятора и подайте нагрузку на пять секунд. На пятой секунде засеките значение напряжения на вольтметре.

Если оно упало ниже 9 вольт, то пора подумать о замене АКБ. Норма на работоспособном аккумуляторе – это падение напряжение до 10─10,5 вольта. После падения величина напряжения должна немного увеличиться. На видео ниже можно посмотреть процесс тестирования наглядно.

В принципе есть ещё один способ оценки нормы заряда аккумулятора. Можно измерить среднюю плотность электролита по банкам, а затем по таблице выше посмотреть степень заряженности. Но обычно так никто не делает.

Гораздо удобнее воспользоваться вольтметром. Плотность электролита обычно измеряют после зарядки АКБ для оценки эффективности этого процесса.

Что делать, если заряд аккумулятора не соответствует норме?

Ответ на этот вопрос простой. Если заряд АКБ не в норме, батарею нужно зарядить.

Можно выделить три основные разновидности зарядки:

  • ускоренная. Этот режим ещё часто называют Boost и его можно встретить на многих современных зарядных устройствах (ЗУ). В таком режиме норма заряда АКБ не набирается, но его вполне хватает, чтобы завести двигатель. Этот вид зарядки используется, когда вам нужно срочно ехать, а батарея села. Такой режим не рекомендуется использовать постоянно. Здесь заряд ускоряется за счёт увеличения силы тока, что срок эксплуатации аккумулятора;
  • с постоянным напряжением. Этот вид зарядки подразумевает поддержание постоянного напряжения на выводах. Такой режим используется в режиме автоматического заряда на большинстве ЗУ. Его рекомендуется использовать, когда аккумулятор разряжен не сильно (не ниже 12 вольт). Преимущества этого режима в том, что вам не нужно его контролировать. Зарядное устройство само определит, когда заряд будет в норме и остановит процесс;
  • с постоянным током. Этот вариант зарядки подразумевает подачу постоянного тока на аккумулятор. Процесс ведётся в несколько стадий, на которых ток постепенно снижается. Такой режим рекомендуется при зарядке глубоко разряженной аккумуляторной батареи. Он позволяет наиболее полно и равномерно зарядить аккумулятор. Минус в том, что вам придётся постоянно контролировать процесс, измерять напряжение и прекратить процесс, когда заряд батареи будет в норме.

В заключение хотелось бы напомнить о правилах безопасности при зарядке аккумулятора. Процесс должен вестись в проветриваемом помещении. Лучше не проводить зарядку в жилых помещениях.

Рядом с заряжаемым аккумулятором не должно быть открытого огня и искр. В процессе заряда выделяется водород, который в сочетании с кислород образует взрывоопасную смесь!

Надеемся, что материал помог составить представление о норме заряда автомобильного аккумулятора.

Сергей 13.02.2017

Хочу обратить внимание на чрезмерное увлечение зарядкой автомобильных акб. Понятно, что это выгодно производителям зарядных устройств. В современных автомобилях генератор обеспечивает наиболее полный заряд батареи и использование дополнительных ЗУ совершенно неоправданно. Проблема обычно в окислении клемм аккумулятора и плохой их затяжке.

Проверка сводится в измерении напряжения на свинцовых выводах аккумулятора непосредственно после пуска двигателя, желательно при положительных температурах.

При исправной электрике через несколько секунд после пуска напряжение должно установиться на значениях 14,3-14,4 V и не изменяться в дальнейшем. Аккумулятор при этом должен быть частично предварительно разряжен.

Если это условие выполняется, а АКБ всё равно при эксплуатации недозаряжен или возникают проблемы при пуске двигателя, никакая дополнительная зарядка как правило не поможет, поскольку АКБ неисправен или исчерпал свой ресурс.

Изучив таблицу, пришёл к выводу, что надо регулярно измерять напряжение аккумулятора и при сильных морозах обязательно подзаряжать аккумулятор.

Приглашаю всех высказываться в Комментариях. Критику и обмен опытом одобряю и приветствую. В особо хороших комментариях сохраняю ссылку на сайт автора!

И не забывайте, пожалуйста, нажимать на кнопки социальных сетей, которые расположены под текстом каждой страницы сайта.
Продолжение тут…

Аккумулятор полностью заряжен: как убедиться и определить степень заряда

В среднем, аккумулятор заряжается 8–10 часов, но потраченное время зависит от многих факторов. Важно убедиться, что запитка полностью завершена и для этого можно определить остаточную емкость аккумулятора. Учитывая техническую сложность процесса, рекомендуется использовать более простой способ – проверка вольтметром.

Базовый принцип: установите вольтметр на клеммы аккумулятора с зарядкой. Если в течении часа напряжение не увеличивается при токе заряда, который не изменяется, значит АКБ заряжен на 100%. Для этого способа можно применять вольтметр даже с большой погрешностью, ведь главное не столько сами показатели, сколько постоянство напряжения.

Правила определения степени заряда аккумулятора

На выбор автомобилиста представлено несколько способов, проверенных временем и опытом, в частности:

· для моделей с жидкой кислотой, можно измерять плотность электролита с помощью ареометра;

· на выводах аккумулятора измерять напряжение нагрузочной вилкой. При рабочем стартере напряжение не должно быть ниже 9,5В. Этим методом определяется исправность стартера: если вы знаете и проверили зарядку АКБ другим методом, но напряжение ниже 9,5 В, значит, стартер подлежит ремонту.

· по показателям напряжения на выводах электрооборудования автомобиля;

· по показателям напряжения на выводах, но без нагрузки.

Наиболее популярный и простой метод – оценка показателей гидрометрического индикатора, если он встроен в салон авто.

Важно проводить все замеры при комнатной температуре, то есть 20–25 градусов. Для получения объективной информации стоит использовать таблицы, в которых подаются важные сравнительные данные. Для удобства водителей представлены таблицы, позволяющие получить данные на основе:

Таблица оценки степени заряда аккумулятора по напряжению

Напряжение

аккумулятора, В

6

6,32

6,22

6,12

6,03

<6,0

12

12,65

12,35

12,10

11,95

<11,7

24

25,28

24,71

24,22

23,91

<23,4

Температура замерзания, °С

-58

-40

-28

-15

-10

Степень заряда, %

100

75

50

25

0

Таблица оценки степени заряда АКБ по плотности электролита

Плотность электролита, г/см³

1,27

1,23

1,19

1,16

<1,12

Температура замерзания, °С

-58

-40

-28

-15

-10

Степень заряда, %

100

75

50

25

0

Таблица для оценки степени заряда аккумулятора

по напряжению с подключенной нагрузочной вилкой

Напряжение на выводах аккумулятора, В

10,5

9,9

9,3

8,7

<8,2

Степень заряда, %

100

75

50

25

0

Для того чтобы измерять напряжение на выходе, предварительно стоит дать покой аккумулятору минимум на 6 часов и предварительно отключить его от автомобильной системы.

В среднем, для уверенного старта и поддержания всех электрических приборов в рабочем состоянии уровень зарядки АКБ должен быть не меньше 60%.

Правильный и безопасный заряд аккумулятора — как и чем заряжать? | Статьи

Как правильно и безопасно зарядить авто (мото) свинцово-кислотный аккумулятор. 

Сразу оговоримся — настоящая статья предназначена для неподготовленных людей, аккумуляторщики и опытные пользователи вряд ли почерпнут для себя что-то новое.

Не отвлекаясь на второстепенные моменты, мы постараемся донести до читателей статьи базовые основы заряда аккумулятора и поможем выбрать правильное зарядное устройство.

Какие существуют методы заряда.

1. Заряд постоянным током.

Заряд производится при установленном значении зарядного тока (измеряется в Ампер) без ограничения напряжения (измеряется в Вольт). Пример устройства, обеспечивающего данный способ заряда – классический тяжелый трансформаторный зарядник – выпрямитель. Величина зарядного тока и длительность заряда определяются исходя из значения емкости, технологии изготовления и состояния аккумулятора. Ограничить напряжение при таком способе заряда возможно только вручную, уменьшением значения тока. Данный способ используется как правило профессиональными аккумуляторщиками и рекомендуется только для опытных пользователей.

2. Заряд при постоянном напряжении.

Заряд производится при заданном постоянном значении напряжения. Ток может быть ограничен возможностями и настройками зарядного устройства (пользователем). Пример устройства, обеспечивающего данный способ заряда – автомобильный реле-регулятор. Современные продвинутые реле-регуляторы способны менять напряжение заряда по алгоритмам, установленным автопроизводителями, но суть от этого не меняется – заряд все равно происходит при постоянном напряжении.

3. Заряд смешанным методом.

Первый этап заряда производится методом постоянного тока установленным (ограниченным) значением тока до достижения заданного значения напряжения (предустановлено в зарядном устройстве или ограничено пользователем). Второй этап начинается по достижении заданного напряжения, зарядный ток стабилизируется и его значение начинает падать, по сути на данном этапе заряд уже идет при постоянном напряжении. Правильный заряд этим так называемым смешанным методом могут обеспечить современные импульсные зарядные устройства, но только те, которые имеют функцию ограничения напряжения значением, подходящим для технологии изготовления и состояния конкретно взятого аккумулятора. Данный способ (метод) и подходит больше всего обычному, неопытному пользователю, которому надо при проведении заряда учесть состояние своего аккумулятора и технологию его изготовления, а также уяснить ряд нехитрых правил проведения заряда. Ну и, конечно, надо иметь правильное зарядное устройство.

Необходимо уяснить, что ресурс батареи снижают три основных явления:

– Оплывание (осыпание) активной массы с решеток (электродов), которое происходит при перезаряде либо в процессе естественного механического износа, застарелый сульфат в активной массе также способствует ее быстрому осыпанию. Данное явление носит необратимый характер, лечению не подлежит, при критическом уровне данного процесса батарея подлежит замене.

— Сульфатация, т.е. образование кристаллов сульфата свинца на пластинах в процессе разряда АКБ. Сульфат всегда присутствует в любой батарее, его образование и растворение – это естественный рабочий процесс, происходящий при разряде-заряде батареи. Кристаллы сульфата могут быть небольшими и легко растворимыми, при хроническом недозаряде они становятся крупными и тяжело растворимыми. Данное явление носит обратимый характер, но чем старее в батарее сульфат, тем тяжелее его растворить, тем больше усилий придется для этого приложить и больше действий совершить.

— Расслоение электролита (кислотная стратификация). Электролит состоит из воды и серной кислоты, причем кислота физически тяжелее воды. В процессе заряда сульфат растворяется и кислота снова попадает в электролит, причем стремится стечь по пластинам в нижнюю часть корпуса АКБ. Данное явление наиболее усиливается в разряженных батареях и наименее характерно для тех АКБ, в которых разряд незначительный и своевременно восполняется. Устраняется расслоение электролита путем доведения заряженной батареи до состояния, при котором происходит ее интенсивное «кипение», т.е. электролиз, разложение воды на кислород и водород.

Вышеперечисленные явления как правило идут рука об руку, и эксплуатация АКБ с застарелым сульфатом приводит к ускоренному осыпанию  активной массы (нерабочая осыпающаяся активная масса называется шламом) и повышенному расходу воды из АКБ, все это сопровождается расслоением электролита. Это происходит потому, что крупные кристаллы сульфата уменьшают площадь пластин, на которой происходит химическая реакция, оставшаяся рабочая активная масса подвергается более высокой нагрузке, все больше зарядного тока бесполезно тратится впустую на электролиз – разложение воды на кислород и водород. Соответственно, чем больше в АКБ застарелого сульфата, тем быстрее происходят описанные негативные процессы и все ближе утилизация АКБ.

Правильный и полноценный заряд проводится при температуре АКБ, равной комнатной. Но начинать заряд вполне можно при любой температуре АКБ.

Если нам нужно зарядить исправный аккумулятор, который имеет свежий незначительный разряд, скажем, не более 50 % от емкости, достаточно будет ограничить напряжение окончания заряда 14,8 – 15 Вольт, зарядный ток ограничиваем значением, не превышающем 10 % от номинальной емкости аккумулятора. Свидетельством окончания заряда будет служить падение зарядного тока до значения 0,5 – 1 Ампер. Наличие пробок на аккумуляторе позволит окончательно убедиться в окончании заряда путем измерения контроля уровня электролита и его плотности, которая должна достичь заводской – 1,27 – 1,31 г/см3 (крайне желательно знать исходную плотность).

Если требуется зарядить аккумулятор с почти полностью разряженного состояния, либо есть сомнения относительно его исправности или есть необходимость в сезонном профилактическом заряде, целесообразно применить несколько иной алгоритм заряда, разделив заряд на два этапа.

На первом этапе, не нагружая активную массу на пластинах, проводим заряд током, не превышающем 10 % емкости АКБ, ограничив напряжение безопасным значением, не более 14,4 – 14,8 Вольт. Перед зарядом необходимо убедиться, что уровень электролита достаточен, чтобы были закрыты пластины, при необходимости долить дистиллированную воду. Доводить уровень до исходного на первом этапе не нужно, так как в процессе заряда он может подняться и есть риск получить избыточный уровень электролита. Если батарея была глубоко разряжена или долго эксплуатировалась в состоянии хронического недозаряда, лучше значение тока выставить как можно меньше, вплоть до 1 % от емкости. Чем меньше значение зарядного тока, тем качественнее и полнее происходит заряд, только дольше по времени. На первом этапе задача состоит в том, чтобы максимально полно восполнить емкость батареи без избыточной нагрузки на активную массу на решетках. Индикатор окончания первого этапа заряда – падение зарядного тока до значения менее 1 Ампер, чем меньше, тем лучше.

На втором, самом важном этапе заряда, нужно решить две основные задачи – растворить застарелый сульфат и устранить расслоение электролита. При наличии неравномерного и/или недостаточного уровня электролита также добавляется задача выровнять уровень и плотность электролита во всех банках. В таком случае второй этап заряда также называется уравновешивающим, или выравнивающим зарядом.

Необходимо тщательно выровнять уровень электролита дистиллированной водой. И довести его до уровня заводского, который в разных АКБ составляет от 1,5 до 3 см. Проще, если в АКБ есть какие-либо физические индикаторы в виде, например, пластиковых лапок-ограничителей. Если нет, нужно найти информацию в руководстве или на сайте завода-производителя.

Устанавливаем такие параметры заряда, которые обеспечат интенсивное газовыделение из электролита, т.е «кипение». Напряжение, при котором будет интенсивно кипеть АКБ по технологии Са/Са, составляет примерно 15,5 — 16 Вольт, выставляем 16, гибридная Sb/Ca – 15,3 – 15,6 Вольт, выставляем 15,5 – 15,7 Вольт, для сурьмянистых должно хватить 15 Вольт. Величину зарядного тока лучше ограничить 1 – 5 % от емкости АКБ, причем чем более «запущена» батарея, тем меньше зарядный ток есть смысл выставить, заданное напряжение при этом будет достигаться конечно же дольше.

Положительный результат можно будет считать достигнутым, если зарядный ток после достижения заданного напряжения упал до 1 Ампер и ниже, плотность электролита достигла исходного значения 1,27 – 1,31 г/см3 (необходимо знать заводские параметры плотности), стала равномерной во всех банках, и значение плотности не меняется на протяжении двух – трех часов. Даже если за короткое время зарядный ток упал до низкого значения (0,5 – 1 Ампер), заряд все равно целесообразно продолжить на протяжении нескольких часов для устранения кислотной стратификации. Если положительный результат не достигается на протяжении многих часов, если по плотности «отстают» некоторые банки, можно поднять напряжение заряда на 0,1 – 0,3 Вольт. Иногда можно и даже нужно поднять ток и напряжение заряда и выше, или вообще снять ограничение по напряжению, но, повторяемся, наша статья для неопытных пользователей, данные действия Вы будете осуществлять на свой страх и риск.

Если описанные действия не привели к нужному результату, отдайте АКБ в квалифицированный сервис или замените на новую. Либо выжмите из нее оставшийся ресурс и потом замените.

Если у Вас АКБ с лабиринтной крышкой без пробок, отрегулировать уровень электролита без «колхозинга» не получится, поэтому нужно хотя бы попытаться убедиться, что он есть, путем просвечивания АКБ мощным источником света. Такие батареи, несмотря на то, что маркетологи назвали их «необслуживаемыми», как раз таки очень нуждаются в своевременной правильной дозарядке, потому что полностью заряженная исправная кальциевая АКБ практически не расходует воду, и уровень электролита в ней долгое время остается ровным и стабильным.

Особенности заряда батарей по технологии Са/Са EFB.

Заряд аккумуляторов EFB производится так же, как и обычных кальциевых. Нужно только учесть одну особенность — в правильных EFB пластины толще и скомпонованы плотнее, расстояние между ними меньше, по этой причине электролит в них перемешать тяжелее, плотность в верхних слоях батареи может подниматься дольше. Будьте готовы к тому, что второй этап заряда на повышенном напряжении возможно придется производить дольше, напряжение поднимать выше.

Особенности заряда батарей по технологии AGM, GEL.

А вот AGM и GEL технологии заряжать с применением высоких значений напряжения крайне нежелательно. Ввиду того, что в них отсутствует электролит в жидком виде, кислотная стратификация как таковая отсутствует, перемешивать электролит не нужно, и избыточное напряжение приведет к безвозвратной утрате воды. Поэтому заряжать их следует в один этап с ограничением напряжения 14,3 — 14,4 Вольт. Если результат не достигнут, можно попробовать поднять напряжение заряда до 15 Вольт, но долго скорей всего такая батарея уже не прослужит. Глубокий разряд такие батареи переносят намного хуже классических, и вероятность их восстановления после глубокого разряда намного ниже. Их «конек» — цикличность, т.е. работа в режиме многократного частичного разряда-заряда. Но никак не глубокого разряда. Поэтому задача пользователя при эксплуатации таких батарей — не допускать их разряда и своевременно его восполнять.

Ну и собственно, какое зарядное устройство выбрать?

Полноценное зарядное устройство, которое позволит правильно зарядить аккумулятор, изготовленный по любой технологии, должно иметь регулировку не только зарядного тока, но и, что самое важное, напряжения заряда. Причем крайне желательно, чтобы регулировка была плавной (особенно для зарядного тока) и как можно более широкими диапазонами. Допустима ступенчатая регулировка напряжения заряда, лишь бы этого самого напряжения хватало для правильного заряда. Также важно, чтобы зарядное устройство без «разрешения» пользователя не переходило по окончании заряда в так называемый буферный режим (хранение аккумулятора при пониженном напряжении с компенсацией саморазряда), это препятствует полноценному окончанию заряда и «добивке» емкости до 100%.

Примером полноценного импульсного зарядного устройства, которое способно полностью заменить старый трансформаторник — выпрямитель, является «Вымпел-57» производства ООО «НПП «ОРИОН», либо более продвинутая «интеллектуальная» его версия — «Вымпел-55».

Ну и конечно, старое доброе трансформаторное зарядное устройство — выпрямитель, способное заряжать методом постоянного тока без ограничения напряжения, но, повторимся, на наш взгляд, это инструмент для опытного и умелого пользователя.

Помните, что своевременный и правильный профилактический заряд как минимум в два – три раза продлит ресурс Вашего аккумулятора!

Контроль аккумуляторов | ЭлектроФорс

Информация о состоянии аккумуляторных батарей на катере или яхте нужна не только любителям электротехники. Эти данные часть системы безопасности судна. Потеря питания в чрезвычайной ситуации приводит к серьезным последствиям, а неконтролируемый разряд аккумуляторов к существенным материальным потерям

Содержание статьи

Что контролировать в аккумуляторах

Аккумуляторы нельзя разряжать ниже определенного уровня. «Напряжение окончания разряда» – это минимальное рабочее напряжение аккумуляторной батареи. Если разряд аккумулятора продолжается после достижения «напряжения окончания разряда» аккумулятор может быть поврежден или разряжен до такой степени, что его больше нельзя будет использовать.

Но главный показатель состояния аккумуляторной батареи – это емкость. Она характеризует способность аккумулятора сохранять энергию и определяет время его работы без подзарядки.

Высвобождаемая емкость   – это заряд, который аккумулятор отдает до того как его напряжение станет равным напряжению окончания разряда. Доступная емкость  – это высвобождаемая емкость полностью заряженного аккумулятора.  Для нового аккумулятора доступная емкость равна или немного отличается от номинальной. В процессе эксплуатации доступная емкость уменьшается.

Заряженность (SoC)  — это отношение высвобождаемой емкости к доступной. Характеризует текущий заряд аккумулятора. Измеряется в процентах

Работоспособность (SoH) – отношение доступной емкости к номинальной.

Контроль аккумуляторов под нагрузкой

Красная кривая – это зависимость напряжения аккумулятора от уровня его заряда без нагрузки. Синяя линия —  фактический профиль напряжения аккумуляторной батареи для некоторой заданной нагрузки постоянного тока. Зеленая — «Напряжение окончания разряда». Поскольку у аккумулятора есть ненулевое внутреннее сопротивление, синяя кривая расположена ниже красной. Чем больше потребляемый ток, тем сильнее реальный заряд отличается от максимально возможногоТакое устройство не только не сможет предсказать оставшееся время работы аккумулятора, но и не точно оценит его текущее состояние. За красивым индикатором кроется обычный вольтметр

Напряжение полностью заряженного аккумулятора выше чем разряженного. На этом факте основан самый простой способ контроля – измерить текущее напряжение аккумулятора и сравнить его с напряжением полностью заряженной батареи. Однако такая оценка оказывается не слишком аккуратной. По ней с уверенностью можно утверждать лишь, что аккумулятор заряжен на 100% и что он полностью разряжен. Не высокая точность вызвана тем, что при заданном состояния заряда и различных уровнях нагрузки мгновенное напряжение аккумулятора не постоянно, а колеблется вверх-вниз.

Скачки напряжения зависят от внутреннего сопротивления аккумуляторной батареи. Если ток разряда очень мал, то внутренние потери не велики и заряд, аккумулятора практически равен максимально возможному. При более высокой нагрузке потери увеличиваются и заряд, отданный аккумулятором до момента достижения минимального рабочего напряжения оказывается меньше.

Счетчик ампер часов

Вместо того, чтобы определять состояние аккумулятора по напряжению, можно измерять ток. Счетчик ампер часов контролирует ток, получаемый и отдаваемый аккумулятором, суммирует его за период использования и прибавляет вычисленное значение к начальной заряженности  аккумуляторной батареи. Поскольку исходное состояние аккумулятора и ток заряда-разряда можно измерить достаточно точно, счетчик ампер часов определяет текущее состояние аккумулятора достовернее, чем вольтметр. Однако у него тоже есть несколько недостатков

Как и в любом устройстве в аккумуляторе существуют потери, поэтому отдаваемый им заряд всегда меньше полученного. Потери не постоянны, а зависят от температуры, тока заряда-разряда и возраста батареи. Эффективность одного и того же аккумулятора в разных условиях разная.

Максимальный измеряемое напряжение, В 95 199
Максимальный измеряемый ток, А 500 199
Шунт 500А/50мВ 200А/100мВ
Количество подключаемых групп АКБ 1 4
Измерение напряжения групп АКБ, шт 1 4
Измерение тока групп АКБ, шт 1 4
Измерение заряженности групп АКБ, шт 1 1
Реле Высокое и низкое напряжение, высокий ток, низкий заряд аккумулятора
Подключение Отрицательный проводник Положительный или отрицательный проводник
ЗАКАЗАТЬ ЗАКАЗАТЬ

Однако кулонометр не учитывает потери и со  временем его показания все больше и больше отличаются от реального состояния аккумулятора. Чтобы избежать расхождений кулонометры необходимо регулярно перекалибровать

Если аккумулятор отключен от нагрузки и оставлен без подзарядки, то через токоизмеряющий датчик кулонометра ток не потечет. Но химические реакции в батарее по-прежнему будут идти и со временем ее энергия уменьшится. Через неделю напряжение ячеек и состояние аккумулятора изменятся, однако подсчет кулонов ничего об этом не скажет. Саморазряд аккумулятора кулонометр не учитывает

В процессе эксплуатации доступная емкость аккумулятора уменьшается. Текущее значение емкости кулонометр определить не может и ему регулярно приходится указывать верхнюю и нижнюю точки отсчета. Это делают полностью разряжая и заряжая аккумулятор. В реальных условиях это не всегда возможно и со временем показания кулонометра становятся все менее точными

Батарейный монитор

Схема подключения батарейного монитора Sterling Power PMP1. Устройство контролирует состояние всей электрической системы на катере или яхте. Ток измеряется на выходе с генератора, на входе и выходе сервисной аккумуляторной батареи. На стартовом аккумуляторе контролируется только напряжение

Современный батарейный монитор – это не просто счетчик ампер часов, а интеллектуальное устройство контроля аккумуляторов. Перед началом работы в монитор вводят номинальную емкость аккумулятора, в течении нескольких циклов устройство «обучается» и затем работает без постороннего вмешательства. Монитор следит за током, напряжением и температурой аккумуляторной батареи и сравнивает получаемые данные с собственной моделью аккумулятора. На основе фактических данных параметры модели корректируются и она  постоянно соответствует реальному состоянию работающего аккумулятора

Батарейные мониторы могут контролировать одну или несколько аккумуляторных батарей. Самое простое устройство измеряет напряжение, ток и заряженность единственного аккумулятора. Более продвинутые модели рассчитаны на две или три аккумуляторных группы. Для основной батареи они измеряют напряжение, ток и заряженность, а для дополнительных только ток и напряжение или только напряжение.

Модели, имеющие модульный принцип, позволяют добавлять в цепь до 20 независимых датчиков тока или «интеллектуальных» шунтов, и контролируют с их помощью до 6 аккумуляторных батарей. Такие мониторы имеют встроенный Wi-Fi модуль и передают информацию о состоянии аккумуляторов на смартфон или планшет владельца.

Установка устройства контроля аккумуляторов

«Интеллектуальные» шунты можно соединять между собой, чтобы на одном дисплее контролировать состояние до 6 аккумуляторных батарей. Один шунт не только измеряет напряжение, ток и заряженность аккумулятора, но и контролирует емкости и температуру

Если для запуска двигателя используется выделенный аккумулятор, то измерять потребляемый и отдаваемый им ток не обязательно. На стартовом аккумуляторе контролируют только напряжение. Зато на сервисной аккумуляторной батарее измеряют входной и выходной ток, напряжение и уровень заряда.

Если чисто стартового аккумулятора на лодке нет, а оба аккумулятора попеременно используются и для запуска двигателя и для питания бортового оборудования, устанавливают два шунта или перемещают шунт таким образом, чтобы через него протекал ток от обоих аккумуляторных батарей

В любой момент на лодке желательно знать куда уходит и откуда поступает энергия в аккумуляторную батарею. Несколько шунтов позволяют монитору отображать ток получаемый аккумуляторами от солнечных панелей и ветрогенератора или потребляемый микроволновой печью, холодильником и инвертором. Контроль мощных  устройств необходим, поскольку высокий ток способен быстро разрядить и повредить аккумулятор

Дисплей батарейного монитора отображает ток, который аккумуляторная батарея получает от дополнительных источников зарядки и отдает мощным потребителям. Голубая линия — солнечные панели. Желтые линии — потребители

Правильно установленный батарейный монитор – это незаменимый  инструмент для поиска неисправностей в электрической системе. С его помощью, например,  можно обнаружить, что солнечные панели стали грязными и больше не заряжают аккумуляторы как положено.

Большинство мониторов для измерения тока используют шунты, которые устанавливают на отрицательной стороне электрической цепи. Некоторые модели, позволяют использовать для этого и отрицательный и положительный проводники. Для контроля за потребителями (инверторами, подруливающими устройствами) или генераторами электрической энергии (зарядными устройствами, солнечными панелями) можно выбрать как положительную так и отрицательную сторону. Контроль за состоянием аккумулятора лучше производить на отрицательной стороне.

Стандартные шунты имеют номинал 200, 300 или 500 А. Однако если нагрузка в цепях не велика можно использовать шунт, состоящий из нескольких линий, каждая из которых рассчитана на  25 А.

Профилактический контроль аккумуляторов

Существует несколько способов выяснить состояния аккумулятора

  1. Проверить плотность электролита
  2. Проверить напряжение холостого хода
  3. Замерить напряжение под высокой нагрузкой
  4. Использовать тестер проводимости
  5. Выполнить полную проверку емкости

Плотность измеряют только у аккумуляторов с жидким электролитом. Соответствие заряженности аккумулятора плотности электролита приведено в таблице

Заряженность аккумулятораПлотность электролита при 27 СПлотность электролита при 16 С
1001,2651,273
751,2251,233
501,1901,198
251,1551,163
01,1201,128

 

Напряжение холостого хода

Заряженность аккумулятора можно приблизительно оценить по напряжению холостого хода, измеряемому между клеммами аккумулятора когда в цепи не течет никакой ток. Потребителей на лодке проще всего отключить от аккумуляторной батареи с помощью главного выключателя ( для этого достаточно перевести его в положение OFF). Однако так никогда не стоит делать при работающем двигателе – выпрямительные диоды генератора могут сгореть. Если на лодке установлены дополнительные источники зарядки — солнечные панели или ветрогенератор, то для получения правдивого результата измерения их также необходимо отключить.

Заряженность аккумулятораС жидким электролитомГелевыйAGM
10012,7-12,612,95-12,8512,9-12,8
7512,412,6512,6
5012,212,3512,3
2512,012,012,0
011,811,811,8

 

Напряжение холостого хода зависит от того каким было начальное состояние аккумулятора, заряжался или разряжался он перед проверкой и от того сколько времени он находится в состоянии покоя. Напряжение правильно отразит состояние аккумулятора, если нагрузка и устройства зарядки отключены от него как минимум за десять минут до измерения. Результаты окажутся точнее, если аккумулятор находится в состоянии покоя 1-2 часа, а еще лучше в течении 12 часов. У гелевых и AGM аккумуляторов время выравнивания напряжения достигает 48 часов.

Проверка емкости аккумулятора

Емкость это — главная характеристика аккумулятора. Если она существенно меньше номинальной, то срок службы аккумулятора подходит к концу. Другие параметры, влияющие на работоспособность батареи — это внутреннее сопротивление и саморазряд. Внутреннее сопротивление ограничивает ток аккумулятора, а высокий саморазряд указывает на механические дефекты пластин.

Напряжение или плотность электролита свинцово-кислотного аккумулятора могут указывать на его полный или почти полный заряд, но батарея не будет нормально функционировать из-за существенной потери емкости, которая произошла из-за сульфатации пластин, коррозии решеток или осыпания активного материала. Правильные напряжение холостого хода и плотность электролита говорят о том, что доступная емкость аккумулятора заряжена полностью, но не дают информации о том какова она по отношению к первоначальной. Выяснить это позволяют тестер проводимости и нагрузочная вилка.

Нагрузочный тестер искусственно создает для аккумулятора высокую нагрузку и одновременно измеряет напряжение аккумулятора. Исправный 12-вольтовый аккумулятор удерживает под нагрузкой напряжение выше 10 Вольт в течении 10 и более секунд. Напряжение же на аккумуляторе с уменьшившейся емкостью быстро падает. Если напряжение 12-вольтового аккумулятора в течении 15 секунд опускается ниже 9,5 вольт, аккумулятор скорее всего надо менять.

Для гелевых и AGM аккумуляторов нагрузка должна быть равна половине тока холодного пуска (ССА) или утроенной номинальной емкости С20 аккумулятора.

В процессе эксплуатации внутреннее сопротивление аккумулятора возрастает. Это становится особенно заметно, если пластины поражены сульфатацией. Доступную площадь пластин, а значит и способность аккумулятора отдавать ток, характеризует проводимость —  величина обратная внутреннему сопротивлению. Значение проводимости также используют для поиска дефектных пластин, короткого замыкания или обрывов цепи в аккумуляторе

Проводимость аккумулятора измеряют с помощью тестера, который кроме этого определяет и текущую доступную емкость аккумулятора (SoH). Номинал тестера должен соответствовать типу, емкости и току холодного пуска проверяемой аккумуляторной батареи.

Реальную емкость аккумулятора можно выяснить полностью разрядив его током в 1/20 от его номинальной емкости.  Перед проверкой аккумулятор сначала полностью заряжают, а затем разряжают до тех пор пока его напряжение не опустится до 10,5 вольт. Емкость вычисляют умножая время работы аккумулятора под нагрузкой на ток разряда. Если полученное в ходе проверки значение составляет меньше 80% от номинальной емкости, аккумулятор необходимо зарядить и проверить еще раз. Если при повторной проверке емкость также не поднялась выше 80%, аккумулятор скорее всего необходимо менять

После испытания аккумулятор необходимо немедленно зарядить, чтобы не допустить его сульфатации.

Полную проверку емкости сервисных аккумуляторных батарей желательно проводить перед началом каждого сезона или перед любой многодневной поездкой на катере или яхте

Измерить степень заряженности

Категория: Поддержка по аккумуляторным батареям
Опубликовано 16.09.2016 13:03
Автор: Abramova Olesya

По напряжению

Измерение степени заряженности по напряжению является простым, но, может быть, неточным, поскольку на само напряжение могут влиять материалы, из которых сделан аккумулятор, и температура окружающей среды. Наиболее вопиющая ситуация связана с измерениями, основанными на напряжении. Она возникает в тот момент, когда аккумулятор находится под воздействием разрядных или зарядных процессов. В результате этого внутреннее состояние аккумулятора нестабильно, и напряжение уже не может служить надежным индикатором. Для того, чтобы получить точные измерения, аккумулятор должен отстояться будучи отсоединенным от электрической цепи по крайней мере в течение четырех часов, а для свинцово-кислотной электрохимической системы производители и вовсе рекомендуют 24 часа покоя. Данная особенность делает метод, основанный на напряжении, непрактичным для аккумуляторов, которые активно эксплуатируются.

Каждая электрохимическая система имеет свои уникальные разрядные характеристики. В то время как измерение степени заряженности, основанное на напряжении, хорошо работает для “отдохнувших” свинцово-кислотных аккумуляторов, особенности поведения напряжения у никелевых и литиевых аккумуляторов делают использование этого метода непрактичным.

Кривая разрядного напряжения у Li-марганцевых, Li-фосфатных и NMC аккумуляторов очень плоская, и 80 процентов накопленной энергии отдается при стабильном напряжении. И если такая особенность является весьма желательной в разрезе эксплуатационных характеристик, то определение степени заряженности исходя из напряжения становится сложной задачей, поскольку возможно определить лишь состояние высокой и низкой степени заряженности, а все что между ними – не может быть оценено точно. На рисунке 1 показана плоская кривая разрядного напряжения Li-фосфатного (LiFePO4) аккумулятора.

Рисунок 1: Разрядное напряжение литий-фосфат-железного аккумулятора. LiFePO4 имеет очень плоскую кривую разрядного напряжения, что делает оценку степени заряженности исходя из напряжения весьма затруднительной.

Свинцово-кислотные аккумуляторы могут комплектоваться пластинами разного состава, что необходимо учитывать при определении степени заряженности исходя из напряжения. Кальций, добавление которого снижает потребность аккумулятора в периодическом обслуживании, повышает напряжение на 5-8 процентов. Кроме того, тепло увеличивает напряжение, а холод, соответственно, уменьшает. Поверхностный заряд [BU-804c] мешает корректному определению степени заряженности, приводя к повышенному напряжению сразу после зарядки, но противодействием данному эффекту может служить кратковременная разрядка перед измерениями. И, наконец, AGM аккумулятор [BU-201a] имеет немного более высокое напряжение в сравнении с затопленным эквивалентом.

Так как степень заряженности должна измеряться при разомкнутой цепи, напряжение аккумулятора должно быть “плавающим”, то есть без подключенной нагрузки. И в случае, если это аккумулятор современного транспортного средства, следует понимать, что когда он подключен к автомобилю (даже если тот заглушен), наверняка присутствуют паразитарные нагрузки, приводя к квази-замкнутому состоянию электрической цепи.

Несмотря на недостаточную точность, большинство измерений степени заряженности полагаются частично или полностью на напряжение из-за простоты. Методы, ориентированные на напряжение, популярны в таких агрегатах как электрические инвалидные коляски, электроскутеры и гольфкары. Некоторые инновационные BMS (от англ. Battery Management System — Система управления электрическими батареями) используют периоды отдыха для корректировки показаний степени заряженности как часть интеллектуальной функции.

Ареометр

Ареометр предлагает альтернативный метод измерения степени заряженности для свинцово-кислотной электрохимической системы. Смысл метода состоит в том, что когда аккумулятор заряжается, объем серной кислоты становится больше, в результате чего удельная плотность электролита увеличивается. При разрядке же, количество кислоты уменьшается из-за образования на пластинах сульфата свинца, доля воды в электролите повышается и, как следствие, его удельная плотность становится ниже. В таблице 2 приведены стандартные характеристики стартерных аккумуляторов.

Приблизительная степень заряженности Средняя удельная плотность Напряжение разомкнутой цепи

2V

6V

8V

12V

100%

1,265

2,10

6,32

8,43

12,65

75%

1,225

2,08

6,22

8,30

12,45

50%

1,190

2,04

6,12

8,16

12,24

25%

1,155

2,01

6,03

8,04

12,06

0%

1,120

1,98

5,92

7,72

11,89

Таблица 2: Стандарты BCI (от англ. Battery Council International — Международный совет по электрическим батареям) для оценки степени заряженности стартерных аккумуляторов с добавлением сурьмы. Показания снимаются при температуре 26°С после 24 часов покоя.

В то время как по стандартам BCI удельная плотность полностью заряженного стартерного аккумулятора равна 1,265, производители часто могут установить ее на уровне 1,280 и выше. Увеличение удельной плотности зависит степень заряженности исследуемого аккумулятора исходя из вышеприведенной таблицы, но хотя этот шаг и улучшит характеристики, срок службы аккумулятора сократится из-за повышенной коррозионной активности.

Помимо степени заряженности и количества кислоты, на удельную плотность также может влиять низкий уровень воды в электролите. Когда вода в процессе эксплуатации или хранения испаряется, показатель удельной плотности возрастает из-за повышения концентрации серной кислоты. Также возможна ситуация, когда воды в электролите слишком много, что, соответственно, снижает удельную плотность. При добавлении воды, дайте время для ее равномерного растворения, только после этого измерения с помощью ареометра будут корректны.

Значение удельной плотности варьируется в зависимости от сферы применения аккумуляторов. Глубокоразрядные аккумуляторы используют электролит с повышенной удельной плотностью — до 1,330, что позволяет получить максимальную удельную энергоемкость; авиационные аккумуляторы имеют удельную плотность на уровне 1,285; стартерные — 1,265; а стационарные — 1,225. Более низкая удельная плотность уменьшает коррозию и продлевает срок службы, но в то же время удельная энергоемкость и емкость уменьшаются.

Ничто в мире электрических батарей не является абсолютом. Удельная плотность полностью заряженных глубокоразрядных аккумуляторов одной и той же модели может варьироваться от 1,270 до 1,305, а их же, но полностью разряженных — от 1,097 до 1,201. Температура является еще одним фактором, который влияет на этот параметр. Чем ниже температура, тем выше плотность электролита. В таблице 3 иллюстрирована удельная плотность глубокоразрядных аккумуляторов при различных температурах.

Температура электролита Удельная плотность при полном заряде
40 1,266
30 1,273
20 1,280
10 1,287
0 1,294

Таблица 3: Зависимость удельной плотности и температуры для глубокоразрядных аккумуляторов. Холодная температура обеспечивает более высокий показатель удельной плотности.

Неточности в показаниях удельной плотности может внести стратификация, приводящая к уменьшению концентрации кислоты в верхней части аккумулятора и повышению в нижней. (Смотрите BU-804c: Кислотная стратификация и поверхностный заряд). Высокая концентрация кислоты искусственно завышает напряжение разомкнутой цепи, что обманет метод как использующий напряжение, так и основанный на удельной плотности. Электролиту необходимо дать время для стабилизации после зарядки или разрядки, прежде чем измерять его удельную плотность.

Кулоновский подсчет

Ноутбуки, медицинское оборудование и другие портативные устройства используют кулоновский подсчет для оценки степени заряженности путем измерения протекающего из аккумулятора тока. Заряд в один кулон в секунду соответствует силе тока в один ампер (1А), и это термин, который часто используется как в разрезе зарядных, так и разрядных процессов. Само название “кулон” происходит от фамилии французского ученого Шарля Огустена де Кулона (1736-1806), известного разработкой одноименного закона.

Хотя этот метод и является элегантным решением сложной проблемы, потери уменьшают суммарное количество поставляемой энергии, и ее количество доступное в конце всегда будет меньше чем было отправлено. Несмотря на этот факт, кулоновский подсчет работает неплохо, особенно с литий-ионной электрохимической системой, обеспечивая высокую кулоновскую эффективность и низкий саморазряд. Метод улучшается, беря в учет такие нюансы как возраст аккумулятора или вызванный температурой саморазряд, но в то же время ему необходима периодическая калибровка.

Но и проблема калибровки была решена, современные индикаторы заряда используют интеллектуальную функцию, которая оценивает, сколько энергии было предоставлено аккумулятором во время предыдущего разряда. Некоторые системы также учитывают время зарядки, так как изношенный аккумулятор заряжается быстрее нормального.

Создатели продвинутых систем мониторинга аккумуляторных батарей заявляют о высочайшей точности, но в реальности все не на так радужно. Бывают случаи, когда смартфон показывает 100 процентную зарядку, а в самом деле заряжен на 90. Электромобили также не лишены подобных проблем с кулоновским подсчетом — сообщается о случаях, когда заряд аккумулятора такого транспортного средства исчерпывался, хотя индикатор сигнализировал об еще имеющихся 25 процентах.

Импедансная спектроскопия

Степень заряженности также может быть оценена с помощью импедансной спектроскопии, путем использования технологии комплексного моделирования Spectro™. Данный метод устойчив к воздействию паразитарных нагрузок вплоть до 30А. Перенапряжение и поверхностный заряд также не влияют на измерения, так как степень заряженности оценивается независимо от напряжения. Эти преимущества позволяют стать методу импедансной спектроскопии предпочтительным для использования в автомобильной сфере, где аккумуляторы обычно разряжены в разной степени, и им уже не нужна будет предварительная калибровка. Также это метод может быть использован для больших стационарных систем, которые постоянно находятся под воздействием зарядных или разрядных процессов.

Независимое от напряжения, измерение степени заряженности наилучшим образом оптимизировано для док-станций и демонстрационных стендов. Дистанционное открытие двери автомобиля приводит к паразитарной нагрузке в 20А, что вносит определенную сумятицу в аккумулятор и фальсифицирует базирующиеся на напряжении измерения степени заряженности. Метод же Spectro™ позволит отличить просто разряженный аккумулятор от экземпляра с реальным дефектом.

Измерения степени заряженности с помощью импедансной спектроскопии ограничены новыми аккумуляторами с известной хорошей емкостью. Емкость должна быть стабильной и иметь не изменяющееся значение. В то время как снятие показаний допустимо при подключенной постоянной нагрузке, во время процесса зарядки это тестирование проводить нельзя.

На рисунке 4 показаны результаты тестирования методом импедансной спектроскопии после отсоединения от аккумулятора паразитарной нагрузки в 50А. Как и следовало ожидать, после этого напряжение на клеммах возросло, но показания Spectro™ остаются стабильными. Устойчивость получаемых значений степени заряженности также присутствует и сразу после процесса зарядки, когда напряжение повышено из-за электрохимической поляризации электродов.

Рисунок 4: Зависимость напряжения и точности измерений с помощью импедансной спектроскопии сразу после отсоединения нагрузки. В аккумуляторе происходят процессы восстановления после отключения нагрузки. Результаты, полученные с помощью метода Spectro™, остаются стабильными и при повышенном напряжении.

Последнее обновление 2016-05-27

Часто задаваемые вопросы о батареях глубокого разряда

| Северная Аризона Wind & Sun

Часто задаваемые вопросы об аккумуляторах глубокого разряда

Ссылки ниже находятся на этой странице — вы также можете просто прокрутить вниз, если хотите прочитать их все.

Права на всю страницу принадлежат компании Northern Arizona Wind & Sun, 1998-2014 гг. Пожалуйста, не используйте без предварительного разрешения.

Тема батарей может занять много страниц. Все, для чего у нас есть место, — это общий обзор аккумуляторов, обычно используемых в фотоэлектрических энергосистемах.Это почти все разновидности свинцово-кислотных аккумуляторов. Для очень краткого обсуждения преимуществ и недостатков этих и других типов батарей, таких как NiCad, NiFe (никель-железо) и т. Д., Перейдите на нашу страницу «Батареи для приложений глубокого цикла». Их иногда называют батареями «глубокого разряда» или «глубоких ячеек». Правильный термин — глубокий цикл.

Версия для печати этой страницы будет доступна в формате Adobe PDF, когда мы закончим обновление этой страницы для загрузки и печати: на большинстве диаграмм есть небольшие изображения для более быстрой загрузки.Чтобы увидеть картинку в полном размере, просто нажмите на маленькую.

Что такое аккумулятор?

Батарея — это электрическое накопительное устройство. Батареи не производят электричество, они накапливают его, так же как резервуар для воды хранит воду для будущего использования. При изменении химикатов в батарее электрическая энергия накапливается или высвобождается. В аккумуляторных батареях этот процесс можно повторять много раз. Батареи неэффективны на 100% — часть энергии теряется в виде тепла и химических реакций при зарядке и разрядке.Если вы потребляете 1000 Вт от аккумулятора, для его полной зарядки может потребоваться 1050 или 1250 Вт или более.

Внутреннее сопротивление

Частично или большая часть потерь при зарядке и разрядке аккумуляторов происходит из-за внутреннего сопротивления. Он преобразуется в тепло, поэтому батареи нагреваются при зарядке. Чем меньше внутреннее сопротивление, тем лучше. Хорошее объяснение и демонстрация внутреннего сопротивления здесь .

Более медленная зарядка и разрядка более эффективны.Аккумулятор, рассчитанный на 180 ампер-часов в течение 6 часов, может быть рассчитан на 220 Ач при 20-часовом тарифе и 260 Ач при 48-часовом тарифе. Большая часть этой потери эффективности происходит из-за более высокого внутреннего сопротивления при более высоких значениях силы тока — внутреннее сопротивление не является постоянным — вроде «чем больше вы нажимаете, тем больше оно отталкивается».

Типичный КПД свинцово-кислотных аккумуляторов составляет 85-95%, щелочных и никель-кадмиевых аккумуляторов — около 65%. Истинные AGM с глубоким циклом (такие как Concorde) могут приближаться к 98% при оптимальных условиях, но такие условия редко встречаются, поэтому вы должны рассчитывать, как общее правило, около 10% -20% общих потерь мощности при определении размеров батарей и батарейных блоков.

Практически все батареи, используемые в фотоэлектрических батареях, и все, кроме самых маленьких резервных систем, являются свинцово-кислотными батареями. Даже после более чем столетнего использования они по-прежнему предлагают лучшее соотношение цены и мощности. В некоторых системах используется NiCad, но мы не рекомендуем их, за исключением случаев, когда обычно очень низкие температуры (-50 F или ниже). Их дорого покупать и очень дорого утилизировать из-за опасной природы кадмия.

У нас почти не было прямого опыта работы с NiFe (щелочными) батареями, но, исходя из того, что мы узнали от других, мы не рекомендуем их.Одним из основных недостатков является большая разница напряжений между полностью заряженным и разряженным состояниями. Другая проблема заключается в том, что они очень неэффективны — вы теряете от 30 до 40% тепла, просто заряжая и разряжая их. Многие инверторы и регуляторы заряда испытывают трудности с ними. Похоже, что единственным источником новых ячеек в настоящее время является Венгрия. В прошлом они часто использовались железными дорогами в качестве резервного источника питания, но теперь почти все они перешли на более новые типы.

Важным фактом является то, что ВСЕ батареи, обычно используемые в приложениях глубокого цикла, являются свинцово-кислотными. Сюда входят стандартные залитые батареи, гелевые и герметичные AGM. Все они используют один и тот же химический состав, хотя фактическая конструкция тарелок и т. Д. Различается.

NiCads, никель-железо и другие типы встречаются в нескольких системах, но не являются обычными из-за их стоимости, опасности для окружающей среды и / или низкой эффективности.

Типы аккумуляторов Батареи

делятся на два типа: по применению (для чего они используются) и конструкции (по способу изготовления).Основные области применения — автомобилестроение, судостроение и глубокий цикл. Глубокий цикл включает солнечные электрические (PV), резервные источники энергии, тяговые батареи, а также батареи для жилых домов и лодок. Основными типами конструкций являются затопленные (мокрые), гелеобразные и герметичные AGM (абсорбированный стеклянный мат). Аккумуляторы AGM также иногда называют «нехваткой электролита» или «сухими», потому что стекловолоконный мат только на 95% насыщен серной кислотой и в нем нет лишней жидкости.

Flooded может быть стандартным, со съемными крышками или так называемым «необслуживаемым» (это означает, что они сконструированы так, чтобы умереть через неделю после истечения гарантии).Все AGM и гелеобразные герметичны и «регулируются клапаном», что означает, что крошечный клапан поддерживает небольшое положительное давление. Почти все герметичные батареи имеют «регулируемый клапан» (обычно называемый «VRLA» — свинцово-кислотный аккумулятор с клапанным регулированием). Большинство регулируемых клапанов находятся под определенным давлением — от 1 до 4 фунтов на квадратный дюйм на уровне моря.

Срок службы батареи

Срок службы батареи глубокого разряда значительно зависит от того, как она используется, как обслуживается и заряжается, от температуры и других факторов.Это может варьироваться до крайности — мы видели, как L-16 были убиты менее чем за год из-за серьезной перезарядки и потери воды, и у нас есть большой набор излишков телефонных батарей, которые редко (10-15 раз в год) подвергаются тяжелой эксплуатации. был заменен только через 35+ лет. Мы видели, как гелеобразные клетки разрушались за один день при перезарядке с помощью большого автомобильного зарядного устройства. Мы видели, как батареи гольф-каров разрушались, но не использовались менее чем за год, потому что они оставались лежать в горячем гараже или на складе без подзарядки.Даже так называемые «сухие заряды» (когда вы добавляете кислоту, когда они вам нужны) имеют срок хранения не более 18 месяцев. (Они не полностью сухие — они фактически заполнены кислотой, пластины сформированы и заряжены, а затем кислота выливается).

Это некоторые типичные (минимальные-максимальные) ожидания для аккумуляторов , если используются в обслуживании глубокого цикла . Существует так много переменных, как глубина разряда, техническое обслуживание, температура, частота и глубина цикла и т. Д., Что практически невозможно указать фиксированное число.

  • Начало: 3-12 месяцев
  • Морской: 1-6 лет
  • Гольф-мобиль: 2-7 лет
  • AGM глубокий цикл: 4-8 лет
  • Глубокий цикл гелеобразования: 2-5 лет
  • Глубокий цикл (тип L-16 и т. Д.): 4-8 лет
  • Rolls-Surrette premium глубокого цикла: 7-15 лет
  • Промышленный глубокий цикл (серия Crown and Rolls 4KS): 10-20 + лет.
  • Телефон (плавающий): 2-20 лет. Обычно это специальные «плавающие» услуги, но на избыточном рынке они часто появляются как «глубокий цикл».Они могут значительно различаться в зависимости от возраста, использования, ухода и типа.
  • NiFe (щелочной): 5-35 лет
  • NiCad: 1-20 лет

Пусковые, судовые или разрядные батареи


Пусковые батареи
(иногда называемые SLI, для запуска, освещения, зажигания) обычно используются для запуска и работы двигателей. Стартерам двигателя требуется очень большой пусковой ток в течение очень короткого времени. Пусковые батареи имеют большое количество тонких пластин для максимальной площади поверхности.Пластины состоят из свинцовой «губки», внешне похожей на очень мелкую поролоновую губку. Это дает очень большую площадь поверхности, но при глубоком циклировании эта губка быстро израсходуется и упадет на дно клеток. Автомобильные аккумуляторы обычно выходят из строя после 30-150 глубоких циклов при глубоком цикле, в то время как они могут длиться тысячи циклов при нормальном запуске (2-5% разряда).

Аккумуляторы глубокого разряда предназначены для разряда до 80% раз за разом и имеют гораздо более толстые пластины.Основное различие между настоящей батареей глубокого разряда и другими заключается в том, что пластины представляют собой твердые свинцовые пластины, а не губку. Это дает меньшую площадь поверхности и, следовательно, меньшую потребность в «мгновенной» энергии, такой как пусковые батареи. Хотя их можно сократить до 20% заряда, лучший метод расчета срока службы по сравнению с затратами — это поддерживать средний цикл при разряде около 50%. К сожалению, часто невозможно сказать, что вы действительно покупаете в некоторых дисконтных магазинах или местах, специализирующихся на автомобильных аккумуляторах.Аккумулятор для тележки для гольфа довольно популярен для небольших систем и домов на колесах. Проблема в том, что «тележка для гольфа» относится к корпусу батареи размера (обычно называемому GC-2 или T-105), а не к типу конструкции — поэтому качество и конструкция батареи тележки для гольфа могут значительно различаться — начиная от дешевых нестандартных с тонкими пластинами до настоящих брендов глубокого цикла, таких как Crown, Deka, Trojan и т. д. В общем, вы получаете то, за что платите.

Морские батареи обычно являются «гибридными» и находятся между стартовыми и глубокими батареями, хотя некоторые из них (например, Rolls-Surrette и Concorde) действительно глубокого разряда.В гибриде пластины могут состоять из свинцовой губки, но она грубее и тяжелее, чем та, которая используется в пусковых аккумуляторах. Часто сложно сказать, что вы получаете от «морской» батареи, но большинство из них — гибридные. Пусковые батареи обычно имеют номинальный ток «CCA», или ток холодного пуска, или «MCA», ток пуска двигателя Marine — то же, что и «CA». Любая батарея с емкостью, указанной в CA или MCA, может быть или не быть настоящей батареей глубокого разряда. Иногда это трудно сказать, поскольку термин «глубокий цикл» часто используется слишком часто — мы даже видели термин «глубокий цикл» в рекламе автомобильных стартовых аккумуляторов.Рейтинги CA и MCA составляют 32 градуса по Фаренгейту, в то время как CCA — ноль градусов по Фаренгейту. К сожалению, единственный положительный способ узнать о некоторых батареях — это купить одну и разрезать ее — не лучший вариант.

Батарея глубокого разряда в качестве пусковой батареи

Как правило, с этим проблем не возникает, при условии, что делается поправка на более низкий ток запуска по сравнению с пусковой батареей аналогичного размера. Как правило, если вы собираетесь использовать настоящую батарею глубокого разряда (такую ​​как Concorde SunXtender) также в качестве стартовой батареи, ее размер должен быть увеличен примерно на 20% по сравнению с существующим или рекомендуемым размером группы стартовых батарей, чтобы получить те же усилители прокрутки.Это примерно то же самое, что заменить группу 24 на группу 31. В современных двигателях с впрыском топлива и электронным зажиганием обычно требуется гораздо меньше энергии батареи для их запуска и запуска, поэтому необработанные значения тока запуска менее важны, чем раньше. . С другой стороны, многие автомобили, лодки и дома на колесах более загружены «приборами», потребляющими электроэнергию, такими как мегаваттные стереосистемы и т. Д., Которые больше подходят для батарей глубокого разряда. Мы без проблем использовали аккумуляторы Concorde SunXtender AGM в некоторых наших автомобилях.

Использование батареи глубокого разряда в качестве пусковой батареи не повредит, но для батареи того же размера они не могут обеспечить такой же ток запуска, как обычная пусковая батарея, и, как правило, намного дороже.

К началу

Из каких аккумуляторов делают

Почти все широко используемые большие перезаряжаемые батареи относятся к свинцово-кислотному типу. (Есть несколько никель-кадмиевых аккумуляторов, но для большинства целей очень высокие начальные затраты и высокая стоимость утилизации не оправдывают их).Некоторые типы литий-ионных аккумуляторов начинают появляться, но они намного дороже свинцово-кислотных, и большинство контроллеров заряда не имеют правильных уставок для правильной зарядки.

Кислота обычно состоит из 30% серной кислоты и 70% воды при полной заправке. Также доступны NiFe (никель-железные) батареи — они имеют очень долгий срок службы, но довольно низкую эффективность (60-70%), а напряжения отличаются, что затрудняет совместимость со стандартными системами 12 В / 24/48 В и инверторы.Самая большая проблема с батареями NiFe заключается в том, что вам, возможно, придется вложить 100 Вт, чтобы получить 70 Вт заряда — они намного менее эффективны, чем свинцово-кислотные. То, что вы сэкономите на батареях, вам придется компенсировать, купив более крупную систему солнечных батарей. Никель-кадмиевые батареи также неэффективны — обычно около 65% — и очень дороги. Однако никель-кадмиевые батареи можно заморозить без повреждений, поэтому их иногда используют в областях, где температура может опускаться ниже -50 градусов по Фаренгейту. Большинство аккумуляторов AGM без проблем выдерживают замерзание, даже если выходная мощность при замораживании будет небольшой или нулевой.

Промышленные аккумуляторы глубокого разряда

Иногда называемые «вилочные погрузчики», «тяговые» или «стационарные» аккумуляторы используются там, где требуется питание в течение более длительного периода времени, и предназначены для «глубокого цикла» или разряда до 20% от полного заряда. заряда (80% DOD или Глубина разряда). Их часто называют тяговыми батареями из-за того, что они широко используются в вилочных погрузчиках, тележках для гольфа и подметально-уборочных машинах (отсюда мы получаем аккумуляторы серий GC и FS).Батареи глубокого разряда имеют гораздо более толстые пластины, чем автомобильные батареи. Иногда они используются в более крупных фотоэлектрических системах, потому что вы можете получить много памяти в одной (очень большой и тяжелой) батарее.

Толщина листа

Толщина пластины (положительной пластины) имеет значение из-за фактора, называемого «, коррозия положительной решетки ». Это одна из трех основных причин отказа батареи. Положительная (+) пластина — это то, что со временем постепенно разъедается, так что в конечном итоге ничего не остается — все падает на дно в виде осадка.Более толстые пластины напрямую связаны с более длительным сроком службы, поэтому при прочих равных условиях аккумулятор с самыми толстыми пластинами прослужит дольше всего. Отрицательная пластина в батареях несколько расширяется во время разряда, поэтому почти все батареи имеют разделители, такие как стекломат или бумага, которые можно сжимать.

Автомобильные аккумуляторы обычно имеют пластины толщиной около 0,040 дюйма (4/100 дюйма), в то время как аккумуляторы для вилочных погрузчиков могут иметь пластины толщиной более 1/4 дюйма (0,265 дюйма, например, в более крупном Rolls-Surrette) — почти в 7 раз толще автомобильные аккумуляторы.Типичная тележка для гольфа будет иметь пластины толщиной от 0,07 до 0,11 дюйма. У Concorde AGM — 0,15 дюйма, у Rolls-Surrette L-16 type (Ch560) — 0,150 дюйма, а также у американской батареи и Trojan L- 16 типов — 0,090 дюйма. Размер пластины Crown L-16HC составляет 0,22 дюйма. Хотя толщина пластины не является единственным фактором, определяющим, сколько глубоких циклов может выдержать батарея, прежде чем она разрядится, это самый важный из них.

В большинстве промышленных аккумуляторов (для вилочных погрузчиков) глубокого цикла используются свинцово-сурьмяные пластины, а не свинцово-кальциевые, используемые в AGM или гелевых аккумуляторах глубокого цикла и в автомобильных пусковых аккумуляторах.Сурьма увеличивает срок службы и прочность пластин, но увеличивает газообразование и потерю воды. Вот почему большинство промышленных аккумуляторов необходимо часто проверять на уровень воды, если у вас нет Hydrocaps. Саморазряд батарей со свинцово-сурьмянистыми пластинами может быть высоким — до 1% в день на старых батареях. Новый AGM обычно саморазряжается примерно на 1-2% в месяц, в то время как старый может достигать 2% в неделю.

Герметичные батареи

Герметичные батареи имеют вентиляционные отверстия, которые (обычно) невозможно удалить.Так называемые необслуживаемые батареи также герметичны, но обычно не герметичны. Герметичные батареи не являются полностью герметичными, так как они должны позволять газу выходить во время зарядки. Если перезарядить слишком много раз, некоторые из этих батарей могут потерять достаточно воды, и они умрут раньше срока. В большинстве небольших аккумуляторов глубокого разряда (включая AGM) используются пластины свинец-кальций для увеличения срока службы, в то время как в большинстве промышленных аккумуляторов и аккумуляторов для вилочных погрузчиков используется свинцово-сурьмянистые аккумуляторы для большей прочности пластин, чтобы выдерживать удары и вибрацию.

Свинцово-сурьмянистые батареи (например, для вилочных погрузчиков и полоочистителей)

имеют гораздо более высокую скорость саморазряда (2-10% в неделю), чем свинцово-кальциевые (1-5% в месяц), но сурьма улучшает механические характеристики. прочность пластин, что является важным фактором в электромобилях. Обычно они используются там, где они подвергаются постоянным или очень частым циклам зарядки / разрядки, например, в вилочных погрузчиках и подметально-уборочных машинах. Сурьма увеличивает срок службы пластин за счет более высокого саморазряда.Если они не используются в течение длительного времени, их следует подзарядить, чтобы избежать повреждения от сульфатации, но это относится к ЛЮБОМУ аккумулятору.

Как и во всем, есть компромиссы. Свинцово-сурьмянистые типы имеют очень долгий срок службы, но более высокую скорость саморазряда.

Коды размера батареи

Батареи бывают разных размеров. Многие из них имеют «групповые» размеры, основанные на физическом размере и размещении терминала. Это НЕ показатель емкости аккумулятора.Типичными кодами BCI являются группы U1, 24, 27 и 31. Промышленные аккумуляторы обычно обозначаются номером детали, например «FS» для подметально-уборочной машины или «GC» для тележки для гольфа. Многие батареи не имеют определенного кода, а являются просто номерами деталей производителя. Другие коды стандартных размеров — это 4D и 8D, большие промышленные батареи, обычно используемые в солнечных электрических системах.

Некоторые распространенные коды размеров батарей: (номинальные значения приблизительны)
U1 от 34 до 40 ампер-часов 12 вольт
Группа 24 70-85 Ампер-час 12 вольт
Группа 27 85-105 Ампер-час 12 вольт
Группа 31 95-125 Ампер-час 12 вольт
4-Д 180-215 Ампер-час 12 вольт
8-Д 225-255 Ампер-час 12 вольт
Гольфмобиль и Т-105 от 180 до 225 ампер-часов 6 вольт
L-16, L16HC и т. Д. от 340 до 415 ампер-часов 6 вольт
Гелеобразный электролит

Гелевые батареи, или «гелевые элементы», содержат кислоту, которая «гелируется» добавлением силикагеля, превращая кислоту в твердую массу, которая выглядит как липкое желе-O. Преимущество этих аккумуляторов в том, что пролить кислоту невозможно, даже если они сломаны. Однако есть несколько недостатков. Во-первых, они должны заряжаться с меньшей скоростью (C / 20), чтобы предотвратить повреждение элементов избыточным газом.Их нельзя быстро зарядить с помощью обычного автомобильного зарядного устройства, или они могут быть необратимо повреждены. Обычно это не проблема с солнечными электрическими системами, но если используется вспомогательный генератор или инверторное зарядное устройство, ток должен быть ограничен спецификациями производителя. Большинство лучших инверторов, обычно используемых в солнечных электрических системах, могут быть настроены на ограничение тока зарядки аккумуляторов.

Еще одним недостатком гелевых элементов является то, что они должны заряжаться при более низком напряжении (на 2/10 меньше), чем залитые аккумуляторы или аккумуляторы AGM.При перезарядке в геле могут образоваться пустоты, которые никогда не заживут, что приведет к снижению емкости аккумулятора. В жарком климате потери воды может хватить на 2-4 года, чтобы вызвать преждевременный выход батареи из строя. По этой и другим причинам мы больше не продаем гелированные клетки, кроме как для замены. Более новые аккумуляторы AGM (абсорбирующий стекломат) обладают всеми преимуществами (а иногда и некоторыми) гелеобразных, без каких-либо недостатков.

AGM (Absorbed Glass Mat) Аккумуляторы

Ознакомьтесь с нашими наиболее популярными брендами аккумуляторов AGM: Universal Power Group , Concorde SunXtender и Fullriver Battery .

В новом типе герметичных аккумуляторов между пластинами используются «абсорбированные стеклянные маты» или AGM. Это мат из боросиликатного стекла с очень тонкими волокнами. Батареи этого типа обладают всеми преимуществами гелевых аккумуляторов, но могут выдерживать гораздо больше злоупотреблений. Мы продаем аккумуляторы Concorde (и Lifeline, производства Concorde) AGM. Их также называют «недостатком электролита», так как мат на 95% насыщен, а не полностью пропитан. Это также означает, что они не будут протекать кислотой, даже если они сломаны.

AGM-аккумуляторы имеют ряд преимуществ перед гелевыми и залитыми батареями, примерно при той же стоимости, что и гелевые:

Поскольку весь электролит (кислота) содержится в стеклянных матах, они не могут пролиться, даже если они разбиты.Это также означает, что, поскольку они не опасны, стоимость доставки ниже. Кроме того, поскольку нет жидкости, которая могла бы замерзнуть и расшириться, они практически не подвержены повреждениям от замерзания.

Почти все аккумуляторы AGM являются «рекомбинантными » — это означает, что кислород и водород рекомбинируют ВНУТРИ аккумулятора. В них используется газофазный перенос кислорода к отрицательным пластинам, чтобы рекомбинировать их обратно в воду во время зарядки и предотвращать потерю воды в результате электролиза.Эффективность рекомбинации обычно составляет 99%, поэтому потеря воды почти не происходит.

Напряжение зарядки такое же, как и для любого стандартного аккумулятора — нет необходимости в каких-либо специальных регулировках или проблемах с несовместимыми зарядными устройствами или элементами управления зарядкой. А поскольку внутреннее сопротивление чрезвычайно низкое, нагрев батареи практически не происходит даже при сильных токах заряда и разряда. Аккумуляторы Concorde (и большинство AGM) не имеют ограничений по току заряда или разряда.

У

AGM очень низкий саморазряд — обычно от 1% до 3% в месяц.Это означает, что они могут находиться на хранении гораздо дольше без зарядки, чем стандартные батареи. Батареи Concorde можно почти полностью зарядить (95% или лучше) даже через 30 дней после полной разрядки.

В

AGM нет жидкости, которая могла бы пролиться, и даже в условиях сильной перезарядки выброс водорода намного ниже максимального значения 4%, установленного для самолетов и закрытых помещений. Пластины AGM плотно упакованы и жестко закреплены и выдерживают удары и вибрацию лучше, чем любая стандартная батарея.

Даже при всех перечисленных выше достоинствах все же есть место для стандартной залитой батареи глубокого разряда. AGM будет стоить примерно в 1,5–2 раза дороже, чем залитые батареи той же емкости. Во многих установках, где батареи устанавливаются в зоне, где вам не нужно беспокоиться о парах или утечках, стандартный или промышленный глубокий цикл является более экономичным выбором. Основными преимуществами батарей AGM являются отсутствие необходимости в обслуживании, полная герметичность от дыма, водорода или утечки, отсутствие проливания даже в случае поломки и возможность выдерживать большинство замерзаний.Не всем нужны эти функции.

К началу

Воздействие температуры на батареи

Емкость батареи (сколько ампер-часов она может удерживать) уменьшается при понижении температуры и увеличивается при повышении температуры. Вот почему аккумулятор вашего автомобиля умирает холодным зимним утром, хотя накануне днем ​​он работал нормально. Если ваши батареи проводят часть года дрожа на морозе, уменьшенную емкость необходимо учитывать при выборе размеров системных батарей.Стандартное значение для аккумуляторов — при комнатной температуре — 25 градусов C (около 77 F). Примерно при -22 градусах F (-27 C) емкость батареи AH падает до 50%. При замораживании емкость снижается на 20%. Емкость увеличивается при более высоких температурах — при 122 градусах по Фаренгейту емкость аккумулятора будет примерно на 12% выше.

Зарядка аккумулятора Напряжение также меняется в зависимости от температуры. Оно будет варьироваться от примерно 2,74 В на элемент (16,4 В) при -40 C до 2,3 В на элемент (13,8 В) при 50 C.Вот почему у вас должна быть температурная компенсация на вашем зарядном устройстве или контроль заряда, если ваши батареи находятся на улице и / или подвержены сильным колебаниям температуры. Некоторые регуляторы заряда имеют встроенную температурную компенсацию (например, Morningstar) — это отлично работает, если контроллер подвергается воздействию тех же температур, что и батареи. Однако, если ваши батареи находятся снаружи, а контроллер внутри, он не будет работать так хорошо. Еще одна сложность заключается в том, что большие аккумуляторные батареи составляют большую тепловую массу .

Тепловая масса означает, что из-за большой массы они изменяют внутреннюю температуру намного медленнее, чем температура окружающего воздуха. Большой изолированный аккумуляторный блок может внутренне изменяться всего на 10 градусов в течение 24 часов, даже если температура воздуха колеблется от 20 до 70 градусов. По этой причине внешние (дополнительные) датчики температуры должны быть прикреплены к одной из ПОЛОЖИТЕЛЬНЫХ пластинчатых клемм и немного связаны с какой-либо изоляцией на клеммах.Затем датчик будет показывать очень близкую к фактической внутренней температуре батареи.

Несмотря на то, что емкость батареи при высоких температурах выше, срок службы батареи сокращается. Емкость аккумулятора уменьшается на 50% при -22 градусах по Фаренгейту, но СРОК СЛУЖБЫ аккумулятора увеличивается примерно на 60%. Срок службы батареи сокращается при более высоких температурах — на каждые 15 градусов по Фаренгейту свыше 77 срок службы батареи сокращается вдвое. Это справедливо для ЛЮБОГО типа свинцово-кислотных аккумуляторов, будь то герметичные, гелевые, AGM, промышленные или любые другие.На самом деле это не так плохо, как кажется, так как батарея имеет тенденцию усреднять хорошие и плохие времена. Щелкните небольшой график, чтобы увидеть полную диаграмму зависимости температуры от емкости.

Последнее замечание о температурах — в некоторых местах с очень холодными или жаркими условиями могут продаваться на месте батареи, которые НЕ имеют стандартной концентрации электролита (кислоты). Электролит может быть более сильным (для холодного) или более слабым (для очень жаркого) климата. В таких случаях удельный вес и напряжения могут отличаться от того, что мы показываем.

Циклов и продолжительности жизни

«Цикл» батареи — это один полный цикл разрядки и перезарядки. Обычно считается, что происходит разряд от 100% до 20%, а затем обратно до 100%. Однако часто существуют рейтинги для других циклов глубины разряда, наиболее распространенными являются 10%, 20% и 50%. Вы должны быть осторожны при просмотре рейтингов, в которых указано, на сколько циклов рассчитана батарея, если также не указано, как далеко она разряжается. Например, одна из широко рекламируемых аккумуляторных батарей телефонного типа (поплавковая) рекламируется как имеющая 20-летний срок службы.Если вы посмотрите на мелкий шрифт, он имеет этот рейтинг только при 5% DOD — это намного меньше при использовании в приложении, где они регулярно меняются глубже. Те же батареи рассчитаны на срок менее 5 лет при циклическом цикле до 50%. Например, большинство батарей для гольф-каров рассчитаны примерно на 550 циклов до 50% разряда, что соответствует примерно 2 годам.

Срок службы батареи напрямую зависит от того, насколько глубокий батарея циклически перезаряжается каждый раз. Если батарея разряжается до 50% каждый день, она прослужит примерно в два раза дольше, чем если бы она была циклирована до 80% DOD.Если цикл разряда только 10%, он прослужит примерно в 5 раз дольше, чем цикл до 50%. Очевидно, здесь есть некоторые практические ограничения — обычно вы не хотите иметь 5-тонную кучу батарей, просто чтобы уменьшить DOD. Наиболее практичное значение для регулярного использования — это 50% DOD. Это НЕ означает, что вы не можете время от времени переходить на 80%. Просто при проектировании системы, когда у вас есть некоторое представление о нагрузках, вы должны рассчитывать на среднее значение DOD около 50% для лучшего хранилища по сравнению с коэффициентом затрат.Кроме того, существует верхний предел — батарея, которая постоянно разряжается на 5% или меньше, обычно не прослужит до тех пор, пока батарея разряжается на 10%. Это происходит потому, что при очень неглубоких циклах диоксид свинца имеет тенденцию скапливаться на положительных пластинах сгустками, а не на ровной пленке. График выше показывает, как на срок службы влияет глубина разряда. Диаграмма относится к батареям Concorde Lifeline, но все свинцово-кислотные батареи будут похожи по форме кривой, хотя количество циклов будет изменяться.

К началу

Напряжение аккумулятора

Все свинцово-кислотные батареи вырабатывают около 2,14 В на элемент (от 12,6 до 12,8 для аккумулятора на 12 В) при полной зарядке. Батареи, которые хранятся в течение длительного времени, со временем полностью разряжаются. Эта «утечка» или саморазряд значительно зависит от типа, возраста и температуры батареи. Он может составлять от 1% до 15% в месяц. Как правило, новые батареи AGM имеют самый низкий уровень заряда, а старые промышленные (свинцово-сурьмянистые пластины) — самые высокие.В системах, которые постоянно подключены к источнику зарядки какого-либо типа, будь то солнечная энергия, ветер или зарядное устройство с питанием от переменного тока, это редко является проблемой. Тем не менее, один из главных убийц аккумуляторов хранится в частично разряженном состоянии в течение нескольких месяцев. Аккумуляторы должны поддерживать постоянный постоянный заряд, даже если они не используются (или , особенно , если они не используются). Даже большинство «сухозаряженных» аккумуляторов (которые продаются без электролита, чтобы их было легче транспортировать с добавлением кислоты позже) со временем изнашиваются.Максимальный срок хранения составляет от 18 до 30 месяцев.

Батареи саморазряжаются быстрее при более высоких температурах. Срок службы также может быть серьезно сокращен при более высоких температурах — большинство производителей заявляют, что это означает 50% -ную потерю срока службы на каждые 15 градусов по Фаренгейту при температуре ячейки 77 градусов. Срок службы увеличивается с той же скоростью, если температура ниже 77 градусов, но емкость уменьшается. Это имеет тенденцию выравниваться в большинстве систем — они проводят часть своей жизни при более высоких температурах, а часть — при более низких. Типичные показатели саморазряда для затопленных составляют от 5% до 15% в месяц.

Миф: Старый миф о том, что батареи нельзя хранить на бетонных полах, — это всего лишь миф. Эта история существует уже 100 лет и возникла еще тогда, когда ящики для аккумуляторов были сделаны из дерева и асфальта. Кислота будет вытекать из них и образовывать медленно разряжающийся контур через пропитанный кислотой и проводящий пол.
Состояние заряда

Основная информация о напряжении батареи

Вчера мы разместили очень ненаучный обзор на странице OPTIMA Batteries в Facebook, надеясь получить некоторое представление о том, что люди думают, когда слышат уровень напряжения батареи.Мы заявили, что 12-вольтовая батарея показала 12,1 вольт, а затем спросили, была ли батарея полностью заряжена, перезаряжена или нужна ли зарядка.

Первые шесть голосов представляли собой смесь между полностью заряженным аккумулятором и нуждающимся в подзарядке. После этого подавляющее большинство (20-2) посчитали, что батарея с напряжением 12,1 вольт нуждается в зарядке, и они были правы. Мы думали, что это может произойти, поскольку люди склонны соглашаться с большинством, когда один из вариантов становится ясным. Мы надеемся, что все, кто голосовал за батарею, нуждающуюся в подзарядке, действительно понимали, что то, что батарея называется «12-вольтовой» батареей, не обязательно означает, что уровень напряжения около 12 вольт предполагает, что батарея полностью заряжена.

По правде говоря, большинство 12-вольтных батарей должны иметь напряжение не менее 12,6 вольт, прежде чем они будут считаться полностью заряженными . Это потому, что каждая из шести ячеек в 12-вольтовой батарее должна измерять не менее 2,1 вольт при полной зарядке. Умножьте это число на шесть ячеек, и вы получите 12,6 вольт. Химический состав батареи может варьироваться от одной батареи к другой, поэтому мы говорим «около 12,6 вольт», потому что батарея может быть полностью заряжена при напряжении 12,5 или 12,8 вольт, а некоторые батареи могут быть полностью заряжены с еще большей скоростью.

Наши батареи YELLOWTOP и BLUETOP (за исключением 34M BLUETOP) полностью заряжены примерно на 13,0–13,2 вольт. Если вам кажется, что этих цифр слишком много, мы дадим вам одно простое число, которое нужно запомнить — 12,4 вольт. Если вы запомнили только одно значение напряжения, относящееся к батареям, то следует запомнить число 12,4.

Всякий раз, когда какие-либо свинцово-кислотные батареи (включая батареи AGM) разряжаются ниже 12,4 В, начинает образовываться сульфатирование, что снижает как емкость, так и срок службы.Это делает качественное устройство для обслуживания аккумуляторов, такое как OPTIMA Charger или Maintainer, отличным вложением в любой автомобиль, который не используется регулярно. Независимо от того, есть ли у вас один из наших REDTOP, YELLOWTOP, BLUETOP или даже залитый аккумулятор, убедитесь, что вы поддерживаете напряжение выше 12,4 В, когда можете, особенно когда аккумулятор находится на хранении.

Основы зарядного устройства | Chargetek.com

Основные сведения о зарядном устройстве | Chargetek.com

Цикл заряда батареи описывает соотношение напряжения и тока в батарее, когда зарядное устройство возвращает батарею энергоемкость.Аккумуляторы разного химического состава, например свинцово-кислотные, никель-кадмиевые и т. Д., Требуют разных методов зарядки. Два цикла зарядки, описанные ниже, цикл поддерживающей зарядки и цикл зарядки с тремя состояниями, предназначены для свинцово-кислотных аккумуляторов.

Цикл технического обслуживания Зарядные устройства

для техобслуживания полезны в таких приложениях, как хранение аккумуляторов, и когда обслуживающий персонал не требует возврата 100% емкости аккумулятора.

Chargetek 150 — это зарядное устройство для обслуживания.Зарядные устройства обслуживаемого типа полезны в таких приложениях, как хранение аккумуляторов, и там, где обслуживающий персонал не требует возврата 100% емкости аккумулятора. Зарядные устройства для обслуживания часто используются там, где нечасто используется первичный источник зарядки, такой как генератор переменного тока. Заряд аккумулятора поддерживается в течение длительного времени с помощью ремонтного зарядного устройства. См. Рисунок ниже.

Этап 1: режим зарядки постоянным током или объемной зарядки

Предполагая, что аккумулятор запускается в разряженном состоянии, зарядное устройство работает в режиме постоянного тока, в котором ток зарядного устройства поддерживается на постоянном значении, а напряжение аккумулятора может повышаться по мере его перезарядки.Примерно 80% емкости аккумулятора возвращается в область постоянного тока.

Этап 2: плавающий режим

Плавающий режим следует за режимом постоянного тока. В плавающем режиме напряжение аккумулятора поддерживается на уровне примерно 2,25 В на элемент или 13,5 В для аккумулятора 12 В. Это зарядное устройство будет поддерживать аккумулятор в течение длительного времени без выкипания электролита или перезарядки аккумулятора.

Трехступенчатый цикл зарядки

Трехступенчатая зарядка — это метод, рекомендуемый большинством производителей свинцово-кислотных аккумуляторов как лучший и наиболее эффективный способ восстановить полную емкость аккумулятора и продлить срок его службы.Все свинцово-кислотные зарядные устройства Chargetek, за исключением CT150 (которое является зарядным устройством для обслуживания), представляют собой трехступенчатые зарядные устройства и возвращают полную емкость. См. Рисунок ниже.

Этап 1: режим зарядки постоянным током или объемной зарядки

Предполагая, что аккумулятор запускается в разряженном состоянии, зарядное устройство работает в режиме постоянного тока, в котором ток зарядного устройства поддерживается на постоянном значении, а напряжение аккумулятора может повышаться по мере его перезарядки.Примерно 80% емкости аккумулятора возвращается в область постоянного тока.

Этап 2: Режим абсорбции

Когда напряжение батареи достигает приблизительно 2,4 В на элемент или 14,6 В для батареи 12 В, напряжение зарядного устройства остается постоянным на этом уровне, и ток батареи может уменьшаться. Именно в этот регион возвращаются последние 20% емкости аккумулятора. Этот уровень напряжения сохраняется до тех пор, пока ток батареи не снизится примерно до C / 50 — C / 100, где C — это номинальная мощность батареи в ампер-часах.Например, если это батарея на 100 ампер-часов, напряжение должно поддерживаться на уровне 2,5 В на элемент, пока ток не упадет до 1-2 ампер. Точная сумма обычно не критична.

Этап 3: плавающий режим

В точке, где ток снижается с C / 50 до C / 100, зарядное устройство переходит в плавающий режим. В плавающем режиме напряжение на аккумуляторе поддерживается на уровне примерно 2,25 В на элемент или 13,5 В для аккумулятора 12 В. Это напряжение будет поддерживать состояние полного заряда аккумулятора без кипения электролита или перезарядки аккумулятора.

Четырехступенчатый цикл зарядки

Четырехступенчатая зарядка подает на аккумулятор постоянный ток до тех пор, пока не будет достигнуто напряжение поглощения (V FSTERM ). Затем происходит переход в режим абсорбции, и напряжение батареи регулируется на уровне V FSTERM , пока ток не снизится до I ABTERM . Плавающий режим следует за аккумулятором и регулирует его напряжение на уровне В FL . По усмотрению пользователя может быть включен режим эквализации.

Этапы 1, 2 и 3: см. Описание выше для трехступенчатого цикла зарядки

Этап 4: Режим выравнивания

Назначение режима выравнивания — удалить сульфат из свинцовых пластин и устранить расслоение электролита.На батарею подается примерно 2,5-2,6 В на элемент, а зарядный ток установлен на очень низкое значение, обычно менее 0,5 А. Режим выравнивания может длиться от нескольких часов до 24 часов в зависимости от обстоятельств.

Для получения дополнительной информации о выравнивании и десульфатации см. в этой презентации.


Учебное пособие по зарядке аккумулятора | ChargingChargers.com


Текущая технология зарядки аккумуляторов основана на использовании микропроцессоров (компьютерных чипов) для подзарядка с использованием 3-ступенчатой ​​(или 2-х или 4-х ступенчатой) регулируемой зарядки.Это «умные» зарядные устройства », а качественные устройства обычно не продаются в дисконтных магазинах. Стадиями или этапами зарядки свинцово-кислотных аккумуляторов являются объемная, абсорбционная и плавающая. Квалификация или уравнивание иногда считаются еще одним этапом. 2 этап блок будет иметь объемную и плавающую ступени. Важно использовать батареи производителя. рекомендации по зарядке и напряжениям, или качественный микропроцессор управляемое зарядное устройство для поддержания емкости аккумулятора и срока его службы.

«Умные зарядные устройства» созданы с учетом современной философии зарядки. а также получать информацию от аккумулятора, чтобы обеспечить максимальный заряд с минимальное наблюдение. Для некоторых гелевых аккумуляторов и аккумуляторов AGM могут потребоваться специальные настройки. или зарядные устройства. Наши устройства выбраны по их совместимости с типами батарей, которые они указать. Гелевые батареи обычно требуют определенного профиля заряда, а гелевые батареи требуется специальное или выбираемое гелеобразное или подходящее гелеобразное зарядное устройство.Пиковая зарядка напряжение для гелевых аккумуляторов составляет 14,1 или 14,4 вольт, что ниже, чем у влажных или AGM. Тип батареи необходим для полной зарядки. Превышение этого напряжения в гелевой батарее может вызвать пузыри в геле электролита и необратимое повреждение.

Большинство производителей аккумуляторов рекомендуют устанавливать зарядное устройство примерно на 25% емкости аккумулятора. емкость (ah = емкость в ампер-часах). Таким образом, 100-амперная батарея потребует около 25 ампер. зарядное устройство (или меньше).Для сокращения времени зарядки можно использовать зарядные устройства большего размера, но уменьшить срок службы батареи. Меньшие зарядные устройства подходят для длительного плавания, например а 1 или «умное зарядное устройство» на 2 А можно использовать для обслуживания батареи между циклами с повышенным током использовать. Некоторые батареи указывают 10% емкости (0,1 X C) в качестве скорости заряда, а в то время как это ничего не помешает, хорошее микропроцессорное зарядное устройство соответствующей зарядки профиль должен быть в порядке до 25% ставки. Вы разговариваете с разными инженерами, даже в одна и та же компания, вы получите разные ответы.

Трехступенчатая зарядка аккумулятора

Этап BULK включает около 80% перезарядки, при этом ток зарядки остается постоянным (в зарядном устройстве постоянного тока), и напряжение увеличивается. Правильно размер зарядного устройства даст батарее столько тока, сколько она может принять до зарядного устройства емкость (25% емкости аккумулятора в ампер-часах), и не поднимать мокрый аккумулятор выше 125 F, или аккумулятор AGM или GEL (регулируемый клапаном) более 100 F.

Ступень ПОГЛОЩЕНИЕ (примерно оставшиеся 20%) имеет зарядное устройство. удерживая напряжение на уровне напряжения поглощения зарядного устройства (от 14,1 до 14,8 В постоянного тока). VDC, в зависимости от уставок зарядного устройства) и уменьшая ток до тех пор, пока аккумулятор не полностью заряжен. Некоторые производители зарядных устройств называют эту стадию абсорбции стадия уравнивания. Мы не согласны с таким использованием термина. Если аккумулятор не удерживают заряд, или ток не падает после ожидаемого времени перезарядки, батарея может иметь постоянную сульфатацию.

На стадии FLOAT напряжение заряда снижается до 13,0 В постоянного тока и 13,8 В постоянного тока и поддерживается постоянным, в то время как ток снижается до менее 1% заряда батареи емкость. Этот режим можно использовать для поддержания полностью заряженного аккумулятора на неопределенный срок.

Время перезарядки можно приблизительно определить, разделив заменяемые ампер-часы на 90%. номинальной мощности зарядного устройства. Например, аккумулятор на 100 ампер-час с Разряд 10% потребует замены 10 ампер.Используя зарядное устройство на 5 ампер, у нас есть 10 ампер. часов, разделенных на 90% от 5 ампер (0,9×5) ампер = расчетное время зарядки 2,22 часа. А глубоко разряженный аккумулятор отклоняется от этой формулы, требуя больше времени на каждый ампер подлежит замене.

Рекомендации по частоте подзарядки варьируются от эксперта к эксперту. Оказывается, что глубина разряда влияет на срок службы батареи больше, чем частота подзарядки. Для например, подзарядка, когда оборудование не будет использоваться какое-то время (прием пищи перерыв или что-то еще), может поддерживать среднюю глубину разряда выше 50% для услуги день.В основном это относится к аккумуляторным батареям, где средняя глубина разряд падает ниже 50% за день, а аккумулятор можно полностью зарядить один раз в течение 24 часов.

Выравнивание

Выравнивание — это, по сути, управляемая перезарядка. Некоторые производители зарядных устройств назовите пиковое напряжение, которое зарядное устройство достигает в конце НАСОСНОГО режима (поглощение напряжение) выравнивающее напряжение, но технически это не так.Более высокая влажность (залитые) батареи иногда выигрывают от этой процедуры, особенно физически высокие батареи. Электролит в мокрой батарее со временем может расслаиваться, если не ездить на велосипеде изредка. При выравнивании напряжение поднимается выше типичного. пиковое зарядное напряжение (от 15 до 16 вольт в 12-вольтовой системе) хорошо в газовыделение этап и проводится в течение фиксированного (но ограниченного) периода. Это разжигает химию в аккумулятор целиком, «уравняв» силу электролита и сбив любой рыхлый сульфат, который может находиться на пластинах аккумулятора.

Конструкция аккумуляторов AGM и гелевых практически исключает расслоение, и почти все производители этого типа не рекомендуют его (не советуют). Некоторые производители (в частности, Concorde) указывают процедуру, но напряжение и время не учитываются. важно, чтобы избежать повреждения аккумулятора.

Тестирование батарей

Тестирование батареи можно провести несколькими способами. Самый популярный включает в себя измерение удельного веса и напряжения аккумулятора.Удельный вес относится к влажным ячейкам с съемные колпачки, дающие доступ к электролиту. Для измерения удельного веса купите ареометр с температурной компенсацией в магазине автозапчастей или в магазине инструментов. К Измерьте напряжение, используйте цифровой вольтметр в настройке напряжения постоянного тока. Поверхность Перед испытанием необходимо снять заряд со только что заряженной батареи. 12 часов истечение срока после зарядки квалифицируется, или вы можете удалить поверхностный заряд с помощью нагрузки (20 ампер в течение 3 с лишним минут).

Состояние зарядного напряжения Удельный вес 12 В 6 В 100% 12,7 6,3 1,265 75% 12,4 6,2 1,225 50% 12,2 6,1 1,190 25% 12,0 6,0 1,155 Выписан 11.9 6,0 1,120

Нагрузочное тестирование — еще один метод тестирования батареи. Нагрузочное тестирование удаляет усилители из аккумулятор (аналогично запуску двигателя). Некоторые производители аккумуляторов маркируют свои аккумулятор с амперной нагрузкой для тестирования. Это число обычно составляет 1/2 рейтинга CCA. Например, батарея на 500 CCA будет тестировать под нагрузкой 250 ампер в течение 15 секунд. Нагрузка Тест может быть выполнен только в том случае, если аккумулятор полностью или почти полностью заряжен.Некоторые электронные Тестеры нагрузки применяют нагрузку 100 А в течение 10 секунд, а затем отображают напряжение батареи. Это число сравнивается с диаграммой на тестере на основе рейтинга CCA для определения состояние батареи.

Сульфатация батарей начинается, когда удельный вес падает ниже 1,225 или напряжение измеряет менее 12,4 (батарея 12 В) или 6,2 (батарея 6 В). Сульфатирование может затвердевают на пластинах батареи, если оставить их достаточно долго, уменьшая и в конечном итоге разрушая способность батареи генерировать номинальные вольты и амперы.Есть устройства для удаление жесткого сульфатирования, но лучший способ — предотвратить образование путем правильного уход за аккумулятором и подзарядка после цикла разрядки. Сульфатирование — основная причина значительная часть свинцово-кислотных аккумуляторов не достигает своего химического срока службы.

Зарядка параллельно соединенных аккумуляторов

Батареи, подключенные параллельно (положительный к положительному, отрицательный к отрицательному), видны зарядное устройство как одна большая батарея суммарная емкость всех батарей в ампер-часах.Таким образом, три 12-вольтовых батареи по 100 ампер-час (ач) в параллельно видны как одна батарея на 12 вольт 300 ач. Их можно зарядить одним плюсом и отрицательное соединение от одного зарядного устройства с рекомендуемым выходом усилителя. Они также могут быть заряжены с зарядным устройством с несколькими выходами, например, в данном случае с трехъядерным блоком, с каждой батареей получение собственного подключения при напряжении аккумуляторной батареи. Зарядная сила тока будет суммой отдельных выходных усилителей.

Зарядная серия подключенных аккумуляторов

Батареи, соединенные последовательно, — это отдельная история.Три 12-вольтовых батареи по 100 ампер-часов соединены в последовательную цепочку (положительный к отрицательному, положительный к отрицательному, положительный к отрицательному) сделал бы батарею 36 вольт 100 ач. Его можно заряжать через батарею с помощью 36 вольт. выходное зарядное устройство соответствующего выхода усилителя. Их также можно заряжать с несколькими выходами зарядное устройство, как в данном случае блок из трех банков, при этом каждая батарея подключается к напряжение аккумулятора (в данном случае 12 вольт).Подойдет любой метод, БЕЗ одного или нескольких батареи отводятся при напряжении ниже, чем в системе. Примером может быть постукивание по одной из батарей. в этой 36-вольтовой цепочке на 12 вольт для радио или некоторых источников света и т. д. Это разбалансирует батарею, и зарядка при системном напряжении (36 В) не исправляет дисбаланс. Зарядное устройство для нескольких банков подключение к каждой батарее — это правильный способ справиться с этой серией батарей, так как она исправляет дисбаланс с каждым циклом зарядки.

Домой | Учебники | Зарядка батареи

Battery Tutorial | ChargingChargers.com


Хотя сегодня существует много химического состава батарей, и новые типы становятся коммерчески доступными. жизнеспособные с течением времени, мы имеем дело с свинцово-кислотными типами, затопленными, AGM и истинными гелями, поскольку они широко используются в приложениях, на которых мы специализируемся. Свинцово-кислотные аккумуляторные батареи используются в коммерческих целях более века.Некоторые археологические находки из соответствующих материалов в рукотворной конфигурации предполагают этот принцип известен и используется гораздо дольше. Их конструкция пластин из свинцового сплава и электролита из серной кислоты и воды. Батарея состоит из нескольких ячеек, и свинцово-кислотный химический состав требует полного заряженное напряжение около 2,12 вольт на элемент. Таким образом, батарея номиналом 6 вольт состоит из трех ячеек. при полном напряжении заряда 6.От 3 до 6,4 вольт, а батарея на 12 вольт имеет шесть ячеек, и напряжение полной зарядки 12,7 вольт. Высококачественные свинцово-кислотные батареи с высокими эксплуатационными характеристиками могут может иметь более высокое напряжение элемента.

Ячейка имеет два типа пластин, одна из свинца, а другая из диоксида свинца, обе контактирующие с сернокислый электролит в виде жидкости, абсорбированной матом, или геля. Диоксид свинца (PbO 2 ) пластина реагирует с сернокислотным (H 2 SO 4 ) электролитом в результате образуются ионы водорода и ионы кислорода (которые образуют воду) и сульфат свинца (PbSO 4 ) на пластине.Свинцовая пластина реагирует с электролитом (серной кислотой) и оставляет сульфат свинца (PbSO 4 ) и свободный электрон. Разряд батареи (позволяя электронам покинуть батарею) приводит к накоплению сульфат свинца на пластинах и водное разбавление кислоты. Подробнее о сульфатировании и его проблемах потом. Удельный вес электролита, измеренный ареометром в залитых батареях, указывает на его относительный заряд (сила), или уровень разбавления (сброса).Обратимость этой реакции дает нам полезность свинцово-кислотный аккумулятор. Герметичные версии содержат воду, водород и т. Д. При нормальном использовании. для рекомбинации, и исключить необходимость проверки уровня воды и коррозии вокруг терминалы.

Зарядка аккумулятора меняет описанный выше процесс и включает в себя воздействие на аккумулятор напряжения. выше, чем его существующее напряжение. Чем выше напряжение, тем выше скорость заряда, в зависимости от некоторые ограничения.Следует учитывать газообразование, а настоящие гелевые батареи имеют более низкий пиковый заряд. напряжение, потому что в геле могут образоваться пузырьки, которые не рассеиваются, что может привести к повреждению аккумулятора. Подробнее об этом в руководстве по зарядке.

Электролит может абсорбироваться материалом матового типа, поэтому свободный электролит отсутствует. (Батарея AGM) или может быть в гелевом формате, который также стабилизирует ее (настоящая гелевая батарея). Текущий Свинцово-кислотные батареи в основном различаются как глубокого разряда / хранения (номинальные в ампер. часов) или автомобильного типа SLI (пуск / освещение / зажигание), рассчитанный на ток запуска.Там также являются комбинированными типами, рассчитанными на обе обязанности, но обычно имеют более низкую номинальный ток при пуске по сравнению с пусковой батареей того же размера группы.

SLI Аккумуляторы

SLI Батареи предназначены для кратковременного высвобождения большого количества ампер. (начальная последовательность), а затем относительно быстро перезарядиться от оборудования Система зарядки (генератор). Обычно при запуске разряжается менее 3% батареи. емкость.Батареи SLI не предназначены для многократного глубокого разряда, и их жизнь значительно сокращается под воздействием этого. Бывают мокрые (залитые) и полностью герметичные, необслуживаемые батареи (AGM — абсорбирующий стекломат) этого класса. У них обычно много тарелок, и они относительно тонкие. Они есть номинальные в CA, ампер пуска (при 32 градусах по Фаренгейту) и CCA, ток пуска холодного пуска (при 0 градусах F).

Аккумуляторы глубокого разряда

Аккумуляторы глубокого разряда сконструированы с более толстыми пластинами, чтобы иметь постоянный разряд. скорости, и быть глубоко разряженным, а затем принять подзарядку.Они называются Батареи для жилых автофургонов, морских судов, глубокого разряда, хранения, а иногда и батареи для тележек для гольфа, поскольку они типичные рынки, к которым они относятся, а также другие. Нет никакой пользы от глубокого разряжать батареи глубокого цикла в качестве процедуры обслуживания, и у них нет памяти эффект. Обычно они измеряются в ампер-часах (ах), но могут иметь рейтинг CA и CCA, если они двойного назначения или иногда используются для пусковых целей.

Свинцово-кислотные батареи глубокого разряда доступны в двух конфигурациях — мокрой и герметичной.Аккумулятор с жидкими элементами имеет более высокую устойчивость к перезарядке, однако он будет высвобождать газообразный водород при зарядке, который должен быть удален должным образом, а уровень воды должен быть проверял часто. Герметичные свинцово-кислотные батареи могут быть из AGM (абсорбируемого стеклянного мата) или Конструкция геля, и оба они иногда называются VRLA (свинцово-кислотная система с регулируемым клапаном). батареи. Часто термин «гель» используется для обозначения действительно герметичных, обслуживаемых бесплатную батарею, и такая практика вызывает недоумение у потребителей батарей, поскольку AGM и правда гель есть некоторые разные характеристики, особенно в требованиях к зарядке истинного Гель.Оба типа не требуют обслуживания, не имеют пролива жидкости, а выделение газов минимально. Другие названия герметичных типов: нехватка электролита, необслуживаемые, сухие элементы, и доказательство разлива. Большинство из них одобрены Департаментом транспорта (DOT) для воздушный транспорт и классифицируется как неопасный.

Гель меньше всего подвержен перепадам температур, хранению при низком уровне заряда. и имеет более низкую внутреннюю скорость разряда, но имеет требования к пиковому напряжению заряда, которые значительно ниже, чем залитый аккумулятор или аккумулятор AGM.Аккумулятор AGM справится перезарядка немного лучше, чем у гелевой ячейки. В категорию AGM включены Optima ™ и Odyssey ™, а также несколько других высокопроизводительных герметичных батареи. Батарейки меньшего размера, которые вы найдете в системах домашней сигнализации, компьютерные блоки бесперебойного питания (ИБП) и т. д. с надписью «герметичный свинцово-кислотный», «Защита от пролива» или «не требующая обслуживания» — это почти всегда батареи типа AGM. Если оно на нем не написано «гель» и нет буквы «G» в номере детали, это не гель.

Аккумуляторы высокой производительности

Мы упомянули высокоэффективные батареи Optima ™ и Odyssey ™. Там есть и другие, такие как Rock Racing ™. В этих батареях используются высококачественные материалы. и строительных технологий и добиться отличных результатов, к чему стремится цена отражать. Устройства Odyssey показывают чрезвычайно высокий импульсный ток в течение первых 5 секунд, критическая особенность при запуске двигателей с большим рабочим объемом или высокой степенью сжатия.Они также может быть полностью разряжен и много раз заряжен (рассчитан на 400 циклов при 80% глубина разряда). Их трудно превзойти для двойного назначения, запуска и глубокого цикла. Мы храним Odyssey PC1500 заряженным и готовым к работе в магазине. аварийные прыжки или другие ситуации, а также тестирование. Достаточно сказано.

Емкость аккумулятора

Емкость аккумулятора — это мера энергии, которую аккумулятор может хранить и передавать нагрузка.Он определяется тем, какой ток батарея может обеспечить в отрасли. стандартный период времени. Единица измерения называется «ампер-час» (ах). Батарея отраслевым стандартом является 20-часовой тариф, т.е. сколько ампер тока может выдержать аккумулятор. доставить более 20 часов при 80 ° F, пока напряжение не упадет до 10,5 В для 12 В аккумулятор и 21 вольт для аккумулятора 24 В. Например, аккумулятор на 100 Ач доставит 5 ампер на 20 часов. Иногда компания или маркетолог будет использовать 10-часовую ставку или какая-то другая оценка, поэтому убедитесь, какая оценка вам дана при сравнении брендов и групп размеры.

Емкость аккумулятора также выражается как резервная емкость (RC) в минутах. бронировать Емкость — это время в минутах, в течение которого батарея может выдавать 25 А при температуре 80 градусов по Фаренгейту, пока напряжение падает до 10,5 В для батареи 12 В и до 21 В для батареи 24 В. Зависимость между ампер-часами (ah) и резервной емкостью (RC) может быть приблизительно определена. по этой формуле: ah = RC, умноженное на 0,6

Типичные размеры батарей BCI * Group Напряжение аккумулятора, В Аккумулятор, Ач 31 12 105 4D 12 200 8D 12 245 GC2 (гольфмобиль) 6220 * Международный совет батарей

Высокая скорость разряда аккумулятора

Поскольку скорость разряда превышает стандартную 20-часовую норму, полезная емкость уменьшается из-за «эффекта Пойкерта».Уменьшение не является линейным и составляет показано в таблице ниже.

Емкость аккумулятора / скорость разряда Полезная емкость в часах разряда 20 100% 10 87% 8 83% 6 75% 5 70% 3 60% 2 50% 1 40%

Это необходимо учитывать при выборе размера батареи для конкретного применения.Если это большой ток, емкость батареи должна быть увеличена по сравнению с обычным расчетная потребность в ампер-часах.

Срок службы батареи и глубина разряда (DOD)

Срок службы батареи сокращается, чем глубже она разряжается в каждом цикле. Увеличение емкость батареи выше минимальных требований увеличит срок ее службы. Аккумуляторы True Gel имеют тенденцию к большему количеству циклов, чем AGM при глубоком цикле, отсюда их частое использование в тележках для гольфа и инвалидных колясках / скутерах с герметичными батареями. используются и глубоко разряжаются ежедневно.

График среднего жизненного цикла Глубина разряда Жизненный цикл Жизненный цикл Срок службы % от мощности AH Группа 27/31 Группа 8D Группа GC2 10 1000 1500 3800 50 320 480 1100 80 200 300 675 100 150 225 550

Температурные воздействия на батареи

Свинцово-кислотные батареи теряют емкость при низких температурах.При 32 градусах по Фаренгейту батарея будет обеспечивать около 75% своей номинальной мощности при температуре 80 градусов по Фаренгейту. Это должно быть учитывается при выборе блока батарей требуемой емкости для более холодных сред. Для очень холодного климата рекомендуется использовать обогреваемый или изолированный отсек. Высокий температура сохраняет химический состав батареи более активным и значительно снижает заряд батареи жизнь. Батарея, которая может прослужить 5 лет при температуре окружающей среды от 60 F до 80 F, может работать только 2 года в пустыне.

Внутренний разряд

Батареи подвержены внутреннему разряду, также называемому саморазрядом. Этот скорость определяется типом батареи и металлургией свинца, используемого в ее строительство. Влажные ячейки с полостями внутри для электролита используют свинцово-сурьмянистый сплав для повышения механической прочности. Сурьма также увеличивает скорость внутреннего разряда от 8% до 40% в месяц. По этой причине влажный ячейки не следует оставлять без присмотра или разряжать в течение длительного времени.Свинец, используемый в геле и конструкция батареи AGM не требует высокой механической прочности, так как она стабилизируется гелевым или матовым материалом. Обычно кальций сплавлен со свинцом, чтобы снизить газовыделение и скорость внутреннего разряда, которая составляет всего от 2% до 10% в месяц для аккумуляторы AGM и Gel.

Любая разрядка аккумулятора, включая внутренний разряд, вызывает сульфатацию пластины батареи как часть химического цикла, и при достаточном времени сульфатация затвердевает, вызывая уменьшение емкость аккумулятора в лучшем случае или полная потеря работоспособности.Регулярная зарядка после использования или использование «плавающего» зарядного устройства для длительного хранения (лодочные аккумуляторы, квадроциклы и т. д.) предотвращает снижение емкости и увеличивает срок службы батареи. Большая порция (приближается к 50%) свинцово-кислотных аккумуляторов уменьшилась емкость или пришла в негодность из-за сульфатации и никогда не достигают своего номинального срока службы. Есть электронные устройства (зарядные устройства и автономные устройства) для борьбы с сульфатированием, но лучшая практика избегает ситуации в первую очередь при правильном управлении батареями, в том числе использование качественных «умных» зарядных устройств.

Суммирование по достижению максимального срока службы батареи

Из приведенного выше обсуждения видно, что есть несколько вопросов, касающихся на время автономной работы. Своевременная подзарядка после использования, избегая полной разрядки если возможно, плановая зарядка или использование «плавающего» зарядного устройства для аккумуляторов в хранение или несезон (гидроциклы, снегоход, квадроцикл и т. д.) — это все, что способствуют хорошему времени автономной работы. Избегать экстремальных температур, особенно жары, по возможности, а также проверка уровня воды в залитых батареях.Есть некоторые приложения, которые с большей вероятностью дойдут до конца жизненного цикла батареи, и в результате ее емкость уменьшается. Инвалидные коляски и скутеры используются ежедневно и в значительной степени попадают в эту категорию.

Я добавил страницу, посвященную цены на аккумуляторы и причины их роста и вероятно, еще какое-то время так будет. Эта ситуация способствует возникновению причин стремиться к максимальному времени автономной работы.

Последовательное и параллельное соединение аккумуляторов

Когда две или более батареи соединены последовательно (положительный полюс на отрицательный в цепочке), их напряжения складываются, но их емкость AH остается прежней. Итак, два 12 В, 100 ач батареи, соединенные последовательно, дают батарею 24 В, 100 Ач. Негатив одного батарея подключается к плюсу второй батареи, а остальные клеммы системные соединения.

Когда две или более батареи подключены параллельно (положительный к положительному, отрицательный к отрицательному), их AH-емкость (сила тока) складывается, но их напряжение остается равным тем же. Таким образом, две батареи 12 В, 100 Ач, подключенные параллельно, дают 12 В, 200 Ач. пакет.

Домой | Учебники | Аккумуляторы

Информационное руководство по зарядке и разрядке аккумуляторных батарей мотоциклов

Характеристики разрядки и зарядки аккумуляторов для мотоциклов и мотоспорта

Разрядка аккумулятора

Разрядка или зарядка внутри батареи всегда происходят в любой момент времени.Раствор электролита содержит заряженные ионы, состоящие из сульфата и водорода. Ионы сульфата заряжены отрицательно, а ионы водорода — положительно.

Когда электрическая нагрузка помещается на клеммы аккумулятора (стартер, фара и т. Д.), Серная кислота разрушается, образующиеся ионы сульфата перемещаются к отрицательным пластинам и вступают в реакцию с активным материалом пластины, отдавая свой отрицательный заряд посредством ионизации. Это приводит к разрядке аккумулятора или выработке электроэнергии.Этот избыточный поток электронов из отрицательной стороны батареи через электрическое устройство и обратно к положительной стороне батареи создает постоянный ток. Как только электроны возвращаются к положительной клемме батареи, они возвращаются в ячейки и снова прикрепляются к положительным пластинам. Процесс разряда продолжается до тех пор, пока аккумулятор не разрядится и в нем не останется химической энергии.

Химия нагнетания

В дополнение к потоку электронов внутри батареи при ее разряде соотношение серной кислоты и воды в растворе электролита также изменяется на большее количество воды и меньше кислоты.Побочным химическим продуктом этого процесса является сульфат свинца, который покрывает пластины батареи внутри каждого элемента, уменьшая его площадь поверхности.

При меньшей площади, доступной на элементах для выработки электроэнергии, также снижается выработка силы тока или тока. Если процесс разряда продолжается, на пластинах элементов откладывается еще больше сульфата свинца, и в конечном итоге химический процесс, вызывающий ток, становится невозможным. Отложения сульфата свинца на пластинах являются причиной того, что аккумулятор не может обеспечивать энергию бесконечно.Например, свет остается включенным на несколько дней или слишком долго запускается стартер. Фактически, длительная разрядка вызывает вредное сульфатирование, и аккумулятор может не восстановиться независимо от того, как долго он заряжается.

Саморазряд аккумулятора

Саморазряд происходит всегда, даже если аккумулятор ни к чему не подключен. Скорость саморазряда зависит от температуры окружающей среды и типа аккумулятора. При температуре выше 55 ° C саморазряд происходит еще быстрее.Этих температур можно достичь, если хранить аккумулятор в гараже или под навесом в жаркую погоду.
Распространенное заблуждение о хранении аккумуляторов состоит в том, что если их оставить на бетонном полу, они быстро разрядятся. Так было более тридцати пяти лет назад, когда батарейные отсеки были сделаны из твердой резины — влага из бетона вызвала разряд батарей этого типа прямо в бетонный пол. Однако современные батарейные отсеки изготовлены из полипропиленового пластика и могут храниться на бетоне, не опасаясь чрезмерного саморазряда.

Причины саморазряда

Низкий уровень заряда может быть вызван короткими поездками, которые недостаточно продолжительны для зарядки аккумулятора системой зарядки автомобиля. Работа двигателя на расстоянии менее 15 или 20 миль и случайное использование транспортного средства только пару раз в неделю может не поддерживать заряд аккумулятора, достаточный для запуска двигателя. Чтобы поддерживать емкость аккумулятора, достаточную для работы стартера, его необходимо заряжать с помощью зарядного устройства, когда автомобиль не используется — примерно раз в месяц для обычной батареи в зависимости от температуры.Аккумулятор AGM разряжается медленнее, чем обычный аккумулятор, и его не нужно заряжать так часто.

Для длительного хранения лучше всего подходят более низкие температуры. Например, аккумулятор AGM, хранящийся при 0ºC, сохраняет 90% своей емкости в течение примерно 6 месяцев. Та же батарея, хранящаяся при 40ºC, теряет 50% своей емкости за 4 месяца. Бортовые компьютеры, часы и другие аксессуары также могут со временем разрядить аккумулятор.

Зарядное устройство для аккумуляторов

Зарядка аккумулятора меняет химический процесс, произошедший во время разряда.Ионы сульфата и водорода в основном меняются местами. Электрическая энергия, используемая для зарядки аккумулятора, преобразуется обратно в химическую энергию и сохраняется внутри аккумулятора. Зарядные устройства аккумуляторов, включая генераторы и генераторы, вырабатывают более высокое напряжение, чем напряжение холостого хода аккумулятора.
Когда сила тока зарядки превышает уровень естественного поглощения, аккумулятор может перегреться, в результате чего раствор электролита начнет пузыриться, образуя горючий газообразный водород. Газообразный водород в сочетании с кислородом воздуха очень взрывоопасен и может легко воспламениться от искры.Следовательно, всегда не забывайте выключать питание перед подключением или отключением зарядного устройства, чтобы предотвратить искрение на клеммах аккумулятора!

Сколько ампер?

Подача зарядного тока на батарею без ее перегрева называется «естественной скоростью поглощения».

Из-за своего меньшего размера по сравнению с автомобильными типами аккумуляторов аккумуляторы PowerSports более чувствительны к тому, сколько тока они могут безопасно поглощать. При зарядке мотоцикла или другого небольшого аккумулятора мощность зарядного устройства не должна превышать 3 ампера.Большинство автомобильных зарядных устройств не подходят из-за более высокого выходного тока. Если поддерживать аккумулятор в полностью заряженном состоянии, это обеспечивает оптимальный срок службы, а перезарядка может значительно сократить его.

Всегда проверяйте уровень заряда аккумулятора перед зарядкой и через 30 минут после зарядки. Когда зарядное устройство было отключено от батареи на один-два часа, полностью заряженная обычная батарея должна показывать 12,6 В (12,8 В с Sulphate Stop) или выше. Напряжение аккумуляторов AGM может быть немного выше после полной зарядки.

Не перезаряжайте. Из-за характеристик батареи AGM слишком большая или избыточная подзарядка приведет к уменьшению объема электролита. Чем больше время перезарядки, тем больше падение электролита и пусковой мощности. Поскольку аккумулятор герметичен, нельзя добавлять воду, чтобы компенсировать потерю электролита. Кроме того, перезарядка может деформировать пластины ячеек, что затруднит или сделает невозможным дальнейшую зарядку. Чтобы предотвратить чрезмерную зарядку, внимательно отслеживайте время зарядки или, в идеале, используйте одно из автоматических зарядных устройств Yuasa.Всегда прекращайте зарядку, если корпус батареи становится слишком горячим. Дайте ему остыть от 6 до 12 часов и возобновите зарядку. Время зарядки зависит от типа зарядного устройства и размера аккумулятора.

Осторожно: Всегда надевайте защитные очки при работе с аккумуляторами и заряжайте их в хорошо вентилируемом месте.

Зарядка глубоко разряженного аккумулятора

Для аккумуляторов с напряжением холостого хода ниже 11,5 В может потребоваться специальное зарядное устройство и процедуры для подзарядки.Сильно разряженные аккумуляторы будут иметь высокое внутреннее сопротивление, что затрудняет нормальную зарядку аккумуляторов. Может потребоваться более высокое напряжение зарядки, чем обычно, чтобы аккумулятор принял заряд.

Измерение уровня заряда литий-ионных аккумуляторов (SoC) — метод кулоновского счетчика

Измерение уровня заряда литий-ионных аккумуляторов (SoC)

Существует несколько способов измерения состояния заряда литий-ионных аккумуляторов (SoC) или глубины разряда (DoD) литиевой батареи. Некоторые методы довольно сложны в реализации и требуют сложного оборудования (спектроскопия импеданса или ареометр для свинцово-кислотных аккумуляторов).

Мы подробно рассмотрим два наиболее распространенных и простых метода оценки состояния заряда батареи: метод напряжения или напряжение холостого хода (OCV) и метод подсчета кулонов .

1 / Оценка SoC с использованием метода напряжения холостого хода (OCV)

Все типы аккумуляторов имеют одну общую черту: напряжение на их выводах уменьшается или увеличивается в зависимости от уровня их заряда. Напряжение будет самым высоким, когда батарея полностью заряжена, и самым низким, когда она разряжена.

Это соотношение между напряжением и SOC напрямую зависит от используемой аккумуляторной технологии. В качестве примера на диаграмме ниже сравниваются кривые разряда свинцовой батареи и литий-ионной батареи.

Литий LiFePO4 в зависимости от кривой разряда свинца

Видно, что свинцово-кислотные батареи имеют относительно линейную кривую, которая позволяет хорошо оценить состояние заряда: для измеренного напряжения можно довольно точно оценить значение соответствующей SoC.

Однако литий-ионные батареи имеют гораздо более пологую кривую разряда , что означает, что в широком рабочем диапазоне напряжение на клеммах батареи изменяется очень незначительно. Литий-железо-фосфатная технология
имеет самую ровную кривую разряда, что очень затрудняет оценку SoC с помощью простого измерения напряжения. Действительно, разница напряжений между двумя значениями SoC может быть настолько малой, что невозможно оценить состояние заряда с хорошей точностью.

На диаграмме ниже показано, что разница в измерении напряжения между значением DoD , равным 40%, и 80% составляет около 6,0 В для 48-вольтовой батареи по свинцово-кислотной технологии , в то время как для литий-железного фосфата она составляет всего 0,5 В. !

Литий vs AGM Оценка Soc методом OCV

Однако калиброванные индикаторы заряда могут использоваться специально для литий-ионных аккумуляторов в целом и литий-железо-фосфатных аккумуляторов в частности. Точное измерение в сочетании с смоделированной кривой нагрузки позволяет получать измерения SoC с точностью от 10 до 15% .

Калиброванный измеритель SoC с литиево-железным фосфатом

2 / Оценка SoC с использованием метода кулоновского счета

Для отслеживания состояния заряда при использовании аккумулятора наиболее интуитивно понятным методом является отслеживание тока, интегрируя его во время использования элемента. Эта интеграция напрямую дает количество электрических зарядов, введенных или снятых с батареи, что позволяет точно количественно определить SoC батареи.

В отличие от метода OCV, этот метод может определять изменение состояния заряда во время использования батареи.Для проведения точных измерений не требуется, чтобы батарея находилась в состоянии покоя.

Кулоновский счетчик

Хотя измерение тока выполняется с помощью прецизионного резистора, могут возникать небольшие ошибки измерения, связанные с частотой дискретизации. Чтобы исправить эти предельные ошибки, счетчик кулонов повторно калибруется при каждом цикле загрузки.

alexxlab / 07.03.1976 / Разное

Добавить комментарий

Почта не будет опубликована / Обязательны для заполнения *