Цены снижены! Бесплатная доставка контурной маркировки по всей России

Управление частотой вращения асинхронного двигателя: Управление частотным преобразователем, векторное, скалярное.

Содержание

Управление частотным преобразователем, векторное, скалярное.

Компания Русэлком производит и поставляет преобразователи частоты для управления асинхронными двигателями. Поэтому для понимания принципа частотного управления рассмотрим более детально работу асинхронного двигателя и методы его частотного регулирования

Конструкция асинхронного двигателя схематически изображена на рис. 2. Двигатель состоит из неподвижной части, которая называется статор и подвижной (вращающейся) части называемой ротор.

В пазах статора уложены три группы обмоток А-В-С. Обмотки статора сдвинуты друг относительно друга в пространстве на угол 120°. Это является одним из двух обязательных условий для создания вращающегося магнитного поля статора.

Ротор двигателя изготовлен в виде цельного цилиндра из специальной электротехнической стали с короткозамкнутой обмоткой.

Рис.2. Схематический разрез асинхронного двигателя.

На обмотки статора от источника питания подается трехфазное напряжение uа, uв, uс с частотой

Напряжения uа, uв, uс сдвинуты друг относительно друга по фазе на 120°. Это является вторым обязательным условием для создания вращающегося магнитного поля статора.

При питании обмоток статора электрического двигателя трехфазным напряжением с частотой создается вращающееся магнитное поле. Угловая скорость вращения этого поля в радианах определяется по известной формуле

– число пар полюсов статора.

Переход от угловой скорости вращения поля измеряемой в радианах, к частоте вращения выраженной в оборотах в минуту, осуществляется по следующей формуле

где 60 – коэффициент пересчета размерности.

Подставив в это уравнение скорость вращения поля, получим, что

Из формулы видно, что частота вращения магнитного поля статора зависит от частоты напряжения питания и числа пар полюсов.

К примеру, в двигателе с одной парой полюсов при частоте питающего напряжения 50 Гц частота вращения магнитного поля равна 3000 об/мин.

В синхронном электрическом двигателе частота вращения ротора на установившемся режиме равна частоте вращения магнитного поля статора

В асинхронном электрическом двигателе частота вращения ротора на установившемся режиме отличается от частоты вращения на величину скольжения . Для примера в асинхронном двигателе с одной парой полюсов при частоте питающего напряжения 50 Гц и при скольжении 5% частота вращения ротора равна 2850 об/мин.

Таким образом, частота вращения ротора синхронного и асинхронного двигателей зависит от частоты напряжения питания.

На этой зависимости и основан метод частотного регулирования.

Изменяя с помощью преобразователя частоту на входе двигателя, мы регулируем частоту вращения ротора.

В наиболее распространенном частотно регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное частотное управление.

При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Максимальный момент, развиваемый двигателем, определяется следующей зависимостью

где — постоянный коэффициент.

Поэтому зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя.

Для постоянного момента нагрузки поддерживается отношение U/f = const, и, по сути, обеспечивается постоянство максимального момента двигателя. Характер зависимости напряжения питания от частоты для случая с постоянным моментом нагрузки изображен на рис. 2. Угол наклона прямой на графике зависит от величин момента сопротивления и максимального крутящего момента двигателя.

Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня напряжения питания.

В случае вентиляторной нагрузки реализуется зависимость U/f2 = const. Характер зависимости напряжения питания от частоты для этого случая показан на рис.3. При регулировании в области малых частот максимальный момент также уменьшается, но для данного типа нагрузки это некритично.

Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график U от f для любого типа нагрузки.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Скалярное управление достаточно для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1: 40.

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.

В синхронном частотно регулируемом приводе применяются те же методы управления, что и в асинхронном.

Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при малых мощностях, когда нагрузочные моменты невелики, и мала инерция приводного механизма. При больших мощностях этим условиям полностью отвечает лишь привод с вентиляторной нагрузкой. В случаях с другими типами нагрузки двигатель может выпасть из синхронизма.

Для синхронных электроприводов большой мощности применяется метод частотного управления с самосинхронизацией, который исключает выпадение двигателя из синхронизма. Особенность метода состоит в том, что управление преобразователем частоты осуществляется в строгом соответствии с положением ротора двигателя.


Все о частотных преобразователях


    Частотные преобразователи — это устройства для плавного изменения частоты вращения синхронных и асинхронных двигателей посредством изменения частоты питающего тока.

    В современной технике благодаря простоте конструкции и обслуживания, небольшим габаритам, высокой надёжности, и низкой стоимости огромное распространение получили именно асинхронные электродвигатели.

    При работе различных устройств, в качестве привода которых применяются асинхронные электродвигатели, часто возникает необходимость в регулировании их скорости вращения.

    Исходя из формулы n = (1 — S)60f/p где n — скорость вращения ротора, S — скольжение, f- частота питающей сети, p — количество пар полюсов.

    Существует три способа регулирования скорости вращения асинхронного двигателя:

  • — изменение скольжения. Этот способ используется в двигателях с фазным ротором. В цепь фазного ротора вводится регулировочный реостат. При использовании этого способа можно получить большой диапазон регулирования частоты вращения в сторону понижения. Однако этот способ имеет, и ряд недостатков, основным из которых является большие потери на регулировочном реостате (нагрев) т.е. снижение КПД. Как следствие этот способ применяют для кратковременного снижения частоты вращения.
  • — изменение числа пар полюсов. Этот способ предполагает использование специальных двигателей (многоскоростных) имеющих более сложную обмотку статора, позволяющую изменять число пар полюсов, и короткозамкнутый ротор. Недостатком этого метода является ступенчатое регулирование (3000, 1500, 1000, 750, 600 об/мин – 1,2,3,4,5 обмотки с 1,2,3,4,5 парами полюсов соответственно), большая стоимость и громоздкость двигателя.
  • — изменение частоты питающего тока (напряжения). На практике этот метод, в общем случае (самый простой), предполагает вместе с частотой изменять и действующее значение подведенного напряжения таким образом, что бы отношение U/f было постоянно. Это (изменение входного напряжения) делается для сохранения перегрузочной способности двигателя с изменением частоты сети.

    В приводах центробежных насосов и вентиляторов, которые являются типичными представителями переменной механической нагрузки (момент нагрузки возрастает с увеличением скорости вращения) используется функция напряжения к квадрату частоты U/f 2 = сonst.

    В более совершенных частотных регуляторах для управления скоростью вращения и электромагнитным моментом двигателя независимо, используется так называемое векторное управление. При этом виде управления необходимо управлять амплитудой и фазой статорного тока (т.е. вектором) в зависимости от положения ротора относительно обмотки статора в каждый момент времени.

    Применение частотных регуляторов. Зачем нужен частотный регулятор?
    Асинхронные двигатели имеют ряд недостатков (сложность регулирования скорости вращения, большие пусковые токи, относительно малый пусковой момент). Однако благодаря своей простоте, надежности и дешевизне получили огромное распространение в промышленности и быту. Применение же частотных регуляторов «устраняет» недостатки асинхронных двигателей и кроме этого позволяет избежать установки различного дополнительного оборудования, уменьшить потери в технологическом процессе, увеличить КПД самого двигателя, уменьшить износ, как самого двигателя, так и оборудования использующегося в данном технологическом процессе.

    Рассмотрим более детально применение частотных регуляторов на примере насосного оборудования. Потери в технологической системе зависят от нагрузки создаваемой потребителями (на неё мы влиять не можем) и гидравлическим сопротивлением элементов этой системы. Так поддержание давления у потребителей на постоянном уровне при изменяющейся нагрузке, возможно только при использовании дополнительного оборудования (различных регуляторов давления, мембранных баков, дроссельных задвижек). Использование этого оборудования создает дополнительное гидравлическое сопротивление и как следствие снижает КПД системы в целом. При использовании частотного регулятора двигатель сам регулирует давление в сети посредством изменения частоты вращения. Кроме того при снижении технологической нагрузки уменьшая частоту вращения насоса, КПД самого насоса тоже возрастает. Таким образом достигается как бы двойной эффект увеличивается КПД системы в целом, за счёт исключения из системы лишнего гидравлического сопротивления и увеличение КПД самого насоса как агрегата.

    Применение частотного регулятора также значительно снижает эксплуатационные затраты связанные с износом оборудования. Плавное регулирование вращения (и плавный пуск) практически полностью позволяют избежать как гидравлических ударов, так и скачков напряжения в электросети (особенно актуально в системах, где предусмотрен частый пуск/остановка насоса).

Преобразователь частоты для электродвигателя

30.10.2017

Тематика: Полезная информация

 

 

Введение

Существует немало технологических операций, нуждающихся в регулировании угловых скоростей приводных валов механизмов. Традиционно эта задача решалась двумя путями:

  • применением механических многоскоростных редукторов для ступенчатого регулирования скорости, либо вариаторов для плавного регулирования;
  • использованием электродвигателей постоянного тока совместно с регуляторами уровня питающего напряжения.

Регулирование угловой скорости ротора, основанное на изменении передаточного числа механической трансмиссии, характеризуется снижением общего КПД передачи. Это объясняется высоким уровнем механических потерь в редукторе, подверженном к тому же, интенсивному износу.

Двигатели постоянного тока представляют собой достаточно сложные и дорогие машины. Наличие коллекторного механизма со щёточным аппаратом, предъявляет повышенные требования к их обслуживанию и снижает надёжность.

 

Компания Овердрайв-Электро предлагает частотно-регулируемые приводы ABB со склада в Минске:

 

Принцип частотного регулирования

В основе частотного регулирования двигателя переменного тока лежит взаимосвязь угловой скорости, с которой вращается поле статора с частотой напряжения питания. Это означает, что изменение частотной характеристики напряжения статора приводит к пропорциональному изменению угловой скорости вращающегося ротора. Угловая скорость, или частота вращающегося поля статора асинхронного электрического двигателя выражается следующим соотношением:

ω0 = 2πf1,

где f1 — значение частоты напряжения, питающего обмотку статора, р — количество полюсных пар статорной обмотки.

Из приведенной формулы следует, что совершая изменение значения частоты подводимого к двигателю напряжения, можно плавно изменять значение угловой скорости (частоты) вращающегося поля статора, что приведёт к изменению частоты вращения ротора электродвигателя.

Данный принцип позволяет использовать в регулируемых приводах наиболее технологичные, простые и надёжные асинхронные двигатели, имеющие короткозамкнутый ротор. Благодаря высоким технико-экономическим показателям систем частотного регулирования происходит их активное внедрение в сферу промышленной и бытовой техники.

Устройство преобразователя частоты.

На рисунке 1 показана структурная схема, иллюстрирующая устройство преобразователя частоты (ПЧ).

Рис.1 Преобразователь частоты

Сетевое питающее напряжение промышленной частоты 50 герц поступает на вход выпрямителя (В), представляющего собой обычную мостовую диодную сборку. На выходе выпрямителя установлен Г — образный LC фильтр, выполняющий функции сглаживания пульсаций, которые присутствуют в выпрямленном напряжении.

Основной частью преобразователя является инвертор (И), осуществляющий преобразование постоянного напряжения в трёхфазную систему напряжений синусоидальной формы с регулируемой частотой и амплитудой. Ключевыми элементами инвертора служат мощные IGBT транзисторы, которые коммутируются сигналами, генерируемыми в системе импульсно — фазового управления. Система управления транзисторами, формирующими выходное напряжение, которое поступает на статор асинхронного двигателя (АД), основана на принципе ШИМ — широтно-импульсной модуляции. Сигнал управления представляет собой чередование импульсов напряжения с изменяемой скважностью.

Примечание. Скважность — это оценочная характеристика периодического импульсного сигнала, рассчитываемая как отношение периода чередования сигнала к длительности импульса. То есть, величина скважности показывает, какую часть периода занимают импульсы. При изменении скважности изменяется соотношение длительностей импульсов и промежутков между ними.

Следует обратить внимание на одну интересную особенность частотных преобразователей. На рисунке 1 показан преобразователь, подключенный к трёхфазной сети. Существуют модели преобразователей, питающихся от однофазной сети, при этом, на выходе инвертора формируется всё та же трёхфазная система. Разница между трёхфазными и однофазными частотными преобразователями заключается только в качестве напряжения на выходе выпрямителя. Трёхфазный выпрямительный мост создаёт меньший уровень пульсаций напряжения, по этой причине, однофазное выпрямление предъявляет повышенные требования к параметрам LC фильтра.

Применение частотных преобразователей

Сегодня трудно найти область, где не нашли своего применения частотно-регулируемые приводы асинхронных электродвигателей.

На крупных блочных электрических станциях частотные регуляторы осуществляют регулирование подачи топлива в котлы, гибко адаптируя работу энергоблоков к изменяющемуся режиму работы энергосистемы. В этом качестве частотные приводы функционируют как исполнительные звенья автоматизированной системы управления технологическими процессами электростанции.

Частотное регулирование приводов мощных вентиляторов промышленных систем позволяет автоматически поддерживать оптимальные условия их работы при изменении внутренних и внешних факторов, экономя при этом электрическую энергию и продлевая ресурс оборудования.

Большую финансовую экономию принесло внедрение частотных регуляторов в городские системы водоснабжения. Рабочее давление в водоводах питьевого назначения ранее поддерживалось в основном путём оперирования задвижками. Это приводило к неэффективной работе насосного оборудования, повышенному расходу энергии и износу. Насосы, оснащённые частотным приводом способны гибко реагировать на изменение расхода воды в системе и изменяя частоту вращения поддерживать необходимое давление.

Применение частотных регуляторов не обошло стороной и область бытовой электротехники. Все современные стиральные машины и пылесосы оснащены частотным приводом. Это позволило отказаться от редукторов и ремённых приводов и повысить экономичность работы домашних агрегатов.

Регулирование скорости асинхронного двигателя

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей.

 

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.

Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

Этот способ регулирования скорости применим в двигателях с фазным ротором. При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потери в цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому, механическая характеристика двигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.

Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости с помощью изменения частоты питания


При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.

При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U1. Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.

Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U1 необходимо производить пропорционально квадратному корню изменения частоты f1.

При регулировании установок с вентиляторной характеристикой, необходимо изменять подводимое напряжение U1 пропорционально квадрату изменения частоты f1.

Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.

Регулирование скорости АД изменением числа пар полюсов

Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.

В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.

Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда — звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.

Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.

Читайте также — Торможение асинхронного двигателя

  • Просмотров: 22158
  • Способы регулирования скорости асинхронного двигателя


    Почти все станки в качестве электропривода оснащаются асинхронными двигателями. У них простая конструкция и не высокая стоимость. В связи с этим важным оказывается регулирование скорости асинхронного двигателя. Однако в стандартной схеме включения управлять его оборотами можно только с помощью механических передаточных систем (редукторы, шкивы), что не всегда удобно. Электрическое управление оборотами ротора имеет больше преимуществ, хотя оно и усложняет схему подключения асинхронного двигателя.

    Для некоторых узлов автоматического оборудования подходит именно электрическое регулирование скорости вращения вала асинхронного электродвигателя. Только так можно добиться плавной и точной настройки рабочих режимов. Существует несколько способов управления частотой вращения путём манипуляций с частотой, напряжением и формой тока. Все они показаны на схеме.

    Из представленных на рисунке способов, самыми распространёнными для регулирования скорости вращения ротора являются изменение следующих параметров:

    • напряжения подаваемого на статор,
    • вспомогательного сопротивления цепи ротора,
    • числа пар полюсов,
    • частоты рабочего тока.

    Последние два способа позволяют изменять скорость вращения без значительного снижения КПД и потери мощности, остальные способы регулировки способствуют снижению КПД пропорционально величине скольжения. Но и у тех и других есть свои преимущества и недостатки. Поскольку чаще всего на производстве применяются асинхронные двигатели с короткозамкнутым ротором, то все дальнейшие обсуждения будут касаться именно этого типа электродвигателей.

    Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети. Скорость вращения поля статора определяется по следующей формуле:

    n1 = 60f/p, где n1 — частота вращения поля (об/мин), f-частота питающей сети (Гц), p-число пар полюсов статора, 60 — коэффициент пересчета мерности.

    Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение. Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.

    Современные частотные регуляторы позволяют уменьшать и увеличивать обороты в широком диапазоне. Это обеспечило их широкое применение в оборудовании с управляемой протяжкой, например, в многоконтактных станках сварной сетки. В них скорость вращения асинхронного двигателя, приводящего в движение намоточный вал, регулируется полупроводниковым преобразователем. Такая регулировка позволяет оператору, следящему за правильностью выполнения технологических операций, ступенчато ускоряться или замедляться по мере настройки станка.

    Остановимся на принципе работы преобразователя частоты более подробно. В его основе лежит принцип двойного преобразования. Состоит регулятор из выпрямителя, импульсного инвертора и системы управления. В выпрямителе синусоидальное напряжение преобразуется в постоянное и подаётся на инвертор. В составе силового трёхфазного импульсного инвертора есть шесть транзисторных переключателей. Через эти автоматические ключи постоянное напряжение подаётся на обмотки статора так, что в нужный момент на соответствующие обмотки поступает то прямой, то обратный ток со сдвигом фаз 120°. Таким образом, постоянное напряжение трансформируется в переменное трёхфазное напряжение нужной амплитуды и частоты.

    Необходимые параметры задаются через модуль управления. Автоматическая регулировка работы ключей осуществляется по принципу широтно-импульсной модуляции. В качестве силовых переключателей используются мощные IGBT-транзисторы. Они, по сравнению с тиристорами, имеют высокую частоту переключения и выдают почти синусоидальный ток с минимальными искажениями. Не смотря на практичность таких устройств, их стоимость для двигателей средней и высокой мощности остаётся очень высокой.

    Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором. Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

    • укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,
    • применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

    В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

    Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2 : 1 = р2 : pt , 3-х скоростные двигатели — с двумя обмотками на статоре, из которых одна выполняется с переключением 2 : 1 = Рг : Pi , 4-х скоростные двигатели — с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

     • Скачать схемы обмоток многоскоростных асинхронных двигателей 

     • Скачать лекцию «Регулирование частоты вращения асинхронных двигателей»

    


    Свежие записи:

    17 часто задаваемых вопросов о преобразователе частоты и электродвигателе — Статьи

    Дата публикации: 21.08.2019

    В данной статье мы подобрали для вас ответы на наиболее часто задаваемые вопросы по работе электродвигателей и частотных преобразователей.

    1. Что такое электромеханический привод?

    Ответ: Электромеханический привод – это система, состоящая из электродвигателя, механического передаточного устройства, электрического силового преобразователя и электронного устройства управления, осуществляющая управляемое преобразование электрической энергии в энергию движения механического объекта.

    2. Что такое преобразователь частоты?

    Ответ: Преобразователь частоты – это устройство для управляемого питания электродвигателя.

    3. В чем заключается назначение преобразователя частоты?

    Ответ: Назначение преобразователя частоты – это управление моментом/скоростью вращения электродвигателя за счет изменения частоты и напряжения питания.

    4. Что такое ШИМ?

    Ответ: ШИМ (Широтно импульсная модуляция) – это метод получения регулируемого выходного напряжения путем изменения длительности коммутации.

    5. Как согласуется выходное напряжение ПЧ с входным?

    Ответ: Выходное напряжение может меняться от 0 до уровня входного напряжения ПЧ (возможна перегрузка в несколько процентов). Соответственно при питании ПЧ от сети 220В не возможно развить номинальный момент на двигателе подключенным по схеме питания 380В.

    6. Как согласуется выходная частота ПЧ с номинальной входной?

    Ответ:  Выходная частота формируется посредством ШИМ и может меняться в диапазоне от 0 до 400 -590 Гц (в зависимости от модели ПЧ). В зависимости от выходной частоты ПЧ меняется скорость вращения вала двигателя.

    7. Возможно ли управлять ПЧ однофазными двигателями?

    Ответ: Нет.

    8. Возможно ли управлять ПЧ с однофазным питанием, трехфазными двигателями?

    Ответ: Да, до 2,2 кВт.

    9. Основные плюсы использования преобразователей частоты?

    Ответ: Их 2. Во-первых, экономия электроэнергии при работе электродвигателя. Во-вторых, реализация сложных технологических процессов за счет изменения частоты вращения приводов.

    10. Какой принцип работы асинхронного двигателя с короткозамкнутым ротором?

    Ответ: ПЧ создает вращающееся магнитное поле в статоре, а оно создает электрическое поле в короткозамкнутом роторе (принцип магнитной индукции). Происходит взаимодействие между полями ротора и статора. Поле ротора стремится вращаться также как поле статора, тем самым ротор приходит во вращение.

    11. От чего зависит номинальная скорость вращения ротора асинхронного двигателя с короткозамкнутым ротором?

    Ответ: Она зависит от частоты питающего напряжения и количества пар полюсов и скольжения. Преобразователь частоты позволяет регулировать частоту питающего напряжения и тем самым скорость вращения вала ЭД.

    12. Какое значение имеет скорость вращения вала электродвигателя при его работе от сети?

    Ответ: Скорость равна номинальной частоте двигателя.

    13. Какова скорость вращения вала электродвигателя при его работе от ПЧ?

    Ответ: Скорость регулируется от ПЧ .

    14. Как связан момент с током электродвигателя?

    Ответ: Для двигателя с постоянными магнитами момент пропорционален току статора. Для асинхронных двигателей зависимость между током и моментом нелинейная, но в рабочей зоне рост тока приводит к росту момента.

    15: Какие существуют способы подключения обмоток двигателя?

    Ответ: Треугольник, Звезда (изменяется номинальное напряжение и ток двигателя).

    16: При подключении в звезду или треугольник будет больше номинальное линейное напряжение двигателя?

    Ответ: Линейное напряжение будет больше для звезды (соответственно ток наоборот меньше).

    17: Что такое скольжение?

    Ответ: Скольжение – это разница между скоростью поля  статора и частотой вращения ротора в процентах.

     

    Смотрите так же:

    Функция «Спящий режим» преобразователя частоты Danfoss FC-051 (Реализация на встроенном контроллере)

    Управление частотным преобразователем Danfoss серии FC51 с панели оператора Weintek MT8121XE1WK

     

    Для заказа преобразователя частоты перейдите в каталог по ссылке — VLT Micro Drive

     

     

    Частотные преобразователи двигателей, частотный преобразователь для асинхронных электродвигателей, цены ниже

    В ООО «Промпривод» постоянно имеются на складе частотные преобразователи Lenze, Delta Electronics и Innovert. Кроме того, существует возможность поставки под заказ частотных преобразователей других производителей.

    Общие сведения.

    При работе с электрооборудованием нередко возникает необходимость управления частотой вращения асинхронного электродвигателя. Для этого могут использоваться гидравлические муфты, дополнительные резисторы в цепи роторных и статорных обмоток, механические вариаторы, электромеханические преобразователи частоты и, наконец, статические преобразователи. Первые четыре способа регулирования недостаточно экономичны, трудоёмки при их реализации и малоэффективны.
    Поэтому давайте более подробно рассмотрим последний тип преобразователя — частотный преобразователь двигателя.

    Обеспечивается плавное регулирование скорости вращения в широком диапазоне при сохранении достаточно жёстких механических характеристик.

    Регулирование скорости, кроме того, не вызывает увеличения коэффициента скольжения асинхронного двигателя, поэтому потери мощности при регулировании малы.

    Но для того, чтобы обеспечить высокие показатели экономичности асинхронного двигателя — коэффициент мощности, коэффициент полезного действия, способность к перегрузкам — одновременно с частотой должно меняться и подводимое напряжение.

    Вывод: для плавного (бесступенчатого) регулирования частоты вращения вала, требуется частотный преобразователь для электродвигателя, который должен обеспечивать одновременное регулирование частоты и напряжения на статорной обмотке последнего.
    Теоретическое обоснование метода частотного регулирования было проведено достаточно давно, но реализацию его тормозила высокая стоимость компонентов, необходимых для создания модуля частотного управления. И лишь появление силовых схем на IGBT-транзисторах, а также разработка высокопроизводительных микропроцессорных систем управления позволили создать современные преобразователи частоты приемлемой стоимости.

    Принцип работы.

    Большинство промышленных преобразователей частоты работают по схеме двойного преобразования. Они состоят из трех основных узлов: неуправляемого выпрямителя, силового импульсного инвертора и управляющего модуля.
    Неуправляемый выпрямитель преобразует напряжение сети в напряжение постоянного тока.
    Силовой трехфазный импульсный инвертор собран на шести транзисторных ключах. Через эти ключи каждая из обмоток статора электродвигателя подключается к выводам выпрямителя по специальной программе, задаваемой управляющим модулем. Эта программа и обеспечивает получение в обмотках статора стандартных 3-х фазных сигналов (аналогов сигналов 3-х фазной сети). Таким образом, инвертор осуществляет обратное преобразование выпрямленного напряжения в трехфазное переменное напряжение. Но при этом преобразовании уже появляется возможность регулирования параметров 3-х фазного сигнала. В качестве ключей в инверторе используются силовые IGBT-транзисторы, имеющие высокую частоту переключения, что позволяет воспроизвести синусоидальный сигнал с высокой степенью точности.

    Области применения.

    Использование частотного преобразователя для асинхронных двигателей для регулирования скорости движения конвейеров и транспортировочных устройств даёт значительную экономию электроэнергии и увеличивает эффективность использования этих средств. Тот же результат получается в случае использования этого метода регулировки при управлении насосными установками. Благодаря его применению без труда удаётся поддерживать в системе нужное давление и регулировать её производительность. При использовании регулируемого привода в станках мы можем плавно изменять скорость подачи или главного движения.

    В НАШЕМ АССОРТИМЕНТЕ ТАКЖЕ ПРЕДСТАВЛЕНЫ:

    Мотор-редукторы Innovari (Италия) – экономичные, надежные червячные и цилиндрические мотор-редукторы, компактные насадные редукторы.

    Экономичные по цене, но очень надежные датчики Autonics (Южная Корея) — индуктивные и емкостные датчики, оптические датчики, датчики угла поворота (энкодеры), датчики контроля параметров среды.

    Датчики UWT GmbH (Германия) — датчики контроля и измерения уровня сыпучих продуктов — песок, опилки, цемент, мука, гранулят. Ротационные (механические), вибровилки, акустические (измерение до 60 м), лотовые системы (электромеханические датчики непрерывного измерения уровня).

    Новые уникальные сервоприводы Position Servo компании Lenze. Возможны различные режимы управления: моментом, скоростью вращения, ведущий-ведомый с электронным редуктором.

    Что такое регулирование скорости асинхронного двигателя?

    — Объявление —

    Управление скоростью асинхронного двигателя. Асинхронный двигатель — это двигатель с постоянной скоростью, что в практическом смысле означает, что изменение скорости двигателя приблизительно мало по сравнению с общим уровнем нагрузки. Хотя скорость шунтирующей системы постоянного тока может быть слишком просто изменена с соответствующей эффективностью, падение скорости асинхронных двигателей может вызвать значительную потерю эффективности и снизить коэффициент мощности.Поскольку асинхронные двигатели широко используются в различных приложениях, регулирование скорости асинхронного двигателя является важным фактором. Итак, ниже в этом посте обсуждаются различные методы контроля скорости.

    Введение в управление скоростью асинхронного двигателя

    В нашей среде для общих целей используются несколько типов двигателей, от бытовых устройств до машинных систем в промышленных приложениях. В настоящее время электродвигатель является незаменимым и жизненно важным источником энергии во многих отраслях промышленности.Характеристики и функции, необходимые для этих двигателей, слишком широки.

    Если вы рассматриваете проблему управления скоростью двигателей, доступных на рынке, шаговые и сервосистемы контролируют их скорость с шагом импульса, тогда как бесщеточные двигатели постоянного тока и асинхронные двигатели определяют скорость с помощью дополнительного резистора или источника постоянного напряжения. Например, трехфазная индукционная система — это, по сути, двигатель с фиксированной скоростью. Так что следить за его скоростью относительно сложно. Однако управление скоростью асинхронного двигателя используется для решения проблем снижения эффективности и повышения коэффициента электрической мощности.Схема управления скоростью асинхронного двигателя

    (Ссылка: circuitglobe.com )

    В этом посте представлены принцип управления скоростью, структура и характеристики различных методов, которые могут относительно просто определять скорость, используя определенные схемы. Посетите здесь, чтобы подробно изучить управление скоростью асинхронного двигателя. Скорость асинхронного двигателя может быть исследована со стороны ротора и статора.

    Управление скоростью асинхронного двигателя, основанное на аспекте статора, можно разделить на следующие категории:

    • Контроль U / f или регулятор частоты
    • Изменение значений полюсов статора.
    • Контроль напряжения питания.
    • Добавление переменного реостата в систему статора

    Управление скоростью индукционной системы в зависимости от стороны ротора классифицируется как:

    • Использование дополнительного сопротивления на секции ротора
    • Способ управления каскадом
    • Ввод ЭДС определенной частоты скольжения в секция ротора

    Регулирование скорости асинхронного двигателя со стороны статора
    Путем изменения приложенного напряжения

    Согласно формуле крутящего момента асинхронного двигателя,

    T = \ frac {{K} _ { 1} s {E} _ {2} ^ {2} {R} _ {2}} {\ sqrt {({R} _ {2} ^ {2} + {(s {X} _ {2}) } ^ {2})}} = \ frac {3} {2 \ pi {N} _ {s}} \ frac {s {E} _ {2} ^ {2} {R} _ {2}} { \ sqrt {({R} _ {2} ^ {2} + {(s {X} _ {2})} ^ {2})}}

    Сопротивление ротора R 2 фиксировано, и если проскальзывание значение (я) довольно мало, член (sX 2 ) 2 также мал t что его можно снять.Таким образом, T может быть связано с sE 2 2 , где E 2 — ЭДС, индуцированная в роторе, а E 2 ∝ V.

    Следовательно, T можно оценить на основе (sV 2 ), Это означает, что при уменьшении необходимого напряжения конечный крутящий момент падает. Следовательно, скольжение увеличивается, чтобы обеспечить тот же момент нагрузки с уменьшением напряжения, и, как результат, скорость уменьшается. Этот метод слишком прост и эффективен, но используется редко, поскольку для относительно небольшого изменения скорости требуется большое изменение выходного напряжения.

    Другими словами, большое изменение конечного напряжения вызовет большое изменение плотности потока и нарушит магнитные состояния системы.

    Путем изменения приложенной частоты

    Синхронная скорость движущегося магнитного поля в асинхронном двигателе может быть рассчитана по формуле

    {N} _ {s} = \ frac {120f} {P} (об / мин)

    где f — частота системы, а P — количество полюсов статора.Синхронная скорость изменяется с изменением частоты системы.

    Реальная скорость асинхронного двигателя задается следующим уравнением:

    N = {N} _ {s} (1-s)

    Хотя этот метод обычно не используется, его можно использовать там, где двигатель поддерживается внешним генератором (так что частота может быть просто изменена изменением скорости главного двигателя). Ток двигателя на более низкой частоте может увеличиваться в зависимости от значения реактивного сопротивления.И если частота повышается сверх стандартного значения, максимальный крутящий момент уменьшается, а скорость увеличивается.

    В асинхронном двигателе ЭДС представлена ​​индукцией, как в трансформаторе, которая задается формулой

    E \ quad или \ quad V \ quad = \ quad 4.44 \ phi KTf \ quad или \ quad \ phi = \ frac { V} {4.44KTf}

    В этом уравнении K — коэффициент обмотки, f — частота, а T — количество оборотов на фазу. Теперь, если мы изменим частоту, синхронная скорость также изменится, но с уменьшением частотного потока, и это изменение потока вызовет состояние насыщения в сердечниках ротора и статора.Следовательно, очень важно поддерживать постоянный поток, и это возможно только в том случае, если мы изменим напряжение. Таким образом, соотношение V / f должно оставаться постоянным. Это метод V / f. Мы должны подавать изменяемые напряжение и частоту для управления скоростью асинхронного двигателя методом U / f, используя инвертор и преобразователь.

    Постоянное регулирование скорости вращения асинхронного двигателя

    Это наиболее распространенное решение для управления скоростью асинхронного двигателя. Подобно описанному выше методу, если частота системы снижается при сохранении номинального напряжения источника, поток воздушного зазора будет насыщаться.Это вызовет дополнительный ток в статоре и искажение магнитного потока. Таким образом, напряжение статора должно уменьшаться с увеличением частоты, чтобы магнитный поток оставался постоянным.

    Величина магнитного потока статора связана с напряжением статора и частотой системы. Таким образом, если скорость напряжения и частоты поддерживаются постоянными, магнитный поток также остается фиксированным. Развиваемый крутящий момент остается относительно постоянным, если V / F остается неизменным. Это решение обеспечивает большую эффективность во время выполнения. Таким образом, несколько типов скоростных приводов применяют режим постоянного напряжения / частоты (или переменной частоты на основе метода переменного напряжения) для управления скоростью асинхронного двигателя.Наряду с широким контролем скорости это решение также обеспечивает возможность плавного пуска.

    Изменение количества полюсов статора

    Полюса статора можно изменять и изменять двумя способами, включая многосистемную обмотку (MSW) и модуляцию амплитуды полюса (PAM).

    Метод с несколькими обмотками статора

    Мы поставляем две разделенные обмотки для этого метода управления скоростью асинхронного двигателя в статоре. Эти две конкретные обмотки электрически разделены друг от друга и имеют два различных числа полюсов.Применение конфигурации переключения на одной обмотке может обеспечить возможность регулирования скорости. Это решение имеет ряд недостатков, в том числе отсутствие плавного регулирования скорости. Кроме того, этот способ слишком дорог и менее эффективен из-за использования двух разных обмоток.

    Наконец, этот метод можно использовать только для двигателей с короткозамкнутым ротором. Можно видеть, что рабочая скорость может быть изменена изменением полюсов статора из приведенной выше формулы синхронной скорости. Таким образом, этот метод обычно используется для асинхронных двигателей с короткозамкнутым ротором, поскольку ротор этого типа самовосстанавливается для любого числа полюсов.Изменение полюсов статора достигается за счет использования двух или более специальных обмоток статора, изолированных для различного количества полюсов в одних и тех же секциях.

    Например, система снабжена двумя 3-фазными обмотками, одна на 6 полюсов, а другая на 8 полюсов, чтобы обеспечить частоту 60 Гц

    1. i) можно рассчитать синхронную скорость по 6-полюсным обмоткам, N с = 120 * 60/6 = 1200 об / мин
    2. ii) можно рассчитать синхронную скорость по 8-полюсным обмоткам, Н с = 120 * 60/8 = 900 об / мин
    Метод амплитудной модуляции полюса (PAM)

    Первичная синусоидальная волна mmf чередуется с другой конкретной волной mmf, включая другое количество полюсов в этом методе управления скоростью асинхронного двигателя.

    Предположим, что f 1 (θ) — это основная волна mmf асинхронного двигателя, скорость которой необходимо определить, f 2 (θ) — волна mmf модуляции, P 1 — количество полюсов системы. скорость которого необходимо контролировать, а P 2 — количество полюсов вторичной волны.

    {f} _ {1} (\ theta) = {F} _ {1} sin \ frac {{P} _ {1} \ theta} {2}

    {f} _ {2} (\ theta) = {F} _ {2} sin \ frac {{P} _ {2} \ theta} {2}

    Итак, мы можем получить модулирующую результирующую волну mmf как:

    {F } _ {r} (\ theta) = {F} _ {1} {F} _ {2} sin \ frac {{P} _ {1} \ theta} {2} sin \ frac {{P} _ { 2} \ theta} {2}

    Применяя синусоидальную формулу, мы наконец получим результирующую волну mmf как:

    {F} _ {r} (\ theta) = {F} _ {1} {F} _ {2} \ frac {cos \ frac {({P} _ {1} — {P} _ {2}) \ theta} {2} -cos \ frac {({P} _ {1} + {P} _ {2}) \ theta} {2}} {2}

    Это означает, что результирующая волна mmf будет включать два различных числа полюсов, т.е.е;

    {P} _ {11} = {P} _ {1} — {P} _ {2} \ quad и \ quad {P} _ {12} = {P} _ {1} + {P } _ {2}

    Следовательно, по изменению числа полюсов мы можем просто изменить скорость и отрегулировать управление скоростью асинхронного двигателя.

    Управление скоростью асинхронного двигателя со стороны ротора
    Управление реостатом ротора

    Этот метод очень похож на управление шунтирующим двигателем постоянного тока с использованием реостата якоря.

    Контроль реостата ротора (Ссылка: electric4u.com )

    Однако это решение возможно только для асинхронных двигателей с контактным кольцом и требует внешнего сопротивления в роторе, что невозможно для других двигателей.

    Каскадный режим

    В этом методе управления скоростью асинхронного двигателя используются два двигателя. Оба двигателя установлены на одном валу, поэтому оба работают с одинаковой скоростью. Один двигатель поддерживается трехфазным источником, а другой двигатель питается от наведенной ЭДС от первого двигателя с токосъемными кольцами.Их конфигурация представлена ​​на следующей диаграмме.

    Каскадная работа асинхронных двигателей (Ссылка: electricaleasy.com )

    Если двигатель A предполагается в качестве основного двигателя, а двигатель B — в качестве вспомогательной системы, мы можем определить другие параметры следующим образом:

    N s1 : частота системы A, N с2 : частота двигателя B, P 1 : количество полюсов статора системы A, P 2 : количество полюсов статора системы B, N: скорость системы и одинакова для обоих двигателей, и f: частота источника питания.

    Теперь мы можем определить скольжение двигателя A как:

    {S} _ {1} = \ frac {{N} _ {S1} -N} {{N} _ {S1}}

    Если частота создаваемой ротором ЭДС в системе A представлена ​​как f1 = S 1 f, вспомогательная секция двигателя B поддерживается ЭДС, создаваемой в роторе, поэтому мы можем рассчитать скорость вторичной системы как :

    {N} _ {S2} = \ frac {120 {f} _ {1}} {{P} _ {2}} = \ frac {120 {S} _ {f1}} {{P } _ {2}}

    Теперь мы можем поместить значение S 1 следующим образом и получить окончательное уравнение

    {S} _ {1} = \ frac {{N} _ {S1} — {N}} {{N} _ {S1}}

    Итак;

    {N} _ {S2} = \ frac {120f ({N} _ {S1} -N)} {{P} _ {2} {N} _ {S1}}

    При загрузке равна нулю, скорость вспомогательной части ротора равна синхронной скорости и N = N с2 .Итак, из последних уравнений можно получить, что

    {N} = \ frac {120f} {{{P} _ {1} + P} _ {2}}

    . конкретные скорости могут быть представлены следующим образом:

    1. a) когда работает только система A, соответствующая скорость = N с1 = 120f / P 1
    2. b) когда работает только система B, соответствующая скорость = N s2 = 120f / P 2
    3. c) При применении метода коммутативного каскадирования скорость системы = N = 120f / (P 1 + P 2 )
    4. d) При использовании метода дифференциального каскадирования , скорость системы = N = 120f (P 1 — P 2 )

    Путем подачи ЭДС в цепь ротора

    Управление скоростью асинхронного двигателя в этом методе осуществляется путем подачи определенного напряжения на схеме ротора.Введенное напряжение (ЭДС) должно иметь частоту, равную частоте скольжения. Однако нет никаких ограничений для фазы этой ЭДС. Если введенная ЭДС имеет противоположную фазу с ротором, сопротивление системы улучшится. В противном случае, если подаваемое напряжение имеет ту же фазу, что и ротор, сопротивление уменьшится. В результате, изменяя фазу подаваемого напряжения, можно правильно применять управление скоростью асинхронного двигателя.

    Метод впрыска ЭДС (Ссылка: circuitglobe.com)

    Основным преимуществом этого решения является возможность широкого управления скоростью. Эта конкретная ЭДС может быть введена в систему различными способами, такими как система Крамера, система Шербиуса и т. Д.

    — Объявление —

    Три способа управления однофазным асинхронным двигателем

    Каждый день инженеры разрабатывают продукты, в которых используются однофазные асинхронные двигатели. Регулирование скорости однофазных асинхронных двигателей желательно в большинстве приложений управления двигателями, поскольку оно не только обеспечивает регулировку скорости, но также снижает потребление энергии и звуковой шум.

    Большинство однофазных асинхронных двигателей являются однонаправленными, что означает, что они предназначены для вращения в одном направлении. Либо путем добавления дополнительных обмоток, внешних реле и переключателей, либо путем добавления зубчатых передач, направление вращения можно изменить. Используя системы управления на основе микроконтроллеров, можно добавить в систему изменение скорости. В дополнение к опции изменения скорости, направление вращения также может быть изменено в зависимости от используемых алгоритмов управления двигателем.

    Двигатели с постоянным разделенным конденсатором (PSC) — самый популярный тип однофазных асинхронных двигателей.В этой статье будут рассмотрены различные методы и топологии приводов для управления скоростью двигателя PSC в одном и двух направлениях.

    Интерфейс микроконтроллера

    Микроконтроллер — это мозг системы. Часто контроллеры, используемые для приложений управления двигателем, имеют специализированные периферийные устройства, такие как ШИМ для управления двигателем, высокоскоростные аналого-цифровые преобразователи (АЦП) и диагностические выводы. PIC18F2431 и dsPIC30F2010 от Microchip имеют эти встроенные функции.

    Наличие доступа к специализированным периферийным устройствам микроконтроллера упрощает реализацию алгоритмов управления.

    Каналы АЦП используются для измерения тока двигателя, температуры двигателя и температуры радиатора (подключены к выключателям питания). Третий канал АЦП используется для считывания уровней потенциометра, который затем используется для установки скорости двигателя. Дополнительные каналы АЦП могут использоваться в конечном приложении для считывания различных датчиков, таких как бесконтактный переключатель, датчики мутности, уровня воды, температуры морозильной камеры и т. Д.

    Входы и выходы общего назначения (I / Os) могут использоваться для взаимодействия переключает и отображает в приложении.Например, в холодильнике эти универсальные входы / выходы могут использоваться для управления ЖК-дисплеем, семисегментным светодиодным дисплеем, кнопочным интерфейсом и т. Д. Каналы связи, такие как I2C (TM) или SPI ( TM) используются для соединения платы управления двигателем с другой платой для обмена данными.

    Интерфейсы неисправностей и диагностики включают в себя входные линии со специальными функциями, такими как возможность отключения ШИМ в случае катастрофических сбоев в системе. Например, в посудомоечной машине, если привод заблокирован из-за скопившихся отходов, это может помешать вращению двигателя.Эта блокировка может быть обнаружена в виде перегрузки по току в системе управления двигателем. Используя функции диагностики, эти типы неисправностей могут регистрироваться и / или отображаться, или передаваться на ПК для устранения неисправностей обслуживающего персонала. Часто это предотвращает серьезные отказы и сокращает время простоя продукта, что приводит к снижению затрат на обслуживание.

    Аппаратный интерфейс для PIC 18F2431 или dsPIC30F2010.

    ШИМ — это основные периферийные устройства, используемые для управления двигателем. Используя указанные выше входные данные, алгоритм управления двигателем микроконтроллера определяет рабочий цикл ШИМ и схему вывода. К наиболее ценным функциям PWM относятся дополнительные каналы с программируемым мертвым временем. ШИМ могут быть выровнены по краям или по центру. Выровненные по центру ШИМ имеют то преимущество, что они снижают электромагнитный шум (EMI), излучаемый изделием.

    Вариант 1: однонаправленное управление

    Управление VF в одном направлении делает топологию привода и алгоритм управления относительно простыми.Задача состоит в том, чтобы создать источник питания с переменным напряжением и частотой из источника питания с фиксированным напряжением и частотой (такого как источник питания от настенной розетки). На рисунке на странице 85 показана блок-схема этой топологии привода с тремя основными секциями построения, которые обсуждались ранее. Обмотки двигателя подключены к центру каждого полумоста на выходной секции инвертора. Многие двигатели, имеющиеся в наличии, имеют как основную, так и пусковую обмотки, соединенные вместе с конденсатором, включенным последовательно с пусковой обмоткой.В этой конфигурации двигатель может иметь только два выступающих провода (M1 и M2).

    MCU, показанный на блок-схеме, имеет модуль PWM управления мощностью (PCPWM), который способен выводить до трех пар PWM с зоной нечувствительности между парами. Зона нечувствительности важна в приложении управления асинхронным двигателем, чтобы избежать перекрестной проводимости шины постоянного тока через переключатели питания, когда один выключается, а другой включается. Схема диагностики может включать в себя контроль тока двигателя, контроль напряжения на шине постоянного тока и контроль температуры на радиаторе, подключенном к переключателям питания и двигателю.

    Блок-схема топологии привода с тремя основными секциями здания. В этой конфигурации двигатель может иметь только два выступающих провода (M1 и M2). Показанный MCU имеет модуль ШИМ, который способен выводить до трех пар ШИМ с зоной нечувствительности между парами.
    Двунаправленное управление с помощью H-моста.

    Двунаправленное управление

    Большинство двигателей PSC предназначены для работы в одном направлении. Однако во многих приложениях требуется двунаправленное вращение двигателя. Исторически для достижения двунаправленного вращения использовались зубчатые передачи или внешние реле и переключатели. При использовании механических шестерен вал двигателя вращается в одном направлении, а шестерни прямого и обратного хода включаются и выключаются в соответствии с требуемым направлением. С помощью реле и переключателей полярность пусковой обмотки электрически меняется на обратную в зависимости от требуемого направления.

    К сожалению, все эти компоненты увеличивают стоимость системы для базового управления включением и выключением в двух направлениях.

    В этом разделе мы обсудим два метода двунаправленного управления скоростью для двигателей PSC с использованием привода на основе микроконтроллера. Обсуждаемые здесь топологии привода создают эффективные напряжения, которые приводят в действие главную обмотку и пусковую обмотку с фазовым сдвигом на 90 градусов относительно друг друга. Это позволяет разработчику системы навсегда удалить конденсатор, включенный последовательно с пусковой обмоткой, из схемы, тем самым снижая общую стоимость системы.

    Вариант № 2: H-мостовой преобразователь

    У этого метода есть удвоитель напряжения на входе; на выходе используется H-мост или двухфазный инвертор (см. рисунок выше). К каждому полумосту подключаются один конец основной и пусковой обмоток; другие концы соединены вместе в нейтральной точке источника переменного тока, которая также служит центральной точкой для удвоителя напряжения.

    Для схемы управления требуются четыре ШИМ с двумя дополнительными парами и достаточной зоной нечувствительности между дополнительными выходами.PWM0-PWM1 и PWM2-PWM3 — это пары ШИМ с зоной нечувствительности. Используя ШИМ, шина постоянного тока синтезируется для обеспечения двух синусоидальных напряжений, сдвинутых по фазе на 90 градусов, с различной амплитудой и переменной частотой в соответствии с профилем VF. Если напряжение, приложенное к основной обмотке, отстает от пусковой обмотки на 90 градусов, двигатель вращается в прямом направлении. Чтобы изменить направление вращения, напряжение, подаваемое на главную обмотку, должно опережать напряжение, подаваемое на пусковую обмотку.

    Фазные напряжения при вращении двигателя в прямом и обратном направлении.

    Этот метод преобразователя H-моста для управления двигателем типа PSC имеет следующие недостатки.

    Основная и пусковая обмотки имеют разные электрические характеристики. Таким образом, ток, протекающий через каждый переключатель, неуравновешен. Это может привести к преждевременному выходу из строя коммутационных аппаратов в инверторе.

    Общая точка обмоток напрямую подключена к нейтрали. Это может увеличить количество коммутационных сигналов, проникающих в основной источник питания, и может увеличить шум, излучаемый в линию.В свою очередь, это может ограничить уровень электромагнитных помех продукта, нарушая определенные цели и нормы проектирования.

    Эффективное обрабатываемое постоянное напряжение относительно высокое из-за схемы удвоения входного напряжения.

    Наконец, стоимость самой схемы удвоителя напряжения высока из-за двух мощных конденсаторов.

    Лучшим решением для минимизации этих проблем было бы использование трехфазного инверторного моста, как обсуждается в следующем разделе.

    Вариант № 3: Использование трехфазного инверторного моста

    Входная секция заменена на стандартный диодно-мостовой выпрямитель.В выходной секции установлен трехфазный инверторный мост. Основное отличие от предыдущей схемы — способ подключения обмоток двигателя к инвертору. Один конец основной и пусковой обмоток подключены к одному полумосту каждый. Остальные концы связываем вместе и подключаем к третьему полумосту.

    Управление с помощью трехфазного инверторного моста.

    При такой топологии привода управление становится более эффективным.Однако алгоритм управления усложняется. Напряжениями обмоток, Va, Vb и Vc, следует управлять для достижения разности фаз между действующими напряжениями на основной и пусковой обмотках, чтобы иметь фазовый сдвиг на 90 градусов относительно друг друга.

    Чтобы иметь одинаковые уровни напряжения и нагрузки на всех устройствах, что улучшает использование устройства и обеспечивает максимально возможное выходное напряжение для заданного напряжения на шине постоянного тока, все три фазных напряжения инвертора поддерживаются на одной и той же амплитуде, как указано в :

    | Va | = | Vb | = | Vc |

    Эффективное напряжение на основной и пусковой обмотках, как указано по формуле:

    Vmain = Va-Vc

    Vstart = Vb-Vc

    Направление вращения можно легко контролировать с помощью фазового угла Vc по отношению к Va и Vb .

    На рисунках на стр. 87 показаны фазные напряжения Va, Vb и Vc, эффективные напряжения на основной обмотке (Vmain) и пусковой обмотке (Vstart) для прямого и обратного направлений соответственно.

    Использование метода управления трехфазным инвертором на компрессоре мощностью 300 Вт дало экономию энергии на 30 процентов по сравнению с первыми двумя методами.

    Требуемые ресурсы микроконтроллера
    Ресурс Однонаправленный Двунаправленный H-мост Двунаправленный с трехфазным мостом Банкноты
    Программная память 1.5 Кбайт 2,0 Кбайт 2,5 Кбайт
    Память данных ~ 20 байт ~ 25 байтов ~ 25 байт
    каналов ШИМ 2 канала 2 канала 3 канала Дополняет мертвое время
    Таймер 1 1 1 8- или 16-битный
    Аналого-цифровой преобразователь 3-4 канала 3-4 канала 3-4 канала Ток двигателя, измерения температуры, потенциометр регулировки скорости
    Цифровые входы / выходы от 3 до 4 от 3 до 4 от 3 до 4 Для пользовательских интерфейсов, таких как переключатели и дисплеи
    Входы неисправностей 1 или 2 1 или 2 1 или 2 Для перегрузки по току / перенапряжения / перегрева и т. Д.
    Сложность алгоритма управления Низкая Средний Высокая
    Сравнение затрат
    Однонаправленный Двунаправленный с H-мостом Двунаправленный с трехфазным мостом
    Секция входного преобразователя Low — Однофазный диодный мостовой выпрямитель Высокий — из-за цепи удвоителя напряжения Low — Однофазный диодный мостовой выпрямитель
    Выходная секция инвертора Низкий — Два полумоста Средний — Два полумоста.Силовые выключатели на более высокое напряжение High — трехфазный инвертор. Использование интегрированных силовых модулей (IPM) лучше, чем дискретных компонентов
    Двигатель Medium — Требуется пусковой конденсатор Low — Пусковой конденсатор снят с двигателя Low — Пусковой конденсатор снят с двигателя
    Время разработки Короткое Средний длинный
    Общая стоимость Низкая Средний Medium — Эффективный контроль при заданной стоимости

    Еще одно преимущество использования трехфазного метода управления состоит в том, что та же самая топология приводного оборудования может использоваться для управления трехфазным асинхронным двигателем.В этом сценарии микроконтроллер должен быть перепрограммирован для вывода синусоидальных напряжений с фазовым сдвигом на 120 градусов относительно друг друга, что приводит в действие трехфазный асинхронный двигатель. Это сокращает время разработки.

    Однофазные асинхронные двигатели очень популярны в бытовой технике, а также в промышленных и бытовых приложениях. PSC — самый популярный тип однофазных асинхронных двигателей. Управление скоростью двигателя имеет много преимуществ, таких как энергоэффективность, снижение слышимого шума и лучший контроль над приложением.В этой статье мы обсудили различные методы управления скоростью, которые можно использовать с двигателем PSC в однонаправленном и двунаправленном режимах. Наилучшие результаты дает управление двигателем PSC с использованием топологии трехфазного инвертора.


    Фазное напряжение при вращении двигателя в прямом и обратном направлениях.

    triac — регулировка скорости асинхронного двигателя с помощью диммера

    Причина, по которой это не сработало, кстати, заключается в том, что в асинхронном двигателе крутящий момент является коэффициентом отношения между напряжением и частотой, а двигатель с короткозамкнутым ротором разработан для определенного отношения.Таким образом, используя диммер, вы изменяете не частоту, а только напряжение, тем самым влияя на это соотношение. Крутящий момент двигателя изменяется пропорционально приложенному напряжению при фиксированной частоте, поэтому, если вы дадите этому двигателю 50% напряжения, он будет развивать только 25% от номинального крутящего момента. Затем это означает, что скольжение увеличивается, двигатель потребляет больше тока, пытаясь вернуться к нормальной скорости скольжения, но не может, поэтому дополнительный ток просто создает ненужное тепло, пока в конечном итоге двигатель не сгорит.

    VFD работает, потому что он ДЕЙСТВИТЕЛЬНО изменяет напряжение И ЧАСТОТУ вместе, поддерживая соотношение В / Гц, ожидаемое двигателем, поэтому он обеспечивает номинальный крутящий момент на любой скорости.

    Существуют частотно-регулируемые приводы, предназначенные для использования с однофазными двигателями, но не ВСЕХ однофазных двигателей. В отличие от трехфазных асинхронных двигателей, которые в основном построены одинаково, существует множество способов заставить работать однофазные асинхронные двигатели. Это связано с тем, что с однофазным двигателем не создается вращающееся магнитное поле, заставляющее двигатель вращаться, он просто вращается взад и вперед. Однако, как только двигатель НАЧИНАЕТ вращаться, он продолжает вращаться. Таким образом, однофазные двигатели должны быть спроектированы с использованием некоторого «трюка» для запуска этого вращения, обычно в форме временного фазового сдвига.Двигатели, которые используют отдельную обмотку (Split Phase) или конденсатор (Cap Start) для создания этого фазового сдвига, но затем используют центробежный переключатель, чтобы удалить его, когда двигатель вращается, нельзя использовать с какой-либо формой управления скоростью, потому что они замедляют их. Посеянный повторно включает метод запуска, и он не был разработан для постоянного использования в цепи. Однако есть две формы однофазного асинхронного двигателя, которые могут использоваться с регулированием скорости: постоянный разделенный конденсатор (поскольку колпачки предназначены для постоянного присутствия в цепи) и двигатель с экранированными полюсами.Двигатели с экранированными полюсами особенно хорошо подходят для простого управления напряжением с помощью «диммера», потому что крутящий момент в любом случае низкий, поэтому они обычно используются только в приложениях, которые не требуют большого крутящего момента, например, в небольших вентиляторах. Двигатели PSC также могут использоваться с диммерами, но проблема крутящего момента все еще существует, поэтому он очень зависит от нагрузки.

    В итоге, если у вас асинхронный двигатель, но не с экранированным полюсом или PSC, вы не можете использовать на нем какие-либо формы управления скоростью.

    Регулятор постоянной скорости асинхронного двигателя переменного тока без тахометра

    Отсюда не попасть :-).

    Вам необходимо указать, что вы подразумеваете под контролем скорости.
    Если диапазон скоростей не находится в пределах очень небольшого диапазона ниже синхронной скорости, тогда вы не сможете разумно без обратной связи управлять скоростью асинхронного двигателя путем изменения мощности привода. И вы можете управлять им только с обратной связью разумным образом в относительно ограниченном диапазоне. Для любого «приличного» управления скоростью ротор двигателя должен отслеживать частоту переменного тока с ограниченным «скольжением».

    Асинхронный двигатель работает, используя разность частот между приложенной частотой и частотой ротора, чтобы индуцировать низкие напряжения при высоких токах в конструкции ротора.Это по своей сути саморегулирующаяся скорость в определенных пределах, поскольку увеличение угла скольжения увеличивает потребляемую мощность, что снижает угол скольжения.

    Управление

    TRIAC работает за счет снижения уровня мощности до уровня ниже необходимого для поддержания «правильного» управления индукцией / углом скольжения. По сути, это хаотическая ситуация — что-то вроде серфинга на волне — и она слишком изменчива, чтобы ею можно было управлять без обратной связи.


    На протяжении многих лет существует множество ответов на вопрос об управлении скоростью асинхронных двигателей переменного тока.Я рекомендую вам прочитать их — они представляют большой интерес, даже если они применимы по-разному.

    От Whiskeysip69s хороший ответ — вот эта кривая, которая показывает кривые зависимости нагрузки вентилятора от крутящего момента двигателя переменного тока при переменном напряжении. Нагрузка вентилятора изменяется в зависимости от скорости таким образом, что он «вроде работает», когда вы меняете напряжение двигателя. Остальные грузы не столь обязательны. Почти синхронная скорость двигателя имеет отрицательную крутизну кривой скорости / крутящего момента — по мере снижения скорости крутящий момент увеличивается, так что постоянная мощность нагрузки или линейная мощность со скоростной нагрузкой имеет тенденцию к саморегулированию скорости.. Когда вы попадаете на положительный уклон, на участках с более низкой скоростью вы получаете (более привычное в жизни) снижение мощности и крутящего момента с уменьшающейся кривой скорости, где чем медленнее вы идете, тем медленнее вы идете …

    Управление скоростью двигателя с экранированными полюсами

    Управление скоростью двигателя с экранированными полюсами
    Сеть обмена стеком

    Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

    Посетить Stack Exchange
    1. 0
    2. +0
    3. Авторизоваться Зарегистрироваться

    Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

    Зарегистрируйтесь, чтобы присоединиться к этому сообществу

    Кто угодно может задать вопрос

    Кто угодно может ответить

    Лучшие ответы голосуются и поднимаются наверх

    Спросил

    Просмотрено 7к раз

    \ $ \ begingroup \ $

    Мне недавно дали двухполюсный электродвигатель с экранированными полюсами 24 Вт 230 В переменного тока (Mellor Electric AC1004), чтобы сделать из него вентилятор.Этот вентилятор должен иметь регулируемую выходную скорость в зависимости от температуры в помещении. Я новичок в двигателях и задавался вопросом, как изменить скорость двигателя. Я провел некоторое исследование и увидел, что простым изменением напряжения можно уменьшить скорость, однако я считаю, что это не лучший способ сделать это. Я также видел, как люди используют диммеры на основе симистора для достижения той же цели, что и VFD, но они довольно дороги (VFD), и я не думаю, что они подходят для этого.Я хотел бы получить информацию о том, какой метод будет лучше всего. Спасибо.

    Создан 26 фев.

    Канеки Кен

    2311 серебряный знак44 бронзовых знака

    \ $ \ endgroup \ $ \ $ \ begingroup \ $

    Управление двигателем с экранированными полюсами (SP) только по напряжению является приемлемым и наиболее распространенным методом.Он не работает с другими типами двигателей переменного тока, но из-за некоторых присущих конструктивным особенностям того, что в первую очередь заставляет двигатель SP работать, соотношение крутящего момента / скорости более или менее линейно, или может казаться очевидным. так. Дело в том, что вы МОЖЕТЕ использовать частотно-регулируемый привод с однофазным выходом, если у вас есть деньги, чтобы сжечь, но «диммерный переключатель» работает нормально и не повредит двигатель.

    alexxlab / 22.01.1973 / Разное

    Добавить комментарий

    Почта не будет опубликована / Обязательны для заполнения *