Цены снижены! Бесплатная доставка контурной маркировки по всей России

Регулировка частоты вращения двигателя постоянного тока – Регулирование частоты вращения двигателя постоянного тока независимого возбуждения ДПТ НВ

Содержание

5. Способы регулирования частоты вращения двигателей постоянного тока

Принцип работы ДПТ. Вмашине должно быть две основные части: первая часть – создает магнитный поток, вторая часть – в которой индуктируется ЭДС. Первая часть в машине постоянного тока неподвижна. К станине (1) крепятся штампованные полюса (2) на которых располагается обмотка возбуждения (3). Вторая часть – якорь. Якорь вращается. Представляет собой цилиндр набранный из листов электротехнической стали (4).В наружной части якоря расположены пазы, где укладываются секции обмотки (5). Каждая секция соединяется с пластинами коллектора (6).

Рис. 223

Электромагнитный момент зависит от потока и тока якоря. В генераторном режиме электромагнитный момент является тормозным. Уравнение равновесного состояния моментов запишется , где- механический момент на валу генератора,- момент хх,- электромагнитный момент. Основное уравнение движения электропривода. Установившийся процесс, когда,,, Если,,. Если,,.

Принцип регулирования частоты вращения. С точки зрения регулирования частоты вращения, двигатель постоянного тока является универсальным. Можно регулировать скорость за счет изменения сопротивления в цепи якоря, потока и подводимого напряжения. Это видно из формулы: .

Сопротивлением в цепи якоря. Уравнения токов до и после введения сопротивления

, , откуда, т. е. токи момент уменьшается () . При этоми скоростьуменьшается. С уменьшением скороститок якоря возрастает, и он достигнет исходного тока якоря, но при меньшей скорости. Регулирование частоты вращения сопротивлением в цепи якоря осуществляется в сторону уменьшения скорости.

Потоком. Ток якоря до и после изменения потока ,, их отношение. Уравнение5.1.моментов . Уменьшим поток , Ток якоря возрос, тогда, тои(возрастает).

Напряжением. Регулирование частоты вращения производится следующими способами: А) Система генератор-двигатель (Г-Д). Б) Тиристорный преобразователь-двигатель (ТП-Д). В) Широтно-импульсное регулирование.

А) Система Г-Д, рис.234. . Увеличивая ток возбуждения генератораiвг, возрастает поток Фг и Ег, а следовательно увеличивается напряжение на якоре двигателя и скорость возрастает.

Б) Тиристорный преобразователь-двигатель. Увеличивая угол управления — площадь полупериода уменьшается, уменьшается среднее значение напряжения -Uср, а следовательно уменьшается скорость вращения.

В) Широтно-импульсное регулирование.

Рис. 236

Изменяя время импульса tи изменяется скважность , гдеtи — время импульса; tп — время паузы . Среднее значение Uср=U0. .

6.Способы регулирования активной и реактивной мощности синхронной машины.

Способы регулирования активной и реактивной мощности синхронного генератора. Как только что видели, что если изменять возбуждение генератора, то тем самым будем изменять реактивную мощность, отдавать, либо потреблять. Регулировать активную мощность можно только изменяя механическую мощность со стороны паровой турбины, либо гидротурбины. При увеличении отдаваемой активной мощности, необходимо увеличить и механическую мощность со стороны турбины.

Пуск СД. для пуска синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. В виду отсутствия пускового момента в синхронном двигателе для пуска его используют следующие способы:1 Пуск с помощью вспомогательного двигателя ; 2Асинхронный пуск двигателя.

1.Пуск в ход синхронного двигателя с помощью вспомогательного двигателя может быть произведен только без механической нагрузки на его валу, т.е. практически вхолостую. В этом случае на период пуска двигатель временно превращается в синхронный генератор, ротор которого приводится во вращение небольшим вспомогательным двигателем до n=0,95n1. Статор этого генератора включается параллельно в сеть с соблюдением условий этого соединения. После включения статора в сеть, с небольшой выдержкой, включают обмотку возбуждения, и двигатель втягивается в синхронизм, а вспомогательный приводной двигатель механически отключается. Этот способ пуска сложен и имеет к тому же вспомогательный двигатель.

2. синхронный двигатель на время пуска превращается в асинхронный. Для возможности образования асинхронного пускового момента в пазах полюсных наконечников явнополюсного двигателя помещается пусковая короткозамкнутая обмотка. Процесс пуска синхронного двигателя осуществляется в два этапа. При включении обмотки статора (1) в сеть в двигателе образуется вращающее поле, которое наведет в короткозамкнутой обмотке ротора (2) ЭДС. Под действием, которой будет протекать в стержнях ток. В результате взаимодействия вращающего магнитного поля с током в короткозамкнутой обмотке создается вращающий момент, как у асинхронного двигателя. За счет этого момента ротор разгоняется до скольжения близкого к нулю (S=0,05), рис. 313. На этом заканчивается первый этап. Чтобы ротор двигателя втянулся в синхронизм, необходимо создать в нем магнитное поле включением в обмотку возбуждения (3) постоянного тока (переключив ключ К в положение 1). Так как ротор разогнан до скорости близкой к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно будут находить друг на друга. И после ряда проскальзываний, противоположные полюса притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной, рис. 313. На этом заканчивается второй этап пуска.

Работа СД при недовозбужденном и перевозбужденном режимах( ib=var). Режим работы соответствует постоянству момента. при. При недовозбужденном синхронном двигателе составляющей напряжения -Е0 соответствует ток I, который отстает от напряжения Uc на угол φ. Реактивная составляющая тока IL будет отставать на 900 от вектора напряжения Uc, т.е. этот ток чисто индуктивный. Значит, при недовозбуждении двигатель будет потреблять из сети индуктивный ток, а следовательно будет потреблять из сети и реактивную мощность.

При увеличении возбуждения величина –Е01 увеличится, а ток I уменьшится до Ia=I

1 и будет минимальным. При этом режиме СД будет работать с cosφ=1 и реактивная мощность, не будет ни потребляться, ни отдаваться в сеть. При дальнейшем увеличении тока возбуждения составляющая напряжения будет равна –Е011, а ток I11 , будет опережать вектор напряжения сети на угол φ1. Этот режим соответствует перевозбужденному режиму. Реактивная составляющая тока будет емкостной (опережает вектор Uc на 900). Этот режим будет соответствовать отдаче реактивной мощности в сеть. Этот режим аналогичен включению статических емкостей в сеть.

Итак видим, что если изменять ток возбуждения iB, то величина тока статора I будет изменяться по величине и по фазе, т.е. можно регулировать cosφ. Это ценное свойство и определяет использование синхронных двигателей. Зависимости тока статора I от тока возбуждения iв, I=f(iв) называются U-образные характеристики, рис. 309. Р2 > Р1. Характеристики снимаются при P=const. Режим работы соответствующий току возбуждения от 0 до пунктирной линии недовозбужденный, а за пунктирной линией – перевозбужденный с отдачей реактивной энергии в сеть.

studfile.net

Регулировка частоты вращения ДПТ

⇐ ПредыдущаяСтр 5 из 7Следующая ⇒

Уравнение (3.3) показывает, что для управления частотой вращения двигателя можно использовать напряжение на якоре, сопротивление цепи якоря и поток возбуждения. Ток якоря зависит от момента (3.4) и определяется нагрузкой двигателя, поэтому он не может быть параметром управления.

Напряжение на якоре можно менять с помощью транзисторных или тиристорных регулируемых вторичных источников постоянного напряжения. Это наиболее удобный и современный способ. Он экономичен и обеспечивает «жесткие» характеристики, то есть при заданном напряжении якоря частота вращения мало зависит от момента (вследствие малого сопротивления цепи якоря, см. уравнения (3.3, 3.4)). В качестве регулируемого источника напряжения можно использовать ГПТ, однако это техническое решение морально устарело.

Сопротивление цепи якоря изменяют посредством включения в нее дополнительных резисторов. Это позволяет регулировать частоту вращения ДПТ в широких пределах. Однако, характеристики двигателя получаются мягкими, что часто бывает неудобно, и в резисторах бесполезно выделяется большая мощность. Кроме того, обгорают контакты, подключающие резисторы. Все это ограничивает применение такого способа регулировки скорости.

Поток возбуждения можно менять, регулируя ток возбуждения. Обычно это делают, включая в цепь возбуждения дополнительные резисторы. Если двигатель не последовательного возбуждения, то ток возбуждения намного меньше тока якоря. Поэтому в дополнительных резисторах выделяется сравнительно небольшая мощность. Механические характеристики получаются жесткими, что обычно и требуется. Однако, такой способ управления позволяет лишь увеличивать скорость двигателя, начиная с основной частоты вращения, которая достигается при максимальном потоке возбуждения.

Регулировка напряжения и тока ГПТ

В соответствии с (3.1 и 3.2) напряжение и ток ГПТ зависят от ЭДС генератора, которую можно регулировать, меняя поток возбуждения и (или) частоту вращения ГПТ.

Поток возбуждения ГПТ можно легко и быстро изменять с помощью электронных устройств, позволяющих отслеживать состояние нагрузки и генератора. Можно также вручную включать в цепь возбуждения резисторы.

Менять частоту вращения ГПТ часто бывает неудобно или невозможно, так как для этого нужно изменять частоту вращения двигателя, который приводит в действие генератор. Поэтому такой способ регулировки напряжения и тока ГПТ применяется мало.

Пуск и реверс ДПТ

При разгоне двигателя вследствие малой скорости ЭДС вращения мала по сравнению с тем значением, которое она имеет в номинальном режиме. Поэтому напряжение источника питания при пуске уравновешивается в основном сопротивлением и током цепи якоря (3.1, 3.2). Сопротивление самого якоря очень мало, и при непосредственном включении ДПТ ток якоря будет в десятки раз больше номинального. Это может привести к перегрузке электрической цепи якоря и к механической аварии вследствие увеличения момента на валу двигателя.

Для ограничения пускового тока последовательно с якорем включают дополнительные резисторы, которые по мере разгона выводят из цепи.

Если двигатель питается от регулятора напряжения, то этот же регулятор используется для пуска.

Чтобы реверсировать ДПТ, нужно изменить направление тока якоря или основного магнитного поля двигателя. Для этого надо поменять полярность включения якоря или обмоток возбуждения.

Пуск ГПТ

При пуске ГПТ с параллельным или смешанным возбуждением сопротивление нагрузки не должно быть меньше некоторого критического значения, иначе обмотка возбуждения не получит достаточно тока для создания нормального магнитного поля.

Если сопротивление нагрузки меньше критического, то нужно сначала включить генератор и подождать, когда ток возбуждения и напряжение якоря достигнут номинальных значений, а затем подключать нагрузку.

Синхронные машины

Общая характеристика

Синхронные машины (СМ) — это машины переменного тока. Они могут работать как двигатели или генераторы в зависимости от момента на валу. Они имеют следующие основные особенности:

1) Их частота вращения постоянна и равна частоте вращения магнитного поля асинхронных двигателей (см. п. 2):

(об/мин), (4.1)

где f – частота напряжения сети, к которой подключена СМ, р – число пар полюсов СМ, 60 — число секунд в минуте.

Исключение составляют синхронные генераторы (СГ), работающие автономно, без параллельного подключения к другим источникам переменного напряжения (например, генераторы, питающие бортовые сети автомобилей). Частота вращения таких СГ определяется частотой вращения первичных двигателей, но она также связана с частотой напряжения формулой (4.1).

2) Сдвиг фаз между напряжением и током СМ можно регулировать, изменяя ток возбуждения. Это очень ценное качество позволяет использовать СМ не только по прямому назначению, но еще и для компенсации реактивного тока потребителей электроэнергии (для повышения cosj, см. п. 14).

Назначение

СГ вырабатывают электроэнергию на электростанциях — это самая важная область применения СМ. В последнее время СГ малой мощности используют для питания бортовых сетей транспортных средств, так как они проще, дешевле и надежнее, чем генераторы постоянного тока. При этом постоянное напряжение, нужное для бортовой сети, получают из синусоидального напряжения генератора с помощью выпрямителя. СГ используют также в передвижных дизельных электростанциях.

По сравнению с асинхронными двигателями синхронные двигатели (СД) обладают меньшими габаритами и массой и большим к.п.д.

Однако, для питания обмотки возбуждения им нужен дополнительный источник постоянного напряжения. Конструкция и пуск СД сложнее, чем у асинхронного двигателя с короткозамкнутым ротором. Пусковой момент СД меньше, чем у асинхронного двигателя с фазным ротором.

Поэтому СД в основном применяются в очень мощных электроприводах с редкими пусками. СД используют также там, где нужна строго постоянная частота вращения. Иногда мощные СД применяют только как компенсаторы реактивного тока, без нагрузки на валу.

Устройство

Статор СМ устроен так же, как статор асинхронного двигателя (рис. 4.1). Сердечник статора — это пустотелый стальной цилиндр. Для подавления вихревых токов он набран из отдельных колец листовой электротехнической стали. На его внутренней поверхности имеются пазы, в которых уложена трехфазная обмотка из медного провода.

Рис. 4.1. СМ с неявно- полюсным ротором в разрезе (схематический рисунок).

Ротор СМ – это электромагнит, обмотки которого питаются постоянным током возбуждения через контактные кольца и щетки. У маломощных СМ в качестве роторов используют постоянные магниты. Ротор реактивного СД — это просто зубчатый стальной цилиндр.

Ротор СМ имеет столько же пар полюсов, сколько статор. Роторы СМ бывают явнополюсными и неявнополюсными. У явнополюсных роторов каждый полюс выполняется отдельно и имеет свою обмотку, у неявнополюсных полюса образуются за счет распределения обмотки в пазах цилиндрического сердечника.

Сердечники роторов также набираются из отдельных стальных пластин, но более толстых, чем пластины статора, так как магнитное поле в роторе изменяется мало. Обмотки роторов делают из медного провода.

СМ делают так, чтобы магнитное поле вдоль зазора машины было синусоидальным. При этом вдоль зазора укладывается р периодов поля, где р – число пар полюсов машины (рис. 4.3).

Рис. 4.2. Сдвиг между осями магнитных полей ротора и статора СМ на угол q.

Принцип действия

Разноименные полюса магнитов притягиваются – это явление создает вращающий момент СД или момент сопротивления СГ. Полюса ротора притягиваются к вращающимся полюсам статора, поэтому ротор вращается с той же скоростью, что и поле статора (синхронно, отсюда и название машины).

Вращающееся магнитное поле ротора наводит в неподвижной трехфазной обмотке статора синусоидальные ЭДС, которые создают трехфазное напряжение СГ или компенсируют часть трехфазного напряжения питания СД.

ЭДС, наводимую в одной фазе статора полем ротора, мы обозначим . Согласно закону электромагнитной индукции, пропорциональна магнитному полю ротора и частоте его вращения. В свою очередь, поле ротора пропорционально току возбуждения, поэтому:

, (4.2)

где k – коэффициент, зависящий от конструкции машины, n – частота вращения, – ток возбуждения.

Если момент на валу машины равен нулю, то полюса ротора располагаются точно напротив полюсов поля статора.

Если на валу действует внешний вращающий (у СГ) или внешний тормозной (у СД) момент, то полюса ротора сдвигаются относительно полюсов статора на угол , где р – число пар полюсов СМ, q – сдвиг фаз между напряжением фазы статора и ЭДС фазы статора .

При этом получается, что у генератора ротор повернут относительно поля статора в сторону вращения (ротор как бы тащит за собой поле статора, совершая над ним работу), а у двигателя – противоположно вращению (поле статора приводит в движение ротор).

Магнитное поле ротора – это основное поле машины, оно еще называется полем возбуждения, оно создается током возбуждения обмотки ротора. Магнитное поле статора складывается из поля ротора и поля, создаваемого током обмотки статора.

Дополнительные пояснения.

Рис. 4.3. Изменение магнитного поля вдоль зазора СМ с двумя парами полюсов.

Рассмотрим подробнее сказанное про угол q. Все рассуждения будем вести относительно одной фазы трехфазной обмотки статора. Обозначим через ЭДС, наводимую в фазе обмотке статора вращающимся полем статора.

Если пренебречь малым активным сопротивлением фазы обмотки статора, то согласно закону электромагнитной индукции, . Поэтому сдвиг фаз q между и – это сдвиг фаз между и . Но сдвиг фаз между и равен сдвигу фаз между волнами магнитного поля ротора и магнитного поля статора, бегущими вдоль зазора машины, потому что эти ЭДС возникают вследствие движения магнитных полей. Так как один период изменения магнитного поля вдоль зазора занимает пространственный угол , то фазовому сдвигу синусоид q соответствует пространственный угол сдвига осей магнитных полей ротора и статора (рис. 4.3).




infopedia.su

Регулирование электродвигателей постоянного тока | КИП и АММИАЧНЫЕ ХОЛОДИЛЬНЫЕ УСТАНОВКИ

Как известно в холодильной технике, да и не только там, необходимо регулировать скорость вращения электродвигателей. Это необходимо для плавного регулирования параметров установки, а как следствие и производительности. Ниже мы рассмотрим способы регулирование электродвигателей постоянного тока.

Способы регулирования электродвигателей постоянного тока.

Как известно, работа электрического двигателя постоянного тока основана на явлении электромагнитной индукции. При этом на проводник с током, помещенный в магнитное поле, действует сила, определяемая следующим образом:

F = BIL,

где I — ток, протекающий по проводнику [A], В — индукция магнитного поля [Тл]; L — длина проводника [м].

При пересечении проводником магнитных силовых линий в нем наводится электродвижущая сила (ЭДС), которая направлена против тока в проводнике и поэтому называется обратной или противодействующей ЭДС. Электрическая мощность в двигателе преобразуется в механическую и частично тратится на нагревание проводника.

Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.

[hana-code-insert name=’reclam google’ /]

Электродвигатели постоянного тока применяют в электроприводах, где требуются большой диапазон регулирования скорости, большая точность поддержания скорости вращения, возможность регулирования скорости в большую сторону относительно номинальной.

С точки зрения регулирования электродвигателей нас будет интересовать формула для определения частоты вращения. Частота вращения электродвигателя постоянного тока определяется следующим образом:

n = (U – Iя Rя)/(kc Ф),

где U — напряжение питающей сети [В], Iя — ток якоря [A], Rя — сопротивление цепи якоря [Ом], kс — коэффициент, характеризующий магнитную систему, Ф — магнитный поток электродвигателя [Вб].

Данное выражение называется уравнением электромеханической характеристики двигателя постоянного тока независимого возбуждения. Из него следует, что существует три способа регулирования угловой скорости:

  • за счет изменения величины сопротивления реостата в цепи якоря;
  • за счет изменения потока возбуждения двигателя Ф;
  • за счет изменения подводимого к обмотке якоря двигателя напряжения U. Ток в цепи якоря Iя и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.

Остановимся подробнее на каждом из этих способов.

Вариант регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря приводит к изменению жесткости характеристик в широких пределах, а потому при скоростях менее половины номинальной стабильность работы двигателя резко ухудшается. По этой причине диапазон регулирования скорости ограничен. Скорость можно регулировать в сторону уменьшения от номинальной (об этом свидетельствуют электромеханические и механические характеристики). Высокую плавность регулирования обеспечить трудно. Также недостатком является и наличие значительных потерь мощности в процессе регулирования.

При втором способе регулирование осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока уменьшается. Однако на практике возможно изменение скорости только в сторону увеличения. Благодаря возможности плавного изменения сопротивления реостата появляется и возможность плавного регулирования скорости вращения электродвигателя. Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.

Однако данный вид регулирования практически не высвобождает мощности (энергопотребление постоянно), а потому используется в приводах только в качестве вспомогательного, причем, как правило, только в условиях холостого хода.

Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю.

При этом следует отметить, что все регулировочные характеристики являются жесткими, а степень их жесткости остается для всех характеристик неизменной. Таким образом, работа двигателя является стабильной на всех угловых скоростях, и, следовательно, обеспечивается широкий диапазон регулирования скорости независимо от нагрузки. Более того, угловую скорость можно уменьшать и увеличивать относительно номинальной. Также достаточно просто обеспечить и плавное регулирование частоты вращения электродвигателя: для этого достаточно плавно изменять напряжение постоянного тока.

Наконец, этот вариант регулирования является наиболее экономичным, поскольку регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря.

[hana-code-insert name=’POBOLYreklama’ /]

Учитывая все факторы вышеизложенного анализа существующих способов регулирования частоты двигателей постоянного тока, можно утверждать, что третий способ регулирования является наилучшим.

Именно поэтому в климатической технике регулирование двигателей постоянного тока реализовано посредством изменения питающего напряжения.

Рассмотрим возможные варианты изменения (регулирования) напряжения постоянного тока.

 

kipiahu.ru

Регулировка частоты вращения двигателя постоянного тока

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

Уравнение (3.3) показывает, что для управления частотой вращения двигателя можно использовать напряжение на якоре, сопротивление цепи якоря и поток возбуждения. Ток якоря зависит от момента (3.4) и определяется нагрузкой двигателя, поэтому он не может быть параметром управления.

Напряжение на якоре можно менять с помощью транзисторных или тиристорных регулируемых вторичных источников постоянного напряжения. Это наиболее удобный и современный способ. Он экономичен и обеспечивает «жесткие» характеристики, то есть при заданном напряжении якоря частота вращения мало зависит от момента (вследствие малого сопротивления цепи якоря, см. уравнения (3.3, 3.4)). В качестве регулируемого источника напряжения можно использовать ГПТ, однако это техническое решение морально устарело.

Сопротивление цепи якоря изменяют посредством включения в нее дополнительных резисторов. Это позволяет регулировать частоту вращения ДПТ в широких пределах. Однако, характеристики двигателя получаются мягкими, что часто бывает неудобно, и в резисторах бесполезно выделяется большая мощность. Кроме того, обгорают контакты, подключающие резисторы. Все это ограничивает применение такого способа регулировки скорости.

Поток возбуждения можно менять, регулируя ток возбуждения. Обычно это делают, включая в цепь возбуждения дополнительные резисторы. Если двигатель не последовательного возбуждения, то ток возбуждения намного меньше тока якоря. Поэтому в дополнительных резисторах выделяется сравнительно небольшая мощность. Механические характеристики получаются жесткими, что обычно и требуется. Однако, такой способ управления позволяет лишь увеличивать скорость двигателя, начиная с основной частоты вращения, которая достигается при максимальном потоке возбуждения.

Регулировка напряжения и тока ГПТ

В соответствии с (3.1 и 3.2) напряжение и ток ГПТ зависят от ЭДС генератора, которую можно регулировать, меняя поток возбуждения и (или) частоту вращения ГПТ.

Поток возбуждения ГПТ можно легко и быстро изменять с помощью электронных устройств, позволяющих отслеживать состояние нагрузки и генератора. Можно также вручную включать в цепь возбуждения резисторы.

Менять частоту вращения ГПТ часто бывает неудобно или невозможно, так как для этого нужно изменять частоту вращения двигателя, который приводит в действие генератор. Поэтому такой способ регулировки напряжения и тока ГПТ применяется мало.

Пуск и реверс ДПТ

При разгоне двигателя вследствие малой скорости ЭДС вращения мала по сравнению с тем значением, которое она имеет в номинальном режиме. Поэтому напряжение источника питания при пуске уравновешивается в основном сопротивлением и током цепи якоря (3.1, 3.2). Сопротивление самого якоря очень мало, и при непосредственном включении ДПТ ток якоря будет в десятки раз больше номинального. Это может привести к перегрузке электрической цепи якоря и к механической аварии вследствие увеличения момента на валу двигателя.

Для ограничения пускового тока последовательно с якорем включают дополнительные резисторы, которые по мере разгона выводят из цепи.

Если двигатель питается от регулятора напряжения, то этот же регулятор используется для пуска.

Чтобы реверсировать ДПТ, нужно изменить направление тока якоря или основного магнитного поля двигателя. Для этого надо поменять полярность включения якоря или обмоток возбуждения.

Пуск ГПТ

При пуске ГПТ с параллельным или смешанным возбуждением сопротивление нагрузки не должно быть меньше некоторого критического значения, иначе обмотка возбуждения не получит достаточно тока для создания нормального магнитного поля.

Если сопротивление нагрузки меньше критического, то нужно сначала включить генератор и подождать, когда ток возбуждения и напряжение якоря достигнут номинальных значений, а затем подключать нагрузку.

Синхронные машины

Общая характеристика

Синхронные машины (СМ) — это машины переменного тока. Они могут работать как двигатели или генераторы в зависимости от момента на валу. Они имеют следующие основные особенности:

1) Их частота вращения постоянна и равна частоте вращения магнитного поля асинхронных двигателей (см. п. 2):

(об/мин), (4.1)

где f – частота напряжения сети, к которой подключена СМ, р – число пар полюсов СМ, 60 — число секунд в минуте.

Исключение составляют синхронные генераторы (СГ), работающие автономно, без параллельного подключения к другим источникам переменного напряжения (например, генераторы, питающие бортовые сети автомобилей). Частота вращения таких СГ определяется частотой вращения первичных двигателей, но она также связана с частотой напряжения формулой (4.1).

2) Сдвиг фаз между напряжением и током СМ можно регулировать, изменяя ток возбуждения. Это очень ценное качество позволяет использовать СМ не только по прямому назначению, но еще и для компенсации реактивного тока потребителей электроэнергии (для повышения cosj, см. п. 14).

Назначение

СГ вырабатывают электроэнергию на электростанциях — это самая важная область применения СМ. В последнее время СГ малой мощности используют для питания бортовых сетей транспортных средств, так как они проще, дешевле и надежнее, чем генераторы постоянного тока. При этом постоянное напряжение, нужное для бортовой сети, получают из синусоидального напряжения генератора с помощью выпрямителя. СГ используют также в передвижных дизельных электростанциях.

По сравнению с асинхронными двигателями синхронные двигатели (СД) обладают меньшими габаритами и массой и большим к.п.д.

Однако, для питания обмотки возбуждения им нужен дополнительный источник постоянного напряжения. Конструкция и пуск СД сложнее, чем у асинхронного двигателя с короткозамкнутым ротором. Пусковой момент СД меньше, чем у асинхронного двигателя с фазным ротором.

Поэтому СД в основном применяются в очень мощных электроприводах с редкими пусками. СД используют также там, где нужна строго постоянная частота вращения. Иногда мощные СД применяют только как компенсаторы реактивного тока, без нагрузки на валу.

Устройство

Статор СМ устроен так же, как статор асинхронного двигателя (рис. 4.1). Сердечник статора — это пустотелый стальной цилиндр. Для подавления вихревых токов он набран из отдельных колец листовой электротехнической стали. На его внутренней поверхности имеются пазы, в которых уложена трехфазная обмотка из медного провода.

Рис. 4.1. СМ с неявно- полюсным ротором в разрезе (схематический рисунок).

Ротор СМ – это электромагнит, обмотки которого питаются постоянным током возбуждения через контактные кольца и щетки. У маломощных СМ в качестве роторов используют постоянные магниты. Ротор реактивного СД — это просто зубчатый стальной цилиндр.

Ротор СМ имеет столько же пар полюсов, сколько статор. Роторы СМ бывают явнополюсными и неявнополюсными. У явнополюсных роторов каждый полюс выполняется отдельно и имеет свою обмотку, у неявнополюсных полюса образуются за счет распределения обмотки в пазах цилиндрического сердечника.

Сердечники роторов также набираются из отдельных стальных пластин, но более толстых, чем пластины статора, так как магнитное поле в роторе изменяется мало. Обмотки роторов делают из медного провода.

СМ делают так, чтобы магнитное поле вдоль зазора машины было синусоидальным. При этом вдоль зазора укладывается р периодов поля, где р – число пар полюсов машины (рис. 4.3).

Рис. 4.2. Сдвиг между осями магнитных полей ротора и статора СМ на угол q.

Принцип действия

Разноименные полюса магнитов притягиваются – это явление создает вращающий момент СД или момент сопротивления СГ. Полюса ротора притягиваются к вращающимся полюсам статора, поэтому ротор вращается с той же скоростью, что и поле статора (синхронно, отсюда и название машины).

Вращающееся магнитное поле ротора наводит в неподвижной трехфазной обмотке статора синусоидальные ЭДС, которые создают трехфазное напряжение СГ или компенсируют часть трехфазного напряжения питания СД.

ЭДС, наводимую в одной фазе статора полем ротора, мы обозначим . Согласно закону электромагнитной индукции, пропорциональна магнитному полю ротора и частоте его вращения. В свою очередь, поле ротора пропорционально току возбуждения, поэтому:

, (4.2)

где k – коэффициент, зависящий от конструкции машины, n – частота вращения, – ток возбуждения.

Если момент на валу машины равен нулю, то полюса ротора располагаются точно напротив полюсов поля статора.

Если на валу действует внешний вращающий (у СГ) или внешний тормозной (у СД) момент, то полюса ротора сдвигаются относительно полюсов статора на угол , где р – число пар полюсов СМ, q – сдвиг фаз между напряжением фазы статора и ЭДС фазы статора .

При этом получается, что у генератора ротор повернут относительно поля статора в сторону вращения (ротор как бы тащит за собой поле статора, совершая над ним работу), а у двигателя – противоположно вращению (поле статора приводит в движение ротор).

Магнитное поле ротора – это основное поле машины, оно еще называется полем возбуждения, оно создается током возбуждения обмотки ротора. Магнитное поле статора складывается из поля ротора и поля, создаваемого током обмотки статора.

Рис. 4.3. Изменение магнитного поля вдоль зазора СМ с двумя парами полюсов.

Рассмотрим подробнее сказанное про угол q. Все рассуждения будем вести относительно одной фазы трехфазной обмотки статора. Обозначим через ЭДС, наводимую в фазе обмотке статора вращающимся полем статора.

Если пренебречь малым активным сопротивлением фазы обмотки статора, то согласно закону электромагнитной индукции, . Поэтому сдвиг фаз q между и – это сдвиг фаз между и . Но сдвиг фаз между и равен сдвигу фаз между волнами магнитного поля ротора и магнитного поля статора, бегущими вдоль зазора машины, потому что эти ЭДС возникают вследствие движения магнитных полей. Так как один период изменения магнитного поля вдоль зазора занимает пространственный угол , то фазовому сдвигу синусоид q соответствует пространственный угол сдвига осей магнитных полей ротора и статора (рис. 4.3).

Последнее изменение этой страницы: 2016-06-06; Нарушение авторского права страницы

>С увеличением нагрузки на валу двигателя увеличивается так же и ток в якоре. Это вызывает увеличение падения напряжения» сопротивлении обмотки якоря и щеточных контактах.

Так как ток возбуждения остается неизменным (машина нерегулируема), то магнитный поток также постоянен. Однако при увеличении тока в якоре увеличивается размагничивающее действие потока реакции якоря и магнитный поток Ф несколько уменьшится. Увеличение Iяrя вызывает уменьшение скорости двигателя, а уменьшение Ф увеличивает скорость. Обычно падение напряжения влияет на изменение скорости в несколько большей степени, чем реакция якоря, так что с увеличением тока в якоре скорость умень­шается. Изменение скорости у двигателя этого типа незначительно и не превышает 5% при изменении нагрузки от нуля до номиналь­ной, т. е. двигатели параллельного возбуждения имеют жесткую скоростную характеристику.

При неизменном магнитном потоке зависимость момента от тока в якоре представится прямой линией. Но под воздействием

Вращающий момент двигателя реакции якоря с увеличением нагрузки происходит некоторое уменьшение магнитного потока и зависимость момента пойдет не­сколько ниже прямой линии.

Схема двигателя последовательного возбуждения показана на рис. 153. Пусковой реостат этого двигателя имеет только два за­жима, так как обмотка возбуждения и якорь образуют одну последовательную цепь. Характеристики двигателя изображены на рис. 154. Число оборотов двигателя последовательного возбуждения определяется следующим выражением:

где rс— сопротивление последовательной обмотки возбуждения. В двигателе последовательного возбуждения магнитный поток не остается постоянным, а резко изменяется с изменением нагруз­ки, что вызывает значительное изменение скорости. Так как паде­же напряжения в сопротивлении якоря и в обмотке возбуждения очень мало в сравнении с приложенным напряжением, то число оборотов можно приближенно определить следующим выражением:

Если пренебречь насыщением стали, то можно считать магнитный поток пропорциональным току в обмотке возбуждения, который равен току в якоре. Следовательно, у двигателя последовательного возбуждения скорость вращения обратно пропорциональна току в якоре и число оборотов резко уменьшается с увеличением нагруз­ки, т. е. двигатель имеет мягкую скоростную характеристику. С уменьшением нагрузки скорость вращения двигателя увеличи­вается. При холостом ходе (Iя=0) скорость двигателя беспредель­но возрастает, т. е. двигатель идет в разнос.

Таким образом, характерным свойством двигателей последова­тельного возбуждения является недопустимость сброса нагрузки, т. е. работы вхолостую или при малых нагрузках. Двигатель имеет минимальную допустимую нагрузку, составляющую 25—30% номи­нальной. При нагрузке меньше минимально допустимой скорость двигателя резко увеличивается, что может вызвать его разрушение. Поэтому, когда возможны сбросы или резкие уменьшения нагруз­ки, использование двигателей последовательного возбуждения яв­ляется недопустимым.

В двигателях очень малых мощностей сброс нагрузки не вызы­вает разноса, так как механические потери двигателя будут доста­точно большой нагрузкой для него.

Вращающий момент двигателя последовательного возбуждения, учитывая пропорциональную зависимость между магнитным пото­ком и током в якоре (Ф = С’Iя), можно определить следующим выражением:

т. е. вращающий момент пропорционален квадрату тока. Однако при больших токах сказывается насыщение стали и зависимость момента приближается к прямой линии. Таким обра­зом двигатели этого типа развивают большие вращающие момен­ты при малых оборотах, что имеет существенное значение при пуске больших инерционных масс и перегрузках. Эти двигатели широко используют в транспортных и подъемных устройствах.

При смешанном возбуждении возможно как согласное, так и встречное включение обмоток возбуждения.

Двигатели со встречным включением обмоток не нашли широ­кого применения, так как они обладают плохими пусковыми свой­ствами и работают неустойчиво.

Скоростные характеристики двигателей смешанного возбужде­ния занимают промежуточное положение между характеристика­ми двигателей параллельного и последовательного возбуждения.

С увеличением тока в якоре число оборотов якоря уменьшается в большей мере, чем для двигателей параллельного возбуждения, за счет увеличения магнитного потока, вызываемого увеличением тока в последовательной обмотке возбуждения. При холостом ходе двигатель смешанного возбуждения не идет вразнос, так как маг­нитный поток не уменьшается до нуля из-за наличия параллельной обмотки возбуждения.

При увеличении нагрузки в двигателях смешанного возбуждения увеличивается магнитный поток и вращающий момент возрастает в большей мере, чем в двигателях параллельного возбуждения, но в меньшей мере, чем в двигателях последовательного воз­буждения.

§ 116 РЕГУЛИРОВАНИЕ СКОРОСТИ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

Двигатели постоянного тока дают возможность плавно и эконо­мично регулировать скорость вращения в широких пределах. В результате этого весьма ценного свойства двигатели постоянного тока получили широкое распространение и часто являются неза­менимыми.

Число оборотов якоря двигателя при любой схеме возбуждения определяется следующим выражением:

где rс — сопротивление последовательной обмотки возбуждения (для двигателя параллельного возбуждения rс=0). Это выраже­ние показывает, что изменение скорости вращения двигателя мож­но осуществить изменением напряжения сети, сопротивления цепи якоря и магнитного потока.

Регулирование скорости вращения изменением напряжения сети осуществляется в случае, когда источником электрической энергий двигателя является какой-либо генератор.

Для регулирования скорости вращения двигателя изменением сопротивления цепи якоря используется регулировочный реостат, включенный последовательно с якорем. В отличие от пускового ре­гулировочный реостат должен быть рассчитан на длительное про­хождение тока. В сопротивлении регулировочного реостата происходит большая потеря энергии, вследствие чего резко уменьшается

Регулирование скорости вращения якоря двигателя изменением магнитного потока производится изменением тока в обмотке воз­буждения. В двигателях параллельного и смешанного возбуждения включается регулировочный реостат. В двигателях последователь­ного возбуждения изменение тока в обмотке возбуждения дости­гается шунтированием этой обмотки каким-либо регулируемым со­противлением. Этот способ регулирования скорости не создает до­полнительных потерь и экономичен.

§ 117. ПОТЕРИ И К. П. Д. МАШИН ПОСТОЯННОГО ТОКА

В машинах постоянного тока при работе происходит потеря энергии, которая складывается из следующих потерь:

1. Потери в стали Рст на гистерезис и вихревые токи, возникающие в сердечнике якоря. При вращении якоря машины сталь его сердечника непрерывно перемагничивается. На перемагничивание стали затрачивается мощность, называемая потерями на гистерезис. Одновременно, при вращении якоря в магнитном поле в сердеч­нике его индуктируются вихревые токи. Потери на гистерезис и вихревые токи, называемые потерями в стали, обращаются в тепло и нагревают сердечник якоря.

Потери в стали зависят от магнитной индукции и частоты перемагничивания сердечника якоря.

Магнитная индукция зависит от э. д. с. машины или, иначе, от напряжения, а частота перемагничивания — от скорости вращения якоря. Поэтому при работе машины постоянного тока в режиме ге­нератора или двигателя потери в стали будут постоянными, не за­висящими от нагрузки, если напряжение на зажимах якоря и ско­рость его вращения постоянны.

2. Потери энергии на нагревание проводов обмоток возбужде­ния и якоря протекающими по ним токами, называемые потерями в меди,— Роб.

vi-pole.ru

Как управлять мотором постоянного тока

Двигатель постоянного тока

Для начала рассмотрим повнимательней обычный двигатель постоянного тока. Любой двигатель имеет две основные части — ротор и статор. В коллекторном двигателе статор — неподвижная часть, состоит из постоянных магнитов (или в более мощных двигателях электромагнитов). Ротор (якорь) — вращается, совмещён с валом двигателя и состоит из многих катушек (как минимум трех). Коллектор (щёточно-коллекторный узел) отвечает за переключение выводов катушек ротора. Ток в таком двигателе подводится к катушкам ротора через скользящие контакты (или щётки). В один момент времени подключена только одна катушка, она и создаёт момент вращения двигателя за счет проходящего тока.

С точки зрения базовых элементов схемотехники любой двигатель можно представить в виде следующей эквивалентной схемы:


Когда мотор подключён источнику постоянного тока и еще не начал вращаться, то он представляет из себя обычное сопротивление. То есть через него течет ток согласно закону Ома и сопротивлению его обмотки. Преобладает компонента R. Индуктивность начинает влиять когда напряжение не постоянное, например, если мотор питается от ШИМ (PWM) сигнала.

Сопротивление ротора и индуктивность, как правило, очень малы. Его можно померить обычным мультиметром. Небольшие модельные моторы имеют сопротивление 1-10 Ом. Поэтому, при старте мотора (когда он ещё не начал вращаться), ток сильно превышает рабочий ток мотора и если мотор долго будет неподвижен (его заклинило), то такой высокий ток может привести к перегреву мотора и выходу из строя.

Индуктивность катушек ротора пытается поддерживать ток протекающий через обмотки постоянным. Ее влияние заметно только когда напряжение меняется. Когда мотор начинает вращаться, то коллектор начинает переключать катушки ротора, что вызывает изменение напряжения. Индуктивность пытается в эти моменты поддерживать ток протекающий через мотор на постоянном уровне за счет напряжения.

Во время вращения катушки ротора начинают вырабатывать ток (как генератор) — возникает обратная ЭДС. Чем быстрее вращается ротор, тем выше обратная ЭДС возникающая в катушках, а так как она направлена против напряжения питания, то ток потребляемый мотором снижается.

В дальнейшем нам понадобятся следующие выводы:

  • пока мотор не начал вращаться он является сопротивлением

  • если приложить к мотору изменяющееся напряжение (например PWM), то индуктивность будет иметь большое влияние, она будет сопротивляться изменению тока через мотор

  • когда мотор вращается, то он является генератором, и за счет этого потребляемый ток снижается (итоговое напряжение равно V — Vbemf).

Как подключить мотор к МК

В данной статье мы будем разбираться как управлять с помощью МК скоростью и направлением вращения обычным двигателем постоянного тока.

Для того чтобы коллекторный мотор постоянного тока начал вращаться, достаточно подать на него определённое напряжение. Полярность данного напряжения будет определять направление его вращения, а величина напряжения — скорость вращения. Напряжение нельзя менять безгранично. Каждый мотор рассчитан на определённый диапазон напряжений. При повышении напряжения ток через мотор будет расти, и он начнётся перегреваться и может сгореть. На следующем графике некоего мотора хорошо видна взаимосвязь его основных показателей.


Максимальной мощности (Torque — крутящий момент) мотор достигает при максимальном токе. И зависимость тока и момента — линейная. Максимальной скорости двигатель достигает при отсутствии нагрузки (на холостых оборотах), при увеличении нагрузки скорость вращения падает. Номинальное рабочее напряжение указано в паспорте на двигатель и именно для него и приведён и этот график. Если же снижать напряжение, то скорость вращения, и все остальные показатели будут тоже падать. Как правило, ниже 30-50% от номинального напряжения мотор перестанет вращаться. Если же мотор не сможет прокрутить вал (его заклинило), то по сути станет сопротивлением и потребляемый ток достигает максимальной величины, зависящей от внутреннего сопротивления его обмоток. Обычный мотор не рассчитан на работу в таком режиме и может сгореть.

Посмотрим как меняется ток от нагрузки на реальном моторе R380-2580.


Мы видим, что рабочее напряжение данного мотора — 12В, потребляемый ток под нагрузкой — 1.5А. Ток останова мотора вырастает до 8А, а в холостом же вращении, потребляемый ток равен всего 0.8А.

Как мы знаем, порт микроконтроллера не может выдать ток больше 50мА, и напряжение питания 12В для него слишком большое. Для управления моторами нам понадобится электронный ключ — транзистор, возьмём обычный биполярный транзистор NPN и подключим его по следующей неправильной схеме.


Чтобы мотор начал вращаться, на базу транзистора необходимо подать небольшой ток, далее транзистор откроется и сможет пропустить через себя гораздо больший ток и напряжение — мотор будет вращаться. Стоит отметить что, если мы соберём такую схему, то транзистор очень скоро, если не сразу, выйдет из строя. Чтобы этого не произошло, его необходимо защитить.

Как мы уже знаем одна из компонент мотора — индуктивность — сопротивляется изменению тока. Поэтому, когда мы закроем транзистор, чтобы выключить мотор, то сопротивление транзистора резко увеличится и он перестанет пропускать через себя ток. Однако индуктивность будет сопротивляться этому, и для того, чтобы удержать ток на прежнем уровне, по закону Ома, напряжение на коллекторе транзистора начнёт резко повышаться (может достигнуть даже 1000В, правда очень на малое время) и транзистор сгорит. Чтобы этого не произошло необходимо параллельно обмоткам мотора поставить диод, который откроет путь для обратного напряжения и замкнёт его на обмотке мотора, тем самым защитит транзистор.

Также, все постоянные моторы имеют еще одну неприятность — при вращении механический контакт в коллекторе не идеален, щётки искрят в процессе работы, создавая помехи, что может привести к сбою микроконтроллера. Чтобы снизить эти помехи, необходимо использовать конденсаторы небольшой ёмкости, подключенный параллельно выводам мотора (как можно ближе к самому мотору). Вот окончательная правильная схема (диод может быть не обязательно Шоттки, но он предпочтителен).


Биполярные транзисторы в открытом состоянии они ведут себя как диоды (на них падает около 0.7 В). А это, в свою очередь, вызывает их большой нагрев на больших токах и снижает КПД схемы управления мотором. Поэтому лучше управлять моторами с помощью полевых (MOSFET) транзисторов. В настоящее время они достаточно распространены и имеют невысокую цену. Их низкое сопротивление в открытом состоянии позволяет коммутировать очень высокие токи с минимальными потерями. Однако и у них есть свои недостатки. Так как MOSFET транзисторы управляются напряжением, а не током (и обычно оно составляет 10В), то нужно или выбирать специальные логические MOSFET, которые могут управляться низким напряжением — 1.8 .. 2.5В или использовать специальные схемы накачки напряжения (драйверы полевых транзисторов). Как выбирать MOSFET под вашу схему мы рассмотрим в других статьях, на конкретных приборах.

Теперь, подавая на выход микроконтроллера логическую единицу, мы заставим мотор вращаться, а логический ноль — остановится. Однако вращаться он будет с постоянной скоростью и только в одну сторону. Хотелось бы иметь возможность менять направление вращения мотора, а также его скорость. Рассмотрим, как этого можно добиться с помощью микроконтроллера.

H-Мост — меняем направление вращения мотора

Для управления направлением вращения мотора существует специальная схема, которая называется H-мост (схема выглядит как буква H).


Работает схема очень просто. Если открыть верхний правый и левый нижний транзистор, то на клемах мотора справа будет плюс, а слева будет минус. Мотор будет крутиться в одну сторону. Если открыть левый верхний и правый нижний, то справа будет минус, а слева плюс — полярность тока сменится, и мотор будет крутиться в другую сторону. Паразитные диоды внутри MOSFET транзисторов будут защищать всю схему (параметры этих диодов не очень хорошие и в реальных схемах могут понадобиться более быстродействующие диоды Шотке параллельно паразитным диодам, для снижения нагрева полевого транзистора), так что лишние компоненты не понадобятся, кроме искрогасящего конденсатора.


В схеме H-моста в качестве нижних транзисторов всегда используются N-канальные, а вот верхние могут быть как N-канальные, так и P-канальные. P-канальными транзисторами в верхнем ключе проще управлять, достаточно сделать схему смещения уровня напряжения на затворе. Для этого можно использовать маломощный N-канальный полевой или биполярный транзистор. Нижним транзистором можно управлять напрямую от МК, если выбрать специальный логический полевой транзистор.

Если в вашей схеме будет использоваться высоковольтный мотор постоянного тока (больше 24В) или мощный мотор с токами более 10А, то лучше использовать специальные микросхемы — драйверы MOSFET транзисторов. Драйверы управляются, как правило, сигналами микроконтроллера от 2 до 5В, а на выходе создают напряжение необходимое для полного открытия MOSFET транзисторов — обычно это 10-15В. Также драйверы обеспечивают большой импульсный ток необходимый для ускорения открытия полевых транзисторов. С помощью драйверов легко организовать управление верхним N-канальным транзистором. Очень хорошим драйвером является микросхема L6387D от компании ST. Данная микросхема хороша тем, что не требует диода для схемы накачки напряжения. Вот так она подключается для управления H-мостом на 2-х N-канальных транзисторах.


N-канальные полевые транзисторы, стоят дешевле P-канальных, а также имеют меньшее сопротивление в открытом состоянии, что позволяет коммутировать большие токи. Но ими сложнее управлять в верхнем положении. Проблема использования N-канального транзистора в верхнем ключе состоит в том, что для его открытия нужно подать напряжение 10В относительно Истока, а как вы видите на схеме там может быть все напряжение питания мотора, а не 0 вольт. Таким образом, на базу необходимо подать 10В + напряжение питания мотора. Нужна специальная bootstrap схема для повышения напряжения. Обычно, для этих целей используется схема накачки напряжения на конденсаторе и диоде. Однако такая схема работает только, если вы постоянно подзаряжаете конденсатор — открывая, закрывая нижний транзистор (в ШИМ управлении). Для возможности поддерживания верхнего транзистора постоянно открытым нужно еще усложнять схему — добавлять схему внешней подпитки конденсатора. Вот пример схемы управления N-канальными транзисторами без использования микросхем драйверов.


Перейдём к управлению скоростью вращения мотора.

ШИМ сигнал — управляем скоростью вращения мотора

Моторы постоянного тока имеют линейную зависимость скорости вращения от приложенного напряжения. Таким образом, чтобы снизить скорость вращения, надо подать меньше напряжения. Но надо помнить, что с падением напряжения, у мотора падает мощность. Поэтому, на практике, можно управлять скоростью мотора только в пределах 30%-50% от полной скорости вращения мотора. Для управления скоростью мотора без потери мощности, необходима обратная связь от мотора по оборотам вращения, например как в электрическом шуруповерте. Такой режим управления, требует более сложной схемы. Мы же будет рассматривать простой вариант — управление скоростью мотора без обратной связи.

Итак, нам необходимо менять напряжение подаваемое на мотор. В нашем распоряжении есть MOSFET транзистор. Мы помним, что наш мотор имеет индуктивность. Индуктивность сопротивляется изменению тока. И если быстро включать и выключать напряжение на моторе, то в момент выключения ток будет продолжать течь благодаря индуктивности. А мотор будет продолжать вращаться по инерции, а не остановится. Но естественно, вращаться он будет медленнее, среднее напряжение на его обмотках будет меньшее.

Микроконтроллер, как раз, отлично умеет генерировать импульсный ШИМ (PWM) сигнал. А мотор умеет интегрировать данный сигнал (усреднять) за счёт индуктивности обмоток и инерции ротора. От коэффициента заполнения (скважности) ШИМ сигнала как раз и будет зависеть полученное мотором среднее напряжение, а значит и скорость.

Какая же частота ШИМ нужна для лучшего управления мотором? Ответ очень простой, чем больше, тем лучше. Минимальная частота зависит от индуктивности мотора, а также массы ротора и нагрузки на вал мотора. Если смоделировать в электрическом симуляторе (например, PROTEUS) ШИМ управление мотором, то будет видно, что чем больше частота ШИМ, тем более ровный ток протекает через мотор (ripple current — снижается при увеличении частоты). Низкая частота:


высокая частота:


Если же частота упадёт ниже определённого уровня, ток станет разрывным (будет падать до нуля) и в итоге мотор не сможет крутиться.


Отлично, все просто! Делаем частоту ШИМ побольше, например 1 МГц, и любому мотору хватит. В жизни же, все не так просто. Для понимания всех возможных проблем можно упрощенно принять затвор MOSFET транзистора за идеальный конденсатор. Для того чтобы транзистор полностью открылся, конденсатор необходимо зарядить до 10В (на самом деле меньше). Чем больше ток, который мы можем вкачать в конденсатор, тем быстрее он зарядится, а значит быстрее откроется транзистор. В процессе открытия транзистора, ток и напряжение на нем будут максимальными, и чем больше это время, тем сильнее нагреется транзистор. В datasheet обычно есть такой параметр как Qgate — полный заряд, который надо передать транзистору, чтобы он открылся полностью.


Чем меньше эта величина, тем меньшей ток нужен для управления данным транзистором. Естественно, такой ток нужен только на очень короткое время — какое, опять же написано в datasheet — tr, обычно оно измеряется в наносекундах. Чтобы выдать такой ток, нужны специальные драйверы, если же мы управляем логическим MOSFET напрямую от микроконтроллера, то мы не сможем обеспечить такой ток. Поэтому для защиты микроконтроллера необходимо перед базой MOSFET ставить резистор, а это сильно замедляет время открытия. В итоге, микроконтроллер в прямом управлении не может обеспечить более 1-2 мкc на открытие и закрытие транзистора. Время открытия и закрытия должно занимать не более 10% длительности ШИМ сигнала. Таким образом, мы сразу получаем ограничение в частоте — 50 000 Гц. Дополнительно, сам микроконтроллер должен иметь возможность генерировать ШИМ сигнал с возможностью хотя бы 8 битного управления шириной ШИМ (для этого требуется большая рабочая частота МК). В итоге, обеспечить большую частоту ШИМ не так просто. Так же, на высоких частотах, начитает мешать паразитные ёмкости и индуктивности. На плате, которую можно сделать дома, получить частоту ШИМ больше 300 кГц, очень сложно. Трассировка платы должна быть сделана идеально. Для снижения требований к плате, в настоящее время выпускаются специальные MOSFET, объединённые с драйверами управления, они позволяют на заводских, многослойных платах получить частоту управления MOSFET в 2МГц.

Индуктивность моторов не такая уж маленькая, и такие большие частоты не нужны. Для управления моторами постоянного тока вполне достаточно 8 кГц, лучше около 20кГц (за звуковым диапазоном).

Дополнительно стоит отметить, что для снижения стартового тока необходимо плавно поднимать на старте частоту ШИМ. А еще — лучше контролировать стартовый ток мотора с помощью датчиков тока.

ШИМ управление мотором предполагает очень быстрое изменение напряжение от 0 для максимального, что порождает большие проблемы при трассировке платы. Перечислим коротко правила, которые необходимо соблюдать при трассировке платы.

  • Земли управления моторами и микроконтроллера обязательно должны быть разделены, соединение в одной точке тонким проводником, например 0.3мм, как можно ближе к проводам питания всей схемы

  • Драйвера управления MOSFET должны быть как можно ближе к самим MOSFET транзисторам

  • Исполнение управляющей области обязательно двухсторонее, желательно с земляным слоем с одной стороны. При импульсном управлении возникают электромагнитные помехи, чтобы снизить их, земляной слой должен быть рядом.

  • Обязательно наличие конденсатора как можно ближе к зоне прохождения больших импульсных токов. Если такого конденсатора не будет, то напряжение на линии питания будет сильно проседать и микроконтроллер будет постоянно сбрасываться. Также без такого конденсатора, за счёт индуктивности проводов питания, напряжения на линии питания может увеличиться в несколько раз и компоненты выйдут из строя!

Более подробно мы рассмотрим как работают эти правила на конкретных приборах.

ШИМ сигнал в H-мосте

Чтобы можно было менять направление вращения и скорость — нужна схема H-моста, а для регулирование скорости нужно управлять транзисторами ШИМ сигналом. В схеме H-моста четыре транзистора. Как лучше ими управлять? На какой транзистор подавать ШИМ сигнал? Разберёмся в этом вопросе (рекомендуем прочитать очень подробную статью на эту тему).

Рассмотрим нашу схему с точки зрения нагрева транзисторов. Это один из основных критериев, по которому наш прибор может выйти из строя. Полевой транзистор состоит из двух элементов — собственно транзистор и паразитный диод. В схеме управления мотором оба элемента работают. Нагрев полевого транзистора происходит в следующие моменты времени:

  • когда транзистор открыт, нагрев идёт из-за сопротивления в открытом состоянии Rdson, пропорционально времени открытия транзистора выделяется мощность P = I * I * Rdson

  • когда транзистор закрыт, то ток ЭДС мотора идёт через диод, то есть нагрев идет из-за диода P = I * U diode forward (как правило 1В)

  • когда транзистор переключается из открытого состояния в закрытое, то нагрев пропорционален времени открытия и закрытия транзистора

Посмотрим, как влияет схема управления на нагрев нашим электронных ключей. Допустим, что мы управляем мотором ШИМ сигналом со скважностью 50% и мотор крутится в одну сторону.

Самый простой вариант — применить ШИМ сигнал к одному из двух транзисторов, а второй оставить все время открытым. Обычно, ШИМ в этом случае подаётся на нижний транзистор (N типа), который обычно быстрее. В этом случае нагрев нижнего будет больше верхнего на величину тепла выделяемого при переключениях транзистора. Чтобы сравнять счёт, можно попеременно подавать ШИМ сигнал то на верхний (если они одинаковые), то на нижний транзистор. Также можно подавать ШИМ на оба транзистора одновременно, но из-за разницы в транзисторах это будет не эффективно, а также будет увеличивать нагрев за счёт переключения транзисторов. При такой схеме управления, два других транзистора работают как диоды. К счастью, наибольший ток через диод будет при наибольшей скважности ШИМ, при этом диод будет задействован очень малое время.

Для исключения тока через диоды, которые дают существенный нагрев, можно мотор никогда не отключать от напряжения, а вместо этого, крутить его в обратную сторону. Таким образом, мы должны, например 70% ШИМ сигнала крутить вправо, а 30% влево. Это даст в итоге 70%-30%=40% скорости вправо. Но при этом не будут задействованы диоды. Такой метод управления называется комплиментарным. Такая схема требует большого конденсатора на линии питания, а также источника питания, который может потреблять ток (например аккумулятора).

Вместо вращения мотора в разные стороны, можно помогать диодам — а именно тормозить мотор, открывать два верхних транзистора в момент низкого уровня ШИМ сигнала. На практике, все эти методы не дают существенного изменения скорости вращения двигателя, но позволяют эффективно управлять нагревом полевых транзисторов. Более подробно про особенности различных схем управления можно в этой статье.

На этом мы закончим нашу статью про моторы. Теперь можно перейти к практике — будем делать плату управления 4-мя моторами для робота.

myowndevice.ru

Регулирование скорости вращения двигателей постоянного тока

>С увеличением нагрузки на валу двигателя увеличивается так же и ток в якоре. Это вызывает увеличение падения напряжения» сопротивлении обмотки якоря и щеточных контактах.

Так как ток возбуждения остается неизменным (машина нерегулируема), то магнитный поток также постоянен. Однако при увеличении тока в якоре увеличивается размагничивающее действие потока реакции якоря и магнитный поток Ф несколько уменьшится. Увеличение Iяrя вызывает уменьшение скорости двигателя, а уменьшение Ф увеличивает скорость. Обычно падение напряжения влияет на изменение скорости в несколько большей степени, чем реакция якоря, так что с увеличением тока в якоре скорость умень­шается. Изменение скорости у двигателя этого типа незначительно и не превышает 5% при изменении нагрузки от нуля до номиналь­ной, т. е. двигатели параллельного возбуждения имеют жесткую скоростную характеристику.

При  неизменном  магнитном  потоке  зависимость  момента  от тока в якоре представится прямой линией. Но под воздействием

Вращающий момент двигателя  реакции якоря с увеличением нагрузки происходит некоторое уменьшение магнитного потока и зависимость момента пойдет не­сколько ниже прямой линии.

Схема двигателя последовательного возбуждения показана на рис. 153. Пусковой реостат этого двигателя имеет только два за­жима, так как обмотка возбуждения и якорь образуют одну последовательную цепь. Характеристики двигателя изображены на рис. 154. Число оборотов двигателя последовательного возбуждения определяется следующим выражением:

где rс— сопротивление последовательной обмотки возбуждения. В двигателе последовательного возбуждения магнитный поток не остается постоянным, а резко изменяется с изменением нагруз­ки, что вызывает значительное изменение скорости. Так как паде­же напряжения в сопротивлении якоря и в обмотке возбуждения очень мало в сравнении с приложенным напряжением, то число оборотов  можно  приближенно  определить  следующим  выражением:

Если пренебречь насыщением стали, то можно считать магнитный поток пропорциональным току в обмотке возбуждения, который равен току в якоре. Следовательно, у двигателя последовательного возбуждения скорость вращения обратно пропорциональна току в якоре и число оборотов резко уменьшается с увеличением нагруз­ки, т. е. двигатель имеет мягкую скоростную характеристику. С уменьшением нагрузки скорость вращения двигателя увеличи­вается. При холостом ходе (Iя=0) скорость двигателя беспредель­но возрастает, т. е. двигатель идет в разнос.

Таким образом, характерным свойством двигателей последова­тельного возбуждения является недопустимость сброса нагрузки, т. е. работы вхолостую или при малых нагрузках. Двигатель имеет минимальную допустимую нагрузку, составляющую 25—30% номи­нальной. При нагрузке меньше минимально допустимой скорость двигателя резко увеличивается, что может вызвать его разрушение. Поэтому, когда возможны сбросы или резкие уменьшения нагруз­ки, использование двигателей последовательного возбуждения яв­ляется недопустимым.

В двигателях очень малых мощностей сброс нагрузки не вызы­вает разноса, так как механические потери двигателя будут доста­точно большой нагрузкой для него.

Вращающий момент двигателя последовательного возбуждения, учитывая пропорциональную зависимость между магнитным пото­ком и током в якоре (Ф = С’Iя), можно определить следующим выражением:

где K’=KC’

т. е. вращающий момент пропорционален квадрату тока. Однако при больших токах сказывается насыщение стали и зависимость момента приближается к прямой линии. Таким обра­зом двигатели этого типа развивают большие вращающие момен­ты при малых оборотах,  что  имеет  существенное  значение  при пуске больших инерционных масс и перегрузках. Эти двигатели широко используют в транспортных и подъемных устройствах.

При смешанном возбуждении возможно как согласное, так и встречное включение обмоток возбуждения.

Двигатели со встречным включением обмоток не нашли широ­кого применения, так как они обладают плохими пусковыми свой­ствами и работают неустойчиво.

Скоростные характеристики двигателей смешанного возбужде­ния занимают промежуточное положение между характеристика­ми двигателей  параллельного  и  последовательного  возбуждения.

С увеличением тока в якоре число оборотов якоря уменьшается в большей мере, чем для двигателей параллельного возбуждения, за счет увеличения магнитного потока, вызываемого увеличением тока в последовательной обмотке возбуждения. При холостом ходе двигатель смешанного возбуждения не идет вразнос, так как маг­нитный поток не уменьшается до нуля из-за наличия параллельной обмотки возбуждения.

При увеличении нагрузки в двигателях смешанного возбуждения увеличивается магнитный поток и вращающий момент возрастает в большей мере, чем в двигателях параллельного возбуждения, но в меньшей мере, чем в двигателях последовательного воз­буждения.

§ 116 РЕГУЛИРОВАНИЕ СКОРОСТИ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

Двигатели постоянного тока дают возможность плавно и эконо­мично регулировать скорость вращения в широких пределах. В результате этого весьма ценного свойства двигатели постоянного тока получили широкое распространение и часто являются неза­менимыми.

Число оборотов якоря двигателя при любой схеме возбуждения  определяется следующим выражением:

где rс — сопротивление последовательной обмотки возбуждения (для двигателя параллельного возбуждения rс=0). Это выраже­ние показывает, что изменение скорости вращения двигателя мож­но осуществить изменением напряжения сети, сопротивления цепи якоря и магнитного потока.

Регулирование скорости вращения изменением напряжения сети осуществляется в случае, когда источником электрической энергий двигателя является какой-либо генератор.

Для регулирования скорости вращения двигателя изменением сопротивления цепи якоря используется регулировочный реостат, включенный последовательно с якорем. В отличие от пускового ре­гулировочный реостат должен быть рассчитан на длительное про­хождение тока. В сопротивлении регулировочного реостата происходит большая потеря энергии, вследствие чего резко уменьшается

п. д. двигателя.

Регулирование скорости вращения якоря двигателя изменением магнитного потока производится изменением тока в обмотке воз­буждения. В двигателях параллельного и смешанного возбуждения включается регулировочный реостат. В двигателях последователь­ного возбуждения изменение тока в обмотке возбуждения дости­гается шунтированием этой обмотки каким-либо регулируемым со­противлением. Этот способ регулирования скорости не создает до­полнительных потерь и экономичен.

§ 117. ПОТЕРИ И К. П. Д. МАШИН ПОСТОЯННОГО ТОКА

В машинах постоянного тока при работе происходит потеря энергии, которая складывается из следующих потерь:

1.  Потери в стали Рст на гистерезис и вихревые токи, возникающие в сердечнике якоря. При вращении якоря машины сталь его сердечника непрерывно перемагничивается. На перемагничивание стали затрачивается мощность, называемая потерями на гистерезис. Одновременно, при вращении якоря в магнитном поле в сердеч­нике его индуктируются вихревые токи. Потери на гистерезис и вихревые токи, называемые потерями в стали, обращаются в тепло и нагревают сердечник якоря.

Потери в стали зависят от магнитной индукции и частоты перемагничивания сердечника якоря.

Магнитная индукция зависит от э. д. с. машины или, иначе, от напряжения, а частота перемагничивания — от скорости вращения якоря. Поэтому при работе машины постоянного тока в режиме ге­нератора или двигателя потери в стали будут постоянными, не за­висящими от нагрузки, если напряжение на зажимах якоря и ско­рость его вращения постоянны.

2.  Потери энергии на нагревание проводов обмоток возбужде­ния и якоря протекающими по ним токами, называемые потерями в меди,— Роб.

fiziku5.ru

Регулятор оборотов электродвигателя постоянного тока 12В: схема своими руками

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1. Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3. Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора).  При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

  1. Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

  1. Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1).  С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.

Принципиальная электрическая схема
  1. Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого  производства,  важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

 

  1. Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

 

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать.  На фото.5 показана цоколёвка транзистора КТ815.

Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото.  Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

  1. Конструкция устройства

Основные компоненты конструкции представлены на фото.10 и включают: два  подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

  1. Принцип работы

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

  1. Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

  1. Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Источник: servodroid.ru

Дополнительная статья ЧИТАТЬ 
 

volt-index.ru

alexxlab / 07.08.2017 / Разное

Добавить комментарий

Почта не будет опубликована / Обязательны для заполнения *