Цены снижены! Бесплатная доставка контурной маркировки по всей России

Лебедка из велосипедных звездочек: Электролебедка из автомобильного стеклоочистителя и велосипедной втулки

Содержание

Электролебедка из автомобильного стеклоочистителя и велосипедной втулки

Для поднятия тяжестей на большую высоту можно сделать электролебедку из моторедуктора привода стеклоочистителя. Она эффективно справляется с грузами в пределах 150 кг. Ее можно применять для поднятия стройматериалов на крышу, съема малолитражных двигателей из авто и т.д.

Материалы:


  • моторедуктор привода стеклоочистителя;
  • листовая сталь сечением 3-4 мм;
  • втулка переднего велосипедного колеса;
  • велосипедная цепь;
  • стальная труба d50 мм;
  • звездочка 24 зуба с трещоткой;
  • звездочка велосипедного натяжителя цепи;
  • стальной трос 3 мм.

Изготовление лебедки


В качестве привода для электролебедки будет использоваться моторедуктор стеклоочистителя.

На его вал требуется сделать звездочку на 6 зубьев под велосипедную цепь.

Для этого на листовой стали рисуется слесарным циркулем круг радиусом 12 мм. По его окружности нужно накернить 6 точек, соблюдая между ними одинаковое расстояние.

Затем используя сверло, соответствующее диаметру ролика имеющейся цепи, требуется просверлить отверстия по точкам. В центре круга делается отверстие большего диаметра, под вал моторедуктора.

Используя корончатое сверло нужно высверлить звездочку из металла.

В полученную заготовку продевается болт, и она поджимается гайкой. Затем болт вставляется в патрон шуруповерта или дрели. На следующем этапе требуется обточить звездочку на наждаке, одновременно вращая ее шуруповертом. В таком случае проточенные зубья получаться одинаковыми.

Для изготовления барабана лебедки используются детали от втулки велосипедного колеса. Сначала из листовой стали нужно вырезать 2 диска диаметром 90 мм, и сделать в их центре отверстие на 0,5-1 мм шире диаметра имеющейся велосипедной оси.


После этого диски свариваются с отрезком трубы 50 мм, в результате получается катушка.

Далее нужно вставить велосипедную ось в барабан, по бокам поставить чашки от втулки, собрать насыпные подшипники, затянуть гайки и после центровки приварить чашки к дискам.
Затем на барабан устанавливается звездочка на 24 зуба с трещоткой.


На следующем этапе из листовой стали изготавливается корпус лебедки. Сначала вырезается пластина для установки моторедуктора. В ней сверлятся отверстия под его крепеж и вал.


После на вал устанавливается самодельная звездочка. Немного сбоку закрепляется ось барабана. Между звездочками натягивается цепь. Чтобы она не провисала, на пластину также монтируется ролик натяжителя.

После подгонки и проверки рабочей части, моторедуктор и звездочки снимаются. Удаляем ненужный металл болгаркой


Далее нужно сварить корпус лебедки.


Делается держатель для оси барабана подобной конструкции, что и крепежная пластина, между ними приваривается перемычка, а сверху нее проушины для подвешивания лебедки.



После сварки корпус окрашивается, и на него устанавливаются звездочки с моторедуктором.

На барабан наматывается трос.

Чтобы его надежно закрепить, нужно сделать в одном диске 3 отверстия.
Трос пропускается сквозь них, после чего его конец затягивается в петле. В таком виде при условии наличия хвостика 3-5 см он не вырвется.
В результате получается легкая компактная лебедка, работающая от автомобильного аккумулятора.


Если при ее сборке использовать не велосипедные детали, а более мощные, к примеру, от сеялки или другой сельхозтехники, то грузоподъемность и безопасность при перегрузе возрастет.
Поднимаем компрессор весом 60 кг.

Благодаря использованию полиспаст, усилие делится пополам.

Поднимаем сверлильный станок массой 100 кг.

Проблем никаких нет. При изменении полярности питания электродвигателя, изменяется и направление вращения катушки лебедки.

Смотрите видео


Самоделки из тормозной трещетки. Идея по созданию ручной лебедки из старого велосипеда

Идей разных поделок на основе велосипеда, его отдельных частей много. Есть среди них, касающиеся домашних работ, в частности, обработки почвы на приусадебных участках. Устройство в виде лебедки, работающей от велосипедного привода, отличается простотой, позволяет выполнять операции вспашки, окучивания, рыхления одному человеку, сильно не утомляя его.

Для изготовления вело-лебедки нужен дорожный велосипед обычной конструкции, имеющей закрытую раму. Понадобится: сломанный двигатель от мопеда, например, типа Д-6; большая велосипедная звездочка; ступица от колеса мопеда вместе с осью; металлические уголки, трубки, лист.

Велосипед не переделывается; удлиняется только цепь.

Производят небольшую переделку двигателя мопеда. Вырезают верхнюю стенку крышки и картера выше ведущей звездочки. Делают это между бобышками, оставляя их и имеющуюся резьбу. Уменьшают на токарном станке толщину зубчатого венца звездочки до 2,6 мм – это необходимо для возможности расположения на ней велосипедной цепи.

Расспрессовывают коленчатый вал, удаляют шатун, и снова все спрессовывают.

В имеющиеся подшипники закладывают графитовую смазку. Делают из листа металла крышку и закрывают ею место, где крепится цилиндр. Коленвал будет играть роль маховика в поделке.

Переделанный мотор крепят к велосипедной раме, в ее верхней части. Располагают его вниз звездочкой. Цепь удлиняют, чтобы она могла охватить три звездочки – две, которые имеются на велосипеде, и одну в переделанном двигателе мопеда.

На руле велосипеда, с левой стороны, устанавливают ручку, проводят от нее тросик к мотору. С ее помощью управляют муфтой сцепления.

Переоборудованный велосипед подходит для обычной езды. Чтобы начать движение нужно выключить сцепление. Когда же дорога идет под гору, то его включают – маховик начинает вращаться и запасать энергию, которая поможет в дальнейшем преодолевать подъемы.

Из переделанного велосипеда можно сделать лебедку, которая будет использоваться для домашних работ. На место его заднего колеса ставят приставку, состоящую из рамы, несущей лебедочный барабан, снабженный звездочкой, тросом. Он оборудован также грунтозацепами и тросоукладывающей петлей.

Барабан изготавливают из ступицы колеса мопеда, к которой по бокам крепят круглые металлические реборды. Снабжают большой велосипедной звездочкой.

Грунтозацепов два. Их делают, применяя отрезки уголков 12-сантиметровой длины. Внешние края полок затачивают, что обеспечивает им легкое вхождение в грунт. Уголки приваривают к краям полуметрового отрезка уголка, который служит опорой на поверхность земли.

Для петли тросоукладчика применяют мягкую проволоку. Ее крепят к раме так, чтобы трос в натянутом состоянии ложился на середину поверхности барабана.

Приставка крепится к велосипеду в двух местах: шпилькой в месте установки заднего колеса; хомутами, охватывающими две трубки рамы в промежутке между первым креплением и кареткой с педалями.

Вначале собирают, используя сварку, нижнюю часть приставки. Затем на ней крепят ось, на которую устанавливают барабан лебедки. Сверху располагают верхнюю часть и закрепляют ее на раме велосипеда.

При этом предварительно устанавливают цепь на все три звездочки.

Лебедка – незаменимое приспособление, как в домашнем хозяйстве, так и в гараже. Поднять на крышу рулон рубероида, забросить в окно второго этажа строящегося частного дома пару мешков цемента, вытащить двигатель из капотного пространства, да и затащить сам поломанный автомобиль в гараж… Это неполный перечень дел, которые можно запросто выполнить в одиночку с ее помощью.

Приспособления барабанного типа для подъема или перемещения тяжестей, отличаются способом передачи крутящего момента. Из школьного курса физики мы знаем, как работает плечо. Теряя в скорости или расстоянии – мы выигрываем в силе. Фраза Архимеда: «Дайте мне точку опоры, и я переверну Землю» как раз описывает принцип работы лебедки.

ВАЖНО! При работе с подобным устройством, точками опоры является корпус и место крепления лебедки. Оба элемента должны быть надежными.

Ручная лебедка, при помощи приложенного плеча – увеличивает человеческие силы настолько, что один оператор может сдвигать с места автомобили или поднимать тяжести в несколько сот килограмм.

При одинаковом (с точки зрения механики) принципе действия, эти приспособления имеют различные способы исполнения.

Ручная барабанная лебедка – разновидности

Ручная лебедка с барабаном – это классика жанра. Кроме общего элемента – шкива, на который наматывается трос, приспособления имеют различные типы привода.

К барабану прочно прикреплена большая, основная шестерня. На нее, и на крепление, ложится вся нагрузка. Поэтому надежность элементов должна быть на должном уровне. В зацеплении с основной, расположена ведущая маленькая шестеренка.

Соотношение количества зубьев и есть величина передаточного отношения. Проще говоря – коэффициент усиления. Ведущая шестерня составляет одно целое с приводным валом. Поскольку речь идет о ручном инструменте – на вал надета рукоятка для вращения.

Длина рычага также влияет на степень усиления. Чем плечо рукоятки больше – тем меньше усилия надо приложить.

С помощью подобных устройств можно в одиночку поднимать несколько центнеров груза или перемещать автомобиль весом 2-3 тонны. При этом скорость вращения барабана достаточно высокая.

Конструкция состоит из двух или более пар шестерен, каждая из которых обладает коэффициентом усиления в десятки раз. При последовательном зацеплении эти коэффициенты складываются, многократно увеличивая усилие.

Обратная сторона медали – пропорциональное снижение скорости. Имея такую лебедку, вы можете осуществлять медленный вертикальный подъем грузов более тонны, но если вам придется работать с двумя мешками цемента – время подъема растянется на десятки минут.

Лебедка является механизмом, который широко используется во многих сферах жизни.Принцип ее действия состоит в передаче тягового усилия от приводного барабана с помощью гибкого элемента (цепи, троса, каната).

В зависимости от источника прилагаемой силы лебедки подразделяются на механические и электрические. И те, и другие можно изготовить самостоятельно, приложив немного усилий и терпения.

Самодельная лебедка из трещотки

Довольно часто возникает потребность в поднятии тяжелого груза и фиксировании его в таком положении.

Это может быть, например, массивная крышка в подвал или большие части от автомобиля.

Справиться с такой непростой задачей вам поможет самодельная лебедка из трещотки.

Чаще всего для изготовления самодельных лебедок из трещотки используют червячный механизм от ЗИЛа — он наиболее компактный и может выдержать вес до полутонны.

Трещотки от КамАЗа и МАЗа способны выдержать вес до двух тонн и более.

Это самый подходящий вариант лебедки для домашнего применения. Солидная грузоподъемность при необходимости позволит справиться со сравнительно большими грузами. Их подъемом или перетаскиванием. Рассмотрим пошагово весь процесс созидания лебедки из камазовских трещоток.

Для изготовления грузоподъемного приспособления такого типа понадобиться:

Две задние трещотки автомобиля Камаз: левая и правая

Крюки для буксировки в количестве 2шт.

Трос диаметром 4-5 мм.

Кулак для разжимания тормозных колодок на автомобиле Камаз

Болт для крепления крюка

Разберите тормозные трещотки, вынув из них все, кроме шестерни, как указано на фото.

Далее из разжимного кулака срежьте собачку и при помощи угловой шлифовальной машинки, в народе именуемой болгаркой нарежьте шлицы, идентичные расположенным с другой стороны. Идеальным вариант будет изготовление такого вала в условиях механической мастерской на фрезерном станке. Нарезка шлицей своими руками потребует внимательности аккуратности и соблюдения правил и норм безопасного обращения с электроинструментом.

Возьмите крышки от ненужной трещотки б/у и изготовьте две шайбы для будущей лебедке.

Сварите конструкцию, как указано на фото и просверлите отверстие по диаметру троса, для его фиксации.

Установите трещотки на шлицы, поставьте болт и повесьте на него буксировочный крюк. Конструкцию можно усилить, надев на болт втулку. Я это сделал при помощи втулки с подушки двигателя внутреннего сгорания.

На свободный конец троса устанавливаем второй буксировочный крюк.

Изготавливаем и устанавливаем ручку для удобства работы с лебедкой.

Тестируем полученный механизм. Лебедка готова к применению.

При частом использовании самодельной лебедки из трещотки червячный механизм может быстро выйти из строя, в таком случае лучше заменить шестеренки на более прочные и износоустойчивые.

Самодельная электро лебедка

Самодельная электро лебедка пригодится вам в самых сложных ситуациях.

Она поможет вытащить автомобиль из глубокой трясины, сэкономив средства.

В основу ее работы положен принцип использования мощности всяческих устройств, таких как:

— разнообразные двигатели;

— генераторы от тракторов;

— стартеры, переделанные под двигатели.

Изготовить лебедку с электрическим приводом своими руками не сложно. Ее вы можете применить для ведения домашнего хозяйства, например, задействовать в процессе вспашки приусадебного участка, строительных работах, а также в любых других операциях, связанных с перемещением грузов. Рассмотрим пошаговую инструкцию создания этого механизма.

Для начала нужно определить необходимые комплектующие:

Электродвигатель. Для домашней лебедки не целесообразно применение сверхмощного двигателя, рассчитанного на трехфазную сеть. Вполне достаточно небольшого движка мощностью 2,2 кВ, напряжением 220 В. Предлагаем электродвигатель мощнее, чем на видео. Практика показала, что аппарат с мощностью 1,1 кВт со вспашкой не справляется. А двигатель 2,2 проверен на дачном участке.

Электромагнитный пускатель ПМ2 16А, пульт, конденсатор, провод ПВС 3Х1,5

Редуктор 1:40.

Шкива (2шт) и ремень для обустройства передачи от электродвигателя к редуктору.

Подшипник 180306 в корпусе (2шт).

Вал барабана.

Шлицевая часть с наружной гранаты(2шт).

Металлопрокат различной толщины и сечения для изготовления рамы и барабана.

Метизы для крепления двигателя, редуктора и барабана.

Для выполнения работ по изготовлению механизма, вам потребуется: слесарный инструмент, болгарка, дрель и сварочный аппарат.

Кинетическая схема лебедки с электродвигателем

Прежде, чем приступить к изготовлению рамы под агрегат, нужно набросать эскиз будущей металлоконструкции с указанием размеров. Для этого нужно взять лист бумаги и вычертить раму, после чего мерительным инструментом снять все установочные размеры и спланировать размещение электродвигателя, редуктора и барабана на эскизе. Упростит составление чертежа видео размещенное выше. На основании эскиза вам будет проще приготовить необходимый металлопрокат и метизы для будущего агрегата.

Из трубы прямоугольного сечения свариваем общую раму, на которую монтируем электродвигатель и редуктор с установленными шкивами и прикрученным основанием из профильной трубы. Для того, чтобы ремень не провисал площадку двигателя делаем на навесах, далее точечной сваркой привариваем навесы к раме агрегата, как показано на фото.

Редуктор устанавливаем на уголках. Одеваем ремень ременной передачи и проверяем его натяжение. Прихватываем сваркой основание редуктора.

Переходим к изготовлению барабана. С двух сторон к трубе диаметром 159 привариваем металлические шайбы, как показано на фото.

Далее приступаем к сварке и сборке вала. Привариваем шлицевую часть гранаты в торец вала как показано на фото и вставляем вал внутрь барабана. Набиваем на вал подшипники и корпуса и привариваем точечной сваркой вал к барабану. Второй шлицевую часть гранаты привариваем к валу редуктора.

Выставляем барабан с помощью подручных средств, чтобы выдержать соосность вала редуктора и барабана. Далее с помощью уголка закрепляем корпуса подшипников барабана точечной сваркой.

Подключаем электрооборудование лебедки и делаем пробный пуск.

Если тестирование прошло удачно, отключаем электропитание, снимаем электродвигатель и редуктор и выполняем сварку стыков. После чего ставим на место механизмы лебедки. На барабане закрепляем трос. С другой стороны троса устанавливаем буксировочный крюк. Самодельная лебедка с электроприводомготова.

Такой механизм обладает довольно большой грузоподъемностью, однако требует времени на сборку и отсутствия влажности.

Для безопасной работы с большими тяжестями желательно электролебедку оснастить небольшим и простым выносным пультом.

Самодельная лебедка для хозяйства

Всевозможные лебедки являются незаменимой вещью для автомобилистов. Но также успешно может быть задействована самодельная лебедка для хозяйства.

Здесь чаще всего подобные устройства используют для перемещения грузов по горизонтальной поверхности, на пример тяжелых бревен.

Часто задействуют лебедки фермеры, устанавливая ее над чердачным проемом, перемещая таким образом грузы между разными частями помещения.

А некоторые умудряются использовать самодельную лебедку для вспахивания земли.

Для этого ее достаточно закрепить на краю участка, на конец троса зацепить плуг и включить лебедку.

Механизм тянет плуг, а человеку остается только задавать ему направление. С помощью лебедки можно не только вспахивать землю, но и осуществлять все циклы обработки земли

Предлагаем лебедку для домашней работы, а точнее для окучивания картофеля на базе болгарки. Для изготовления практически ничего не надо. Мы представляем ее как модификацию нашей лебедки с электрическим двигателем.

Когда двигатель оказался маломощным, а нового пока мне было, появилась идея переделать привод. Решили использовать болгарку. Что из этого получилось судить вам. Мы расскажем, как все же проходила модификация.

Начнем с переделки рамы, площадку двигателя надо адаптировать под болгарку. Навесы и первоначальный вид площадки остается неизменным. Единственно ее нужно поднять на раме уголками, чтобы дать натяжку ремню.

На болгарке имеются резьбовые отверстия для крепления ручек. Именно в них мы вставляем болты, чтобы закрепить болгарку к площадке, дополнительно привариваем уголок к площадке, как показано на фото и крепим электрический привод еще одним болтом.

После чего привариваем к раме уголки и поднимаем площадку. На болгарку насаживаем шкив, надеваем ремень и проводим испытание вхолостую. Далее проводим полное тестирование на картофельном поле.

Самодельная механическая лебедка

В экстренных ситуациях на дорогах вашей незаменимой помощницей станет самодельная механическая лебедка.

Она не займет много места в багажнике любого автомобиля и позволит решить проблему без привлечения посторонних.

Для работы такого вида лебедки потребуется только ваша физическая сила. Самодельная механическая лебедка работает по принципу рычага.

Прилагая усилия на рычаг, вы наматываете трос на ось, и чем длиннее рычаг и больше прилагаемая физическая сила — тем больший вес можно передвинут

Лебедка помогает вам справится с многочисленными сложными задачами, поэтому ее наличие желательно у каждого практичного человека.

Но это не значит, что нужно тратить огромные деньги на ее приобретение. Конструкция лебедки довольно проста и позволяет соорудить ее из подручных средств.

Вам понадобится:

— отрезок от трубы;

— крепкий трос;

— крепкая палка.

Отрезок трубы послужит основой такой лебедки, на нем закрепляем трос, а ручку делаем из палки.

Если подходящих палок по близости нет – берем второй кусок трубы и мастерим ручку из него. Вот и все – сделана лебедка своими руками!

При приложении усилия на ручку трубка, насаженная на ось, начинает вращаться и наматывать на себя трос. Ось нужно надежно закрепить, например, хорошо вбить в землю.

И сделать это надо под углом, чтобы все элементы самодельной лебедки не соскочили с оси во время работы.

Самодельные лебедки для автомобиля

Сегодня повсеместно встречаются плохие дороги, многочисленные ямы и выбоины, что затрудняет нормальное передвижение автомобилиста.

Можно запросто застрять где-нибудь и надеяться на помощь посторонних.

Однако, она может задерживаться, так что лучше иметь запасной вариант, не зависящий от внешних факторов и помощников. В таких ситуациях спасти вас сможет лебедка.

Далеко не каждый автомобиль оснащен ею, потому что высококачественные лебедки довольно дорогие, а те, что подешевле недолговечные и далеко не всегда имеют мощность, достаточную для спасения серьезно застрявшего автомобиля.

Вот почему оптимальным вариантом считаются самодельные лебедки для автомобиля.

Такие лебедки могут быть как простыми и сделанными своими руками максимум за 30 минут, так и более продвинутые, но тоже самодельные.

Подобрано для вас:

Читатели «М-К» давно уже знакомы с энтузиастом самодельной почвообрабатывающей техники, конструктором-любителем из Нижнего Тагила Григорием Ивановичем ОДЕГОВЫМ. Ведь именно ему удалось разработать одну из самых эффективных мотолебедок, которая по производительности превосходит и мотоблоки, и мотофрезы и даже микротракторы. И это при том, что двигатель одеговской мотолебедки — всего лишь силовой агрегат старенькой «Вятки».

Сегодня мы представляем вам две вело-лебедки с ножным приводом. Одна из них разработана Г.И. Одеговым, а другая представляет собой модернизированный вариант лебедки Григория Ивановича, спроектированный в творческой лаборатории «Эврика».

По утверждению конструктора велолебедки, почвообрабатывающий агрегат с педальным приводом значительно эффективнее как лопаты, так и буксируемого плуга, приводимого в движение усилиями одного-двух человек.

Педальная лебедка Г.И. Одегова устроена следующим образом. Ее основу составляет легкая трубчатая рама, на которой монтируется барабан, щеки которого представляют собой храповые колеса. На той же оси монтируются качающиеся педали, имеющие храповые защелки. Обе педали имеют пружины, обеспечивающие возврат каждой в верхнее положение. Подпружинены также и храповые защелки.

Рама лебедки сварена из стальных труб диаметром 22…32 мм. Барабан представляет собой отрезок трубы с внешним диаметром около 300 мм, к которому приварены два стальных диска диаметром 380 мм и толщиной около 4 мм. Чтобы превратить эти диски в храповые колеса, Г. И. Одегов прорезал по окружности каждого несимметричные зубья — глубина каждого составляет около 5 мм и шаг около 10 мм. В принципе работу можно было бы несколько облегчить, прорезая каждую вторую треугольную впадину — этого вполне достаточно для нормальной работы храпового механизма.

В принципе, можно было бы сделать более простой храповик, как это показано на наших рисунках. Для этого на боковой поверхности каждой из щек барабана высверливаются по окружности отверстия диаметром 8…10 мм. Разумеется, при этом изменяется и конструкция храповика, как это показано на рисунке модернизированной велолебедки.

Рычаги педального привода такого агрегата сварные, из стальных труб круглого или же прямоугольного сечения. С одной стороны каждого из рычагов приваривается втулка — отрезок стальной трубы с внутренним диаметром 20 мм, с другой — оси педалей. Последние проще всего подобрать готовые — от велосипеда, хотя не слишком сложно сделать и самодельные, согнув в виде буквы П стальную полосу толщиной около 3 мм. При использовании самодельных педалей в качестве осей можно использовать резьбовые шпильки, приваренные с внешней стороны каждого из педальных рычагов.

Осью барабана и рычагов педального привода служит стальной стержень диаметром 20 мм, концы которого проточены на длине 30 мм и на них нарезана резьба М14.

1 — щека барабана, 2 — рычаг привода, 3 — педаль, 4 — трос, 5 — продольный эле мент рамы, 6 — фиксатор, 7 стойка, 8 — подкос, 9 — якорь, 10 — задняя поперечина, 11 — барабан, 12 — передняя поперечина, 13 — втулка барабана, 14 — вкладыши, 15 — ступица рычага привода, 16 — гайка с шайбами, 17 — ось барабана и рычагов привода лебедки, 18 — фланец, 19 — собачка храповика, 20 — пружина храповика, 21 — ухо, 22 — возвратная пружина рычага привода.

Барабан модернизированной лебедки представляет собой отрезок стальной трубы внешним диаметром 300 мм, к которому приварены два стальных диска толщиной 3 мм и диаметром 380 мм. В центре каждого из дисков высверливаются отверстия диаметром 30 мм, и в них запрессовываются капроновые втулки (можно и фторопластовые, текстолитовые или бронзовые).

Самодельная лебедка из велосипедных запчастей | Stankiwse

В домашних условиях каждый сможет сделать своими руками лебедку из деталей от велосипеда, а также щепорез для арболита и прочее оборудование. Такое оборудование при наличии мощного храпового механизма поможет не только во время ремонта своего авто, но и окажется полезным на небольших производствах.

Фото: v-s.mobi

Фото: v-s.mobi

Необходимый инструментарий

Потребуется комплект деталей, которые легко изъять из ненужного велосипеда, и дополнительные материалы:

  • цепь в рабочем состоянии;
  • звездочка;
  • ось с заднего колеса со втулкой;
  • пара полос листовой стали 50х400х3 мм;
  • блок с карабином;
  • открытый крюк;
  • трос.

При производстве необходимо запастись инструментами:

  • болгарка или отрезной стационарный станок;
  • дрель или высокооборотистый шуруповерт;
  • сварочное оборудование;
  • слесарные тисы;
  • молоток 0,5 кг.

Операции разборки/сборки удобнее проводить на верстаке.

Инструкция по изготовлению

Пошаговый алгоритм изготовления:

  • Один из фланцев втулки с отверстиями преобразуем в храповик. Для этого последовательно вскрываем все отверстия болгаркой, формируя зубцы необходимого профиля.
  • Две металлические полосы гнем в четырех местах при помощи тисков и молотка так, чтобы образовался внутренний шестиугольник, который послужит корпусом.
  • Сверлим отверстия для стягивания каркаса болтами М8 и для установки оси велосипедного вала. Собираем втулку так же, как на велосипеде.
  • Изготавливаем шестиконечную звездочку под цепь и вал с П-образным корпусом для нее.
  • Монтируем ручку с храповиком на таком расстоянии, чтобы механизм жестко блокировался и привариваем тыльные листы корпуса.
  • Фиксируем силовую петлю на верхней части корпуса.
  • Накручиваем на вал трос при помощи шуруповерта.
  • На конец троса надежно крепим крюк.

Подвешиваем на балку и тестируем конструкцию, начиная с небольших грузов. Оборудование способно поднимать без проблем грузы в пределах 50 кг и более.

Новые идеи по строительству, отделке и самодельным станкам читайте на нашем канале и на сайте ВсеСтанки. Подписывайтесь и делитесь идеями в социальных сетях.

Лебедка из трещетки грузовика своими руками. Идея по созданию ручной лебедки из старого велосипеда. Самодельная механическая лебедка

Лебедка – незаменимое приспособление, как в домашнем хозяйстве, так и в гараже. Поднять на крышу рулон рубероида, забросить в окно второго этажа строящегося частного дома пару мешков цемента, вытащить двигатель из капотного пространства, да и затащить сам поломанный автомобиль в гараж… Это неполный перечень дел, которые можно запросто выполнить в одиночку с ее помощью.

Приспособления барабанного типа для подъема или перемещения тяжестей, отличаются способом передачи крутящего момента. Из школьного курса физики мы знаем, как работает плечо. Теряя в скорости или расстоянии – мы выигрываем в силе. Фраза Архимеда: «Дайте мне точку опоры, и я переверну Землю» как раз описывает принцип работы лебедки.

ВАЖНО! При работе с подобным устройством, точками опоры является корпус и место крепления лебедки. Оба элемента должны быть надежными.

Ручная лебедка, при помощи приложенного плеча – увеличивает человеческие силы настолько, что один оператор может сдвигать с места автомобили или поднимать тяжести в несколько сот килограмм. При одинаковом (с точки зрения механики) принципе действия, эти приспособления имеют различные способы исполнения.

Ручная барабанная лебедка – разновидности

Ручная лебедка с барабаном – это классика жанра. Кроме общего элемента – шкива, на который наматывается трос, приспособления имеют различные типы привода.

К барабану прочно прикреплена большая, основная шестерня. На нее, и на крепление, ложится вся нагрузка. Поэтому надежность элементов должна быть на должном уровне. В зацеплении с основной, расположена ведущая маленькая шестеренка.

Соотношение количества зубьев и есть величина передаточного отношения. Проще говоря – коэффициент усиления. Ведущая шестерня составляет одно целое с приводным валом. Поскольку речь идет о ручном инструменте – на вал надета рукоятка для вращения.

Длина рычага также влияет на степень усиления. Чем плечо рукоятки больше – тем меньше усилия надо приложить.

С помощью подобных устройств можно в одиночку поднимать несколько центнеров груза или перемещать автомобиль весом 2-3 тонны. При этом скорость вращения барабана достаточно высокая.

Конструкция состоит из двух или более пар шестерен, каждая из которых обладает коэффициентом усиления в десятки раз. При последовательном зацеплении эти коэффициенты складываются, многократно увеличивая усилие.

Обратная сторона медали – пропорциональное снижение скорости. Имея такую лебедку, вы можете осуществлять медленный вертикальный подъем грузов более тонны, но если вам придется работать с двумя мешками цемента – время подъема растянется на десятки минут.

Идей разных поделок на основе велосипеда, его отдельных частей много. Есть среди них, касающиеся домашних работ, в частности, обработки почвы на приусадебных участках. Устройство в виде лебедки, работающей от велосипедного привода, отличается простотой, позволяет выполнять операции вспашки, окучивания, рыхления одному человеку, сильно не утомляя его.

Для изготовления вело-лебедки нужен дорожный велосипед обычной конструкции, имеющей закрытую раму. Понадобится: сломанный двигатель от мопеда, например, типа Д-6; большая велосипедная звездочка; ступица от колеса мопеда вместе с осью; металлические уголки, трубки, лист.

Велосипед не переделывается; удлиняется только цепь.

Производят небольшую переделку двигателя мопеда. Вырезают верхнюю стенку крышки и картера выше ведущей звездочки. Делают это между бобышками, оставляя их и имеющуюся резьбу. Уменьшают на токарном станке толщину зубчатого венца звездочки до 2,6 мм – это необходимо для возможности расположения на ней велосипедной цепи.

Расспрессовывают коленчатый вал, удаляют шатун, и снова все спрессовывают. В имеющиеся подшипники закладывают графитовую смазку. Делают из листа металла крышку и закрывают ею место, где крепится цилиндр. Коленвал будет играть роль маховика в поделке.

Переделанный мотор крепят к велосипедной раме, в ее верхней части. Располагают его вниз звездочкой. Цепь удлиняют, чтобы она могла охватить три звездочки – две, которые имеются на велосипеде, и одну в переделанном двигателе мопеда.

На руле велосипеда, с левой стороны, устанавливают ручку, проводят от нее тросик к мотору. С ее помощью управляют муфтой сцепления.

Переоборудованный велосипед подходит для обычной езды. Чтобы начать движение нужно выключить сцепление. Когда же дорога идет под гору, то его включают – маховик начинает вращаться и запасать энергию, которая поможет в дальнейшем преодолевать подъемы.

Из переделанного велосипеда можно сделать лебедку, которая будет использоваться для домашних работ. На место его заднего колеса ставят приставку, состоящую из рамы, несущей лебедочный барабан, снабженный звездочкой, тросом. Он оборудован также грунтозацепами и тросоукладывающей петлей.

Барабан изготавливают из ступицы колеса мопеда, к которой по бокам крепят круглые металлические реборды. Снабжают большой велосипедной звездочкой.

Грунтозацепов два. Их делают, применяя отрезки уголков 12-сантиметровой длины. Внешние края полок затачивают, что обеспечивает им легкое вхождение в грунт. Уголки приваривают к краям полуметрового отрезка уголка, который служит опорой на поверхность земли.

Для петли тросоукладчика применяют мягкую проволоку. Ее крепят к раме так, чтобы трос в натянутом состоянии ложился на середину поверхности барабана.

Приставка крепится к велосипеду в двух местах: шпилькой в месте установки заднего колеса; хомутами, охватывающими две трубки рамы в промежутке между первым креплением и кареткой с педалями.

Вначале собирают, используя сварку, нижнюю часть приставки. Затем на ней крепят ось, на которую устанавливают барабан лебедки. Сверху располагают верхнюю часть и закрепляют ее на раме велосипеда. При этом предварительно устанавливают цепь на все три звездочки.

Лебедка является механизмом, который широко используется во многих сферах жизни.Принцип ее действия состоит в передаче тягового усилия от приводного барабана с помощью гибкого элемента (цепи, троса, каната).

В зависимости от источника прилагаемой силы лебедки подразделяются на механические и электрические. И те, и другие можно изготовить самостоятельно, приложив немного усилий и терпения.

Самодельная лебедка из трещотки

Довольно часто возникает потребность в поднятии тяжелого груза и фиксировании его в таком положении.

Это может быть, например, массивная крышка в подвал или большие части от автомобиля.

Справиться с такой непростой задачей вам поможет самодельная лебедка из трещотки.

Чаще всего для изготовления самодельных лебедок из трещотки используют червячный механизм от ЗИЛа — он наиболее компактный и может выдержать вес до полутонны.

Трещотки от КамАЗа и МАЗа способны выдержать вес до двух тонн и более.

Это самый подходящий вариант лебедки для домашнего применения. Солидная грузоподъемность при необходимости позволит справиться со сравнительно большими грузами. Их подъемом или перетаскиванием. Рассмотрим пошагово весь процесс созидания лебедки из камазовских трещоток.

Для изготовления грузоподъемного приспособления такого типа понадобиться:

Две задние трещотки автомобиля Камаз: левая и правая

Крюки для буксировки в количестве 2шт.

Трос диаметром 4-5 мм.

Кулак для разжимания тормозных колодок на автомобиле Камаз

Болт для крепления крюка

Разберите тормозные трещотки, вынув из них все, кроме шестерни, как указано на фото.

Далее из разжимного кулака срежьте собачку и при помощи угловой шлифовальной машинки, в народе именуемой болгаркой нарежьте шлицы, идентичные расположенным с другой стороны. Идеальным вариант будет изготовление такого вала в условиях механической мастерской на фрезерном станке. Нарезка шлицей своими руками потребует внимательности аккуратности и соблюдения правил и норм безопасного обращения с электроинструментом.

Возьмите крышки от ненужной трещотки б/у и изготовьте две шайбы для будущей лебедке.

Сварите конструкцию, как указано на фото и просверлите отверстие по диаметру троса, для его фиксации.

Установите трещотки на шлицы, поставьте болт и повесьте на него буксировочный крюк. Конструкцию можно усилить, надев на болт втулку. Я это сделал при помощи втулки с подушки двигателя внутреннего сгорания.

На свободный конец троса устанавливаем второй буксировочный крюк.

Изготавливаем и устанавливаем ручку для удобства работы с лебедкой.

Тестируем полученный механизм. Лебедка готова к применению.

При частом использовании самодельной лебедки из трещотки червячный механизм может быстро выйти из строя, в таком случае лучше заменить шестеренки на более прочные и износоустойчивые.

Самодельная электро лебедка

Самодельная электро лебедка пригодится вам в самых сложных ситуациях.

Она поможет вытащить автомобиль из глубокой трясины, сэкономив средства.

В основу ее работы положен принцип использования мощности всяческих устройств, таких как:

— разнообразные двигатели;

— генераторы от тракторов;

— стартеры, переделанные под двигатели.

Изготовить лебедку с электрическим приводом своими руками не сложно. Ее вы можете применить для ведения домашнего хозяйства, например, задействовать в процессе вспашки приусадебного участка, строительных работах, а также в любых других операциях, связанных с перемещением грузов. Рассмотрим пошаговую инструкцию создания этого механизма.

Для начала нужно определить необходимые комплектующие:

Электродвигатель. Для домашней лебедки не целесообразно применение сверхмощного двигателя, рассчитанного на трехфазную сеть. Вполне достаточно небольшого движка мощностью 2,2 кВ, напряжением 220 В. Предлагаем электродвигатель мощнее, чем на видео. Практика показала, что аппарат с мощностью 1,1 кВт со вспашкой не справляется. А двигатель 2,2 проверен на дачном участке.

Электромагнитный пускатель ПМ2 16А, пульт, конденсатор, провод ПВС 3Х1,5

Редуктор 1:40.

Шкива (2шт) и ремень для обустройства передачи от электродвигателя к редуктору.

Подшипник 180306 в корпусе (2шт).

Вал барабана.

Шлицевая часть с наружной гранаты(2шт).

Металлопрокат различной толщины и сечения для изготовления рамы и барабана.

Метизы для крепления двигателя, редуктора и барабана.

Для выполнения работ по изготовлению механизма, вам потребуется: слесарный инструмент, болгарка, дрель и сварочный аппарат.

Кинетическая схема лебедки с электродвигателем

Прежде, чем приступить к изготовлению рамы под агрегат, нужно набросать эскиз будущей металлоконструкции с указанием размеров. Для этого нужно взять лист бумаги и вычертить раму, после чего мерительным инструментом снять все установочные размеры и спланировать размещение электродвигателя, редуктора и барабана на эскизе. Упростит составление чертежа видео размещенное выше. На основании эскиза вам будет проще приготовить необходимый металлопрокат и метизы для будущего агрегата.

Из трубы прямоугольного сечения свариваем общую раму, на которую монтируем электродвигатель и редуктор с установленными шкивами и прикрученным основанием из профильной трубы. Для того, чтобы ремень не провисал площадку двигателя делаем на навесах, далее точечной сваркой привариваем навесы к раме агрегата, как показано на фото.

Редуктор устанавливаем на уголках. Одеваем ремень ременной передачи и проверяем его натяжение. Прихватываем сваркой основание редуктора.

Переходим к изготовлению барабана. С двух сторон к трубе диаметром 159 привариваем металлические шайбы, как показано на фото.

Далее приступаем к сварке и сборке вала. Привариваем шлицевую часть гранаты в торец вала как показано на фото и вставляем вал внутрь барабана. Набиваем на вал подшипники и корпуса и привариваем точечной сваркой вал к барабану. Второй шлицевую часть гранаты привариваем к валу редуктора.

Выставляем барабан с помощью подручных средств, чтобы выдержать соосность вала редуктора и барабана. Далее с помощью уголка закрепляем корпуса подшипников барабана точечной сваркой.

Подключаем электрооборудование лебедки и делаем пробный пуск.

Если тестирование прошло удачно, отключаем электропитание, снимаем электродвигатель и редуктор и выполняем сварку стыков. После чего ставим на место механизмы лебедки. На барабане закрепляем трос. С другой стороны троса устанавливаем буксировочный крюк. Самодельная лебедка с электроприводомготова.

Такой механизм обладает довольно большой грузоподъемностью, однако требует времени на сборку и отсутствия влажности.

Для безопасной работы с большими тяжестями желательно электролебедку оснастить небольшим и простым выносным пультом.

Самодельная лебедка для хозяйства

Всевозможные лебедки являются незаменимой вещью для автомобилистов. Но также успешно может быть задействована самодельная лебедка для хозяйства.

Здесь чаще всего подобные устройства используют для перемещения грузов по горизонтальной поверхности, на пример тяжелых бревен.

Часто задействуют лебедки фермеры, устанавливая ее над чердачным проемом, перемещая таким образом грузы между разными частями помещения.

А некоторые умудряются использовать самодельную лебедку для вспахивания земли.

Для этого ее достаточно закрепить на краю участка, на конец троса зацепить плуг и включить лебедку.

Механизм тянет плуг, а человеку остается только задавать ему направление. С помощью лебедки можно не только вспахивать землю, но и осуществлять все циклы обработки земли

Предлагаем лебедку для домашней работы, а точнее для окучивания картофеля на базе болгарки. Для изготовления практически ничего не надо. Мы представляем ее как модификацию нашей лебедки с электрическим двигателем.

Когда двигатель оказался маломощным, а нового пока мне было, появилась идея переделать привод. Решили использовать болгарку. Что из этого получилось судить вам. Мы расскажем, как все же проходила модификация.

Начнем с переделки рамы, площадку двигателя надо адаптировать под болгарку. Навесы и первоначальный вид площадки остается неизменным. Единственно ее нужно поднять на раме уголками, чтобы дать натяжку ремню.

На болгарке имеются резьбовые отверстия для крепления ручек. Именно в них мы вставляем болты, чтобы закрепить болгарку к площадке, дополнительно привариваем уголок к площадке, как показано на фото и крепим электрический привод еще одним болтом.

После чего привариваем к раме уголки и поднимаем площадку. На болгарку насаживаем шкив, надеваем ремень и проводим испытание вхолостую. Далее проводим полное тестирование на картофельном поле.

Самодельная механическая лебедка

В экстренных ситуациях на дорогах вашей незаменимой помощницей станет самодельная механическая лебедка.

Она не займет много места в багажнике любого автомобиля и позволит решить проблему без привлечения посторонних.

Для работы такого вида лебедки потребуется только ваша физическая сила. Самодельная механическая лебедка работает по принципу рычага.

Прилагая усилия на рычаг, вы наматываете трос на ось, и чем длиннее рычаг и больше прилагаемая физическая сила — тем больший вес можно передвинут

Лебедка помогает вам справится с многочисленными сложными задачами, поэтому ее наличие желательно у каждого практичного человека.

Но это не значит, что нужно тратить огромные деньги на ее приобретение. Конструкция лебедки довольно проста и позволяет соорудить ее из подручных средств.

Вам понадобится:

— отрезок от трубы;

— крепкий трос;

— крепкая палка.

Отрезок трубы послужит основой такой лебедки, на нем закрепляем трос, а ручку делаем из палки.

Если подходящих палок по близости нет – берем второй кусок трубы и мастерим ручку из него. Вот и все – сделана лебедка своими руками!

При приложении усилия на ручку трубка, насаженная на ось, начинает вращаться и наматывать на себя трос. Ось нужно надежно закрепить, например, хорошо вбить в землю.

И сделать это надо под углом, чтобы все элементы самодельной лебедки не соскочили с оси во время работы.

Самодельные лебедки для автомобиля

Сегодня повсеместно встречаются плохие дороги, многочисленные ямы и выбоины, что затрудняет нормальное передвижение автомобилиста.

Можно запросто застрять где-нибудь и надеяться на помощь посторонних.

Однако, она может задерживаться, так что лучше иметь запасной вариант, не зависящий от внешних факторов и помощников. В таких ситуациях спасти вас сможет лебедка.

Далеко не каждый автомобиль оснащен ею, потому что высококачественные лебедки довольно дорогие, а те, что подешевле недолговечные и далеко не всегда имеют мощность, достаточную для спасения серьезно застрявшего автомобиля.

Вот почему оптимальным вариантом считаются самодельные лебедки для автомобиля.

Такие лебедки могут быть как простыми и сделанными своими руками максимум за 30 минут, так и более продвинутые, но тоже самодельные.

Подобрано для вас:

В домашних условиях каждый сможет сделать своими руками лебедку из деталей от велосипеда, а также и прочее оборудование. П ри наличии мощного храпового механизма данный инструмент поможет не только во время ремонта своего авто, но и окажется полезным на небольших производствах.

Необходимый инструментарий

В процессе работы потребуется комплект деталей, которые легко изъять из ненужного велосипеда, и дополнительные материалы:

  • цепь в рабочем состоянии;
  • звездочка;
  • ось с заднего колеса со втулкой;
  • пара полос листовой стали 50х400х3 мм;
  • блок с карабином;
  • открытый крюк;
  • трос.

При производстве необходимо запастись инструментами:

  • болгарка или отрезной стационарный станок ;
  • дрель или высокооборотистый шуруповерт;
  • сварочное оборудование;
  • слесарные тисы;
  • молоток 0,5 кг.

Операции разборки/сборки удобнее проводить на верстаке.

Инструкция по изготовлению

Пошаговый алгоритм изготовления:

  • Один из фланцев втулки с отверстиями преобразуем в храповик. Для этого последовательно вскрываем все отверстия болгаркой, формируя зубцы необходимого профиля.

  • Две металлические полосы гнем в четырех местах при помощи тисков и молотка так, чтобы образовался внутренний шестиугольник, который послужит корпусом.

  • Сверлим отверстия для стягивания каркаса болтами М8 и для установки оси велосипедного вала. Собираем втулку так же, как на велосипеде.


  • Изготавливаем шестиконечную звездочку под цепь и вал с П-образным корпусом для нее.

  • Монтируем ручку с храповиком на таком расстоянии, чтобы механизм жестко блокировался и привариваем тыльные листы корпуса.

  • Фиксируем силовую петлю на верхней части корпуса.


  • Накручиваем на вал трос при помощи шуруповерта.

  • На конец троса надежно крепим крюк.

Подвешиваем на балку и тестируем конструкцию, начиная с небольших грузов. Оборудование способно поднимать без проблем грузы в пределах 50 кг и более. Подробно данный процесс представлен на видео от профессионального мастера.


ЛЕБЁДКА ДЛЯ ПОДЪЁМА ЛЮКА

Люк который нужно поднимать это вход в небольшой складик для угля. По окончании отопительного сезона люк опускается, трос с карабином отцепляется, сматывается на барабан и получается большой двор с лишним местом для машины.

Вся конструкция сделана не выходя из дома с помощью сварки, болгарки и дрели.

Скажу сразу этой лебёдкой мой тяжолый люк открывается очень медленно порядка 8 минут зато очень легко, поскольку открываю я его осенью а закрываю весной то меня это не смущает. Дело в том что люк достаточно тяжолый поднимать его от земли очень тяжело, ктому же имею проблемы со спиной. Да и подумать о том что когдато будеш старым и слабым нужно зарание.

Поскольку лебёдка имеет червячный механизм то после подъёма люка он не может самопроизвольно закрытся ни в сильный ветер, ни даже если вы ему будете помогать.Также положение люка можно зафиксировать в любом из промежуточных положений.

Сам червячный механизм это так называемая ТРЕЩЁТКА от системы тормозов переднего моста грузовика ЗИЛ.(находится с внуртенней стороны колеса,с его помощью подводятся колодки тормозов) Мможно использывать трещётки практически от всех советских грузовиков и автобусов с воздушными тормозами ЗИЛ, МАЗ, КАМАЗ,КРАЗ, автобусы ЛАЗ с той лиш разницей передний трещётка с ЗИЛА самая маленькая и аккуратная из всех,при этом она может выдержать нагрузку до полутонны весом а что говорить о трещётках с КАМАЗА или КРАЗА. Поэтому рекомендую использовать именно ЗИЛОВСКУЮ трещетку.

Для нашей конструкции редуктор предётся разобрать сняв боковые металические накладки(пыльники) хорошо если они на болтах, у меня были на заклёпках которые я спилил болгаркой. В дальнейшем в отверстиях под заклёпки нужно нарезать резьбу под болы М5-М6 в зависимости от модели трещетки.

Чтобы вынуть сам шестерню из корпуса нужно сначавла демонтировать червяк, для этого нужно выбить вал с квадратными шлицами под ключь 12 мм.Вал в червяке просто запресован без шпонок и стопоров,самый лучший вариант выдавить его пресом, я же выбиваю небольшой кувалдочкой.В корпусе редуктора есть заглушка размером с 10 капек которая выпадет после того как вы начнете выдавливать вал.

ВАЖНО перед выпресовкой выкрутить заглушку под плоскую отвёртку а за ней вынуть пружину и шарик.В моей конструкции шарик и пружина не используются, можно их выкинуть.

Все детали вымываем в бензине или растворителе до чистого метала.

Дальше напильником снимаем все заусенции с червяка и шестерни которые которые образовались в процессе их эксплуатации. Удаляем наждачкой ржавчину со всех мест которые могут затруднить вращение червяка и шестерни.ВАЖНО добится того чтобы после сборки редуктор легко вращялся за вал пальцами и не заедал, иначе в дальнейшем механизм будет работать с большим трудом.

Все детали трещётки в ключая корпус и шестерню легко поддаются сварке,поэтому в моей конструкции вал приварен к шестерне. Вал это труба 3/4 втавлена в шлицы шестерни, после чего между трубой и шлицами забиты гвозди подходящего диаметра.Желательно это делать когда шестерня снята а труба зажата вертикально в тиски.Важно забивая гвозди один напротив другого отцентровать вал относительно шестерни.Супер точность ненужна поскольку вал будет вращатся очень медленно. После спиливаем гвозди по край шестерни и проходим покругу сваркой.

Вставляем шестерню одновременно с червяком в корпус редуктора, и забиваем вал в червяк.В моём случае лебёдка приварина к металической закладной в стене поэтому родные пыльники были заменены пластинами 3 мм. и закрепленны болтами М5. Поскольку вал выходит только с одной стороны то один из пыльников сделан тглухим чтобы в редуктор не поподал мусор.

Дальше нам на валу нужно сделать барабан для намотки троса. Для этого нужно изготовить две шайбы из листового металла толщиной не меньше 3 мм. Я использывал готовые, остались после разборки советских аудио динамиков на 10 ват.(фотографии №6 и №10). Шайбы приварены прямо к валу поскольку редуктор очень надёжный и разбирать его врядли когдато придётся, а если и сломается то запчасти на него всё равно не продаются, придётся доставать целиком трищётку.

Ухо за которое зацеплен карабин на люке — это часть корпуса трещётки отрезанная для уменьшения размеров.

В трещётке есть пробка с резьбой М 10 с мелким шагом, обычно вместо неё вкручена пресмаслёнка для смазки солидолом, но в моём случае это была пробка, поэтому смазка происходила следующим оброзом: пробка была выкручена,взят шпритц для солидола, снего откручена головка для пресмаслёнок (там такаяже резьба как и на пробке или маслёнке)трубка прямо со шпритцом закручена в корпус трещётки,после чего смазываем трещётку солидолом пока он неполезет со всех отверстий.

Всё остальное думаю понятно из фотографий.

Пара слов о лебёдке из ТРЕЩЁТКИ: атвор долго работал механиком гараже и изначально использывал подобный механизм для снятия и монтажа коробки передачь с грузовиков ГАЗ и ЗИЛ причем делалось это в одиночку и без особых усилий. (кому интересно пишите вышлю примерные чертежи).

Был вариант использывания в гараже как тали для снятия двигателя с легковых машин причем лебёдка крепилась на стене гаража а трос от лебёдки через два блочка сначала на потолок а потом к центру ворот и на крюк.

Сдесь похожие конструкции лебёдок из трещёток с хорошими детальными фотографиями

Буду рад ели комуто это пригодится!


Лебедка из тормозной трещетки. Идея по созданию ручной лебедки из старого велосипеда. Самодельные лебедки для автомобиля

Идей разных поделок на основе велосипеда, его отдельных частей много. Есть среди них, касающиеся домашних работ, в частности, обработки почвы на приусадебных участках. Устройство в виде лебедки, работающей от велосипедного привода, отличается простотой, позволяет выполнять операции вспашки, окучивания, рыхления одному человеку, сильно не утомляя его.

Для изготовления вело-лебедки нужен дорожный велосипед обычной конструкции, имеющей закрытую раму. Понадобится: сломанный двигатель от мопеда, например, типа Д-6; большая велосипедная звездочка; ступица от колеса мопеда вместе с осью; металлические уголки, трубки, лист.

Велосипед не переделывается; удлиняется только цепь.

Производят небольшую переделку двигателя мопеда. Вырезают верхнюю стенку крышки и картера выше ведущей звездочки. Делают это между бобышками, оставляя их и имеющуюся резьбу. Уменьшают на токарном станке толщину зубчатого венца звездочки до 2,6 мм – это необходимо для возможности расположения на ней велосипедной цепи.

Расспрессовывают коленчатый вал, удаляют шатун, и снова все спрессовывают. В имеющиеся подшипники закладывают графитовую смазку. Делают из листа металла крышку и закрывают ею место, где крепится цилиндр. Коленвал будет играть роль маховика в поделке.

Переделанный мотор крепят к велосипедной раме, в ее верхней части. Располагают его вниз звездочкой. Цепь удлиняют, чтобы она могла охватить три звездочки – две, которые имеются на велосипеде, и одну в переделанном двигателе мопеда.

На руле велосипеда, с левой стороны, устанавливают ручку, проводят от нее тросик к мотору. С ее помощью управляют муфтой сцепления.

Переоборудованный велосипед подходит для обычной езды. Чтобы начать движение нужно выключить сцепление. Когда же дорога идет под гору, то его включают – маховик начинает вращаться и запасать энергию, которая поможет в дальнейшем преодолевать подъемы.

Из переделанного велосипеда можно сделать лебедку, которая будет использоваться для домашних работ. На место его заднего колеса ставят приставку, состоящую из рамы, несущей лебедочный барабан, снабженный звездочкой, тросом. Он оборудован также грунтозацепами и тросоукладывающей петлей.

Барабан изготавливают из ступицы колеса мопеда, к которой по бокам крепят круглые металлические реборды. Снабжают большой велосипедной звездочкой.

Грунтозацепов два. Их делают, применяя отрезки уголков 12-сантиметровой длины. Внешние края полок затачивают, что обеспечивает им легкое вхождение в грунт. Уголки приваривают к краям полуметрового отрезка уголка, который служит опорой на поверхность земли.

Для петли тросоукладчика применяют мягкую проволоку. Ее крепят к раме так, чтобы трос в натянутом состоянии ложился на середину поверхности барабана.

Приставка крепится к велосипеду в двух местах: шпилькой в месте установки заднего колеса; хомутами, охватывающими две трубки рамы в промежутке между первым креплением и кареткой с педалями.

Вначале собирают, используя сварку, нижнюю часть приставки. Затем на ней крепят ось, на которую устанавливают барабан лебедки. Сверху располагают верхнюю часть и закрепляют ее на раме велосипеда. При этом предварительно устанавливают цепь на все три звездочки.

В домашних условиях каждый сможет сделать своими руками лебедку из деталей от велосипеда, а также и прочее оборудование. П ри наличии мощного храпового механизма данный инструмент поможет не только во время ремонта своего авто, но и окажется полезным на небольших производствах.

Необходимый инструментарий

В процессе работы потребуется комплект деталей, которые легко изъять из ненужного велосипеда, и дополнительные материалы:

  • цепь в рабочем состоянии;
  • звездочка;
  • ось с заднего колеса со втулкой;
  • пара полос листовой стали 50х400х3 мм;
  • блок с карабином;
  • открытый крюк;
  • трос.

При производстве необходимо запастись инструментами:

  • болгарка или отрезной стационарный станок ;
  • дрель или высокооборотистый шуруповерт;
  • сварочное оборудование;
  • слесарные тисы;
  • молоток 0,5 кг.

Операции разборки/сборки удобнее проводить на верстаке.

Инструкция по изготовлению

Пошаговый алгоритм изготовления:

  • Один из фланцев втулки с отверстиями преобразуем в храповик. Для этого последовательно вскрываем все отверстия болгаркой, формируя зубцы необходимого профиля.

  • Две металлические полосы гнем в четырех местах при помощи тисков и молотка так, чтобы образовался внутренний шестиугольник, который послужит корпусом.

  • Сверлим отверстия для стягивания каркаса болтами М8 и для установки оси велосипедного вала. Собираем втулку так же, как на велосипеде.


  • Изготавливаем шестиконечную звездочку под цепь и вал с П-образным корпусом для нее.

  • Монтируем ручку с храповиком на таком расстоянии, чтобы механизм жестко блокировался и привариваем тыльные листы корпуса.

  • Фиксируем силовую петлю на верхней части корпуса.


  • Накручиваем на вал трос при помощи шуруповерта.

  • На конец троса надежно крепим крюк.

Подвешиваем на балку и тестируем конструкцию, начиная с небольших грузов. Оборудование способно поднимать без проблем грузы в пределах 50 кг и более. Подробно данный процесс представлен на видео от профессионального мастера.

Лебедка – незаменимое приспособление, как в домашнем хозяйстве, так и в гараже. Поднять на крышу рулон рубероида, забросить в окно второго этажа строящегося частного дома пару мешков цемента, вытащить двигатель из капотного пространства, да и затащить сам поломанный автомобиль в гараж… Это неполный перечень дел, которые можно запросто выполнить в одиночку с ее помощью.

Приспособления барабанного типа для подъема или перемещения тяжестей, отличаются способом передачи крутящего момента. Из школьного курса физики мы знаем, как работает плечо. Теряя в скорости или расстоянии – мы выигрываем в силе. Фраза Архимеда: «Дайте мне точку опоры, и я переверну Землю» как раз описывает принцип работы лебедки.

ВАЖНО! При работе с подобным устройством, точками опоры является корпус и место крепления лебедки. Оба элемента должны быть надежными.

Ручная лебедка, при помощи приложенного плеча – увеличивает человеческие силы настолько, что один оператор может сдвигать с места автомобили или поднимать тяжести в несколько сот килограмм. При одинаковом (с точки зрения механики) принципе действия, эти приспособления имеют различные способы исполнения.

Ручная барабанная лебедка – разновидности

Ручная лебедка с барабаном – это классика жанра. Кроме общего элемента – шкива, на который наматывается трос, приспособления имеют различные типы привода.

К барабану прочно прикреплена большая, основная шестерня. На нее, и на крепление, ложится вся нагрузка. Поэтому надежность элементов должна быть на должном уровне. В зацеплении с основной, расположена ведущая маленькая шестеренка.

Соотношение количества зубьев и есть величина передаточного отношения. Проще говоря – коэффициент усиления. Ведущая шестерня составляет одно целое с приводным валом. Поскольку речь идет о ручном инструменте – на вал надета рукоятка для вращения.

Длина рычага также влияет на степень усиления. Чем плечо рукоятки больше – тем меньше усилия надо приложить.

С помощью подобных устройств можно в одиночку поднимать несколько центнеров груза или перемещать автомобиль весом 2-3 тонны. При этом скорость вращения барабана достаточно высокая.

Конструкция состоит из двух или более пар шестерен, каждая из которых обладает коэффициентом усиления в десятки раз. При последовательном зацеплении эти коэффициенты складываются, многократно увеличивая усилие.

Обратная сторона медали – пропорциональное снижение скорости. Имея такую лебедку, вы можете осуществлять медленный вертикальный подъем грузов более тонны, но если вам придется работать с двумя мешками цемента – время подъема растянется на десятки минут.

ЛЕБЁДКА ДЛЯ ПОДЪЁМА ЛЮКА

Люк который нужно поднимать это вход в небольшой складик для угля. По окончании отопительного сезона люк опускается, трос с карабином отцепляется, сматывается на барабан и получается большой двор с лишним местом для машины.

Вся конструкция сделана не выходя из дома с помощью сварки, болгарки и дрели.

Скажу сразу этой лебёдкой мой тяжолый люк открывается очень медленно порядка 8 минут зато очень легко, поскольку открываю я его осенью а закрываю весной то меня это не смущает. Дело в том что люк достаточно тяжолый поднимать его от земли очень тяжело, ктому же имею проблемы со спиной. Да и подумать о том что когдато будеш старым и слабым нужно зарание.

Поскольку лебёдка имеет червячный механизм то после подъёма люка он не может самопроизвольно закрытся ни в сильный ветер, ни даже если вы ему будете помогать.Также положение люка можно зафиксировать в любом из промежуточных положений.

Сам червячный механизм это так называемая ТРЕЩЁТКА от системы тормозов переднего моста грузовика ЗИЛ.(находится с внуртенней стороны колеса,с его помощью подводятся колодки тормозов) Мможно использывать трещётки практически от всех советских грузовиков и автобусов с воздушными тормозами ЗИЛ, МАЗ, КАМАЗ,КРАЗ, автобусы ЛАЗ с той лиш разницей передний трещётка с ЗИЛА самая маленькая и аккуратная из всех,при этом она может выдержать нагрузку до полутонны весом а что говорить о трещётках с КАМАЗА или КРАЗА. Поэтому рекомендую использовать именно ЗИЛОВСКУЮ трещетку.

Для нашей конструкции редуктор предётся разобрать сняв боковые металические накладки(пыльники) хорошо если они на болтах, у меня были на заклёпках которые я спилил болгаркой.В дальнейшем в отверстиях под заклёпки нужно нарезать резьбу под болы М5-М6 в зависимости от модели трещетки.

Чтобы вынуть сам шестерню из корпуса нужно сначавла демонтировать червяк, для этого нужно выбить вал с квадратными шлицами под ключь 12 мм.Вал в червяке просто запресован без шпонок и стопоров,самый лучший вариант выдавить его пресом, я же выбиваю небольшой кувалдочкой.В корпусе редуктора есть заглушка размером с 10 капек которая выпадет после того как вы начнете выдавливать вал.

ВАЖНО перед выпресовкой выкрутить заглушку под плоскую отвёртку а за ней вынуть пружину и шарик.В моей конструкции шарик и пружина не используются, можно их выкинуть.

Все детали вымываем в бензине или растворителе до чистого метала.

Дальше напильником снимаем все заусенции с червяка и шестерни которые которые образовались в процессе их эксплуатации. Удаляем наждачкой ржавчину со всех мест которые могут затруднить вращение червяка и шестерни.ВАЖНО добится того чтобы после сборки редуктор легко вращялся за вал пальцами и не заедал, иначе в дальнейшем механизм будет работать с большим трудом.

Все детали трещётки в ключая корпус и шестерню легко поддаются сварке,поэтому в моей конструкции вал приварен к шестерне. Вал это труба 3/4 втавлена в шлицы шестерни, после чего между трубой и шлицами забиты гвозди подходящего диаметра.Желательно это делать когда шестерня снята а труба зажата вертикально в тиски.Важно забивая гвозди один напротив другого отцентровать вал относительно шестерни.Супер точность ненужна поскольку вал будет вращатся очень медленно. После спиливаем гвозди по край шестерни и проходим покругу сваркой.

Вставляем шестерню одновременно с червяком в корпус редуктора, и забиваем вал в червяк.В моём случае лебёдка приварина к металической закладной в стене поэтому родные пыльники были заменены пластинами 3 мм. и закрепленны болтами М5. Поскольку вал выходит только с одной стороны то один из пыльников сделан тглухим чтобы в редуктор не поподал мусор.

Дальше нам на валу нужно сделать барабан для намотки троса. Для этого нужно изготовить две шайбы из листового металла толщиной не меньше 3 мм.Я использывал готовые, остались после разборки советских аудио динамиков на 10 ват.(фотографии №6 и №10). Шайбы приварены прямо к валу поскольку редуктор очень надёжный и разбирать его врядли когдато придётся, а если и сломается то запчасти на него всё равно не продаются, придётся доставать целиком трищётку.

Ухо за которое зацеплен карабин на люке — это часть корпуса трещётки отрезанная для уменьшения размеров.

В трещётке есть пробка с резьбой М 10 с мелким шагом, обычно вместо неё вкручена пресмаслёнка для смазки солидолом, но в моём случае это была пробка, поэтому смазка происходила следующим оброзом: пробка была выкручена,взят шпритц для солидола, снего откручена головка для пресмаслёнок (там такаяже резьба как и на пробке или маслёнке)трубка прямо со шпритцом закручена в корпус трещётки,после чего смазываем трещётку солидолом пока он неполезет со всех отверстий.

Всё остальное думаю понятно из фотографий.

Пара слов о лебёдке из ТРЕЩЁТКИ: атвор долго работал механиком гараже и изначально использывал подобный механизм для снятия и монтажа коробки передачь с грузовиков ГАЗ и ЗИЛ причем делалось это в одиночку и без особых усилий.(кому интересно пишите вышлю примерные чертежи).

Был вариант использывания в гараже как тали для снятия двигателя с легковых машин причем лебёдка крепилась на стене гаража а трос от лебёдки через два блочка сначала на потолок а потом к центру ворот и на крюк.

Сдесь похожие конструкции лебёдок из трещёток с хорошими детальными фотографиями

Буду рад ели комуто это пригодится!


Ручная лебедка своими руками: 7 этапов изготовления устройства

Лебедки — очень удобное для поднятия грузов приспособление, благодаря чему оно имеет широкое распространение среди автолюбителей. Так как стоимость специального оборудования достаточно высока, то ручная лебедка своими руками станет оптимальным вариантом для автомобилистов, которые предпочитают наиболее оптимальное соотношение цены и качества. Также по индивидуальному макету можно создать уникальную лебедку, которая будет сочетать в себе удобство и высокую грузоподъемность. Компактные самодельные устройства могут устанавливаться на любую часть машины, что делает механизм универсальным помощником при ремонте и поездках на дальние расстояния.

Назначение лебёдок

Лебёдка является одним из самых старых механизмов, которые человек изобрёл и применил в своей деятельности для облегчения перемещения тяжестей. Тяговое усилие, создаваемое за счёт физической силы человека или животного, передаётся через канат, цепь, трос или иной гибкий элемент от приводного барабана к тому грузу, который надо передвинуть.

У лебёдки привод барабана может быть ручным, электрическим, от двигателя внутреннего сгорания, от паровой машины, гидравлическим. Чаще лебёдку используют для вертикального подъёма груза. Но иногда с помощью этого механизма удобно перемещать тяжести по горизонтали (например, автомобиль).

Если лебёдка крепко установлена на автомобиле, то с её помощью можно самостоятельно освободиться из ямы, из болота или подняться в гору. Если на застрявшем автомобиле нет штатной лебёдки, то любую другую надо прочно закрепить на земле и решить возникшие проблемы.


Лебёдка на автомобиле ФОТО: motorsguide.ru

Выбор редуктора

Следующей проблемой является выбор редуктора. Любая лебедка электрическая 220 В своими руками должна содержать в себе механизм, который будет передавать вращение с большим тяговым усилием. Существуют следующие разновидности редукторов:

  • Червячные, передают вращение под углом 90 градусов, не требуют устройств для торможения, так как обладают хорошими самотормозящими свойствами.
  • Для лебёдок не используются из-за сложности перпендикулярного расположения главного приводного и вторичного валов.
  • Цилиндрические, представляют собой одну или несколько пар шестерен в одной плоскости, находящихся в зацеплении. Вращение передается с меньшего колеса на большее. Обладают высокой надёжностью, но меньшим тяговым усилием. Удобны для использования при конструировании самодельных лебедок.

Разновидности

Существует много разновидностей лебёдок. Их можно классифицировать по способам изготовления – промышленные и самодельные; по виду привода – ручные, электрические, паровые, с двигателем внутреннего сгорания, гидравлические; по величине развиваемого усилия – мощные, маломощные. Названные признаки могут комбинироваться в различных сочетаниях.

Каждый вид имеет свои преимущества и недостатки. Ручную лебёдку изготовить проще всего, она дёшева и компактна, но развить большую мощность она не сможет. Максимальный вес груза, который с её помощью можно поднять, не превышает 1 тонну.

Электрическая лебёдка развивает большую мощность. А в практике автомобилизма в качестве электропривода можно использовать автомобильный стартер. Питание в этом случае происходит от автомобильного аккумулятора. Пользуются наибольшей популярностью у автомобилистов.

Гидравлические лебёдки ещё более мощные, но сложны по конструкции и имеют низкую эксплуатационную надёжность. Поэтому автолюбителями практически не применяются.

Червячная передача — высокая степень надёжности

Во многих механизмах подобного типа, имеющих большую грузоподъёмность, предусмотрено управление скоростью движения троса. Благодаря этому можно изменять интенсивность прилагаемых физических усилий. Ручная лебедка червячная может иметь многообразие вариантов крепления. Такое устройство отличается простотой эксплуатации и существенной надёжностью. При помощи данного элемента, предназначенного для грузоподъёмности, можно производить монтажные, ремонтные и строительные работы. При этом лебёдка будет иметь высокий уровень безопасности при работе. Она должна обладать комфортной рукояткой, а червячный редуктор сможет обеспечить прекрасную возможность удержания нагрузки.

Как сделать лебёдки разного типа

Для того, чтобы браться за разработку и изготовление лебёдки своими руками, необходимо уметь работать со слесарным инструментом, сварочным оборудованием, электроприборами и машинами.

Самодельные лебёдки создаются под конкретный автомобиль. Они максимально отвечают потребностям хозяина, гораздо дешевле покупных, имеют высокую ремонтопригодность, просты в облуживании, более компактны.

Один из наиболее популярных вариантов самодельной лебёдки создаётся из деталей велосипеда.

Для изготовления данного устройства потребуются следующие компоненты: велосипедная цепь, задняя ось, втулка, звёздочка, полоска листовой стали толщиной 6-8 мм, стальной трос, карабин, блок для троса, крюк.

Из инструментов понадобится болгарка, дрель или сверлильный станок, шуруповёрт, сварочный аппарат, тиски, метчики, молоток, керн и кое-что другое.

Трещотка, которая нужна как предохранитель от обратного самопроизвольного вращения барабана, изготавливается из втулки.


Самодельный храповик из велосипедной втулки ФОТО: usamodelkina.ru Из стальной полоски изготавливается корпус, в который вставляется втулка с храповиком. Основная часть лебёдки готова.


Устройство с храповиком в сборе ФОТО: usamodelkina.ru

Большая звёздочка берётся велосипедная. Малая изготавливается на 6 зубьев и всё собирается в комплекте. Звёздочки привариваются к валу. На валу крепко-накрепко зажимается конец троса. Регулируется храповой механизм.


Устройство с храповиком и обеими звёздочками в сборе ФОТО: usamodelkina.ru На звёздочки надевается велосипедная цепь. Лебёдку можно крутить руками или шуруповёртом на малой скорости.


Вся лебёдка в сборе ФОТО: usamodelkina. ru

Лебёдка ручная барабанная своими руками

Основным узлом любой лебёдки является барабан, который приводится во вращение либо мускульной силой человека, либо каким-нибудь двигателем. На барабан наматывается трос. Барабанная лебёдка проста по конструкции, но требует наличия редуктора – либо шестерёнчатого, либо червячного. Редуктор нужен для уменьшения усилия, которое требуется от человека. Но при этом во столько же раз уменьшается скорость перемещения груза. Редуктор самостоятельно делать сложно, лучше взять готовый от какого-то старого механизма.


Барабанная лебёдка с электроприводом и редуктором ФОТО: obustroen.ru Конструкция лебёдки состоит из опоры, рукоятки, редуктора. Если вращать рукоятку или включить электромотор, то усилие передается на барабан. Трос может быть до 40 м. Лебёдка развивает тяговое усилие до 5000 кг. Можно использовать мощный трос толщиной до 15 мм. Лебёдка легко вытаскивает машину из кювета, поднимает железобетонные блоки.

Материалы и инструменты

Для червячного редуктора берётся толстая шестерня Глиста с прочными зубьями. Вал делается из толстостенной трубы. С одного конца к ней приварен круглый кусок металла диаметром, как у внутреннего кольца шестерни. Для фиксации троса в трубе высверливается сквозное отверстие. Вал вращается на подшипниках. Корпус сваривается из швеллеров, размеры определяются с учётом размеров редуктора.

Чертежи

Чертежи надо рассматривать как указание на принципиальные решения. Размеры уточняются с учётом размеров имеющихся деталей.


Чертежи лебёдки с червячным редуктором ФОТО: obustroen.ru

Инструкция по изготовлению

Каркас лебёдки сваривается из профильных (квадратных) труб или из швеллера. Для барабана вырезают два металлических диска, которые соединяют шпильками. Диаметр дисков и длина шпилек определяют размер барабана. Барабан надевается на вал, который через подшипники устанавливается в раму. На один конец вала монтируется ручка для его вращения, на другом конце закрепляется звёздочка для организации цепного привода от мотора.

Электролебёдка своими руками из стартера

Электрифицированная лебёдка удобней в эксплуатации, чем ручная. Ведь довольно-таки сложно одновременно крутить лебёдку и руль автомобиля. В качестве электромотора можно использовать автомобильный стартер. При этом, необходимо по всем правилам электробезопасности смонтировать цепь электропитания и защиты. Питание 12 В можно взять прямо от автомобиля, нужно только проверить коммутационные характеристики точки подключения. Лебёдка монтируется на переднем бампере автомобиля.

Процесс проведения работ

Предстоит изготовить барабан, в основе которого могут быть трубы. К последним следует укрепить щечки. Их толщина должна варьироваться в пределах 5 мм. Нужно создать площадку, в основе которой предпочтительнее использовать листовую сталь, именно на ней будет происходить монтаж всех элементов. На данную площадку предстоит укрепить шайбы, болты, гайки, а также посадочные места под барабан. Использовать при этом следует сварочный аппарат. На следующем этапе нужно произвести сопряжение редуктора с барабаном, первичный вал редуктора должен быть направлен вверх. Стоит отметить, что в работе может быть использован плуг для лебедки, своими руками такую конструкцию можно будет изготовить.

Произвести сопряжение стартера с редуктором нужно по определенной технологии. Первоначально нужно монтировать переходник, который понадобится для установки стартера в верхней части редуктора, после первичный вал нужно дополнить шестерней, которая имеет зуб подходящих габаритов. Если данные манипуляции были произведены верно, то при включении стартера вал и шестерня должны соединяться с редуктором. Когда изготавливается лебедка из стартера своими руками, на следующем этапе нужно надеть шестерню, в роли которой может выступить венец маховика, надеть его нужно на первичный вал редуктора.

Нюансы изготовления своими руками лебёдок различного назначения

Главное, при начале работы чётко сформулировать для себя, для чего будет создаваться лебёдка, в каких условиях она будет эксплуатироваться. Имеют значение весовая нагрузка, способ крепления механизма, вид транспортируемого груза, климатические условия. Крепление лебёдки на автомобиль или на внешние предметы влияет на выбор конструкции станины. А ещё надо проверить, выдержит ли силовая рама автомобиля установку на него лебёдки.
К нюансам самодельного изготовления сложных изделий следует отнести проблемы с добыванием комплектующих и потребность в профессиональном оборудовании и инструменте. В ряде случаев невозможно обойтись без токарных и фрезеровочных работ, без электро- или газовой сварки. Некоторые агрегаты, например, редуктор, мотор лучше брать готовыми, списанными со старой техники. Вот их компоновка и сборка – уже широкое поле деятельности для самодельщика.

Ручная автомобильная лебёдка

Нередки ситуации, когда автомобиль попал в беду, а лебёдки никакой нет. Здесь выручит смекалка. Для организации вытаскивания застрявшей машины надо всё-таки найти кусок стальной трубы диаметром примерно 10 – 20 см и длиной 0,5 -1,0 м. Ещё нужна палка такой толщины, чтобы она пролезла в трубу, другая может быть потоньше, но крепкая. Собирается конструкция, как показано на рисунке. Усилий одного человека вполне достаточно, чтобы вытащить легковой автомобиль.


Простейшее устройство для вытаскивания автомобиля ФОТО: obustroen.ru

Особенности проведения сборки

Лебедка из стартера своими руками изготавливается с использованием барабана с тросом, которые являются главным рабочим узлом конструкции. Работу можно будет завершить в более короткие сроки, если в наличии есть подобный узел. Но барабан, как было сказано, можно изготовить самостоятельно, главное — использовать для этого наиболее толстую сталь. На одну из щечек, которые привариваются к трубе, нужно зафиксировать шестерню, последняя будет передавать усилия от редуктора посредством передаточной цепи.

Перед тем как сделать лебедку своими руками, нужно учесть, что барабан может быть выполнен из двух ступиц, которые могут быть позаимствованы от старых «Жигулей». Для чего будет достаточно сварить их по тонкой стороне. Производить такие работы нужно на оправке, только так удастся соединить оси элементов. Когда вы выбираете редуктор, следует руководствоваться мнением о том, что самостоятельно изготовленная лебедка способна работать без стопора. Специалисты рекомендуют использовать в таком случае редуктор, который применяется для функционирования троллейбусных дверей. Хорошо, если вам удастся найти такой элемент. Если такой возможности нет, можно собрать конструкцию, как было сказано выше, из стартера. Если использовать планетарный редуктор, то он будет удобен по той причине, что имеет незначительный вес и не занимает много места. Именно эти параметры принимаются в расчет, когда мастера конструируют изделие.

Лебёдка для колодца

Одна из древнейших лебёдок, получившая широчайшее распространение. В качестве барабана используется обычное бревно. При очень большом желании можно собрать барабан из досок и дисков. А ещё долговечней будет барабан из стальной трубы, к которой по краям приварены металлические щёчки.

В торцах барабана закрепляется вал. Если барабан из бревна, то с обоих его торцов забиваются куски толстого железного прута. На одном из концов вала закрепляется ручка. К самому барабану крепится трос или верёвка. Барабан концами вала устанавливается в гнёзда на стойках по бокам колодца.


Простейшая лебёдка для поднятия вёдер из колодца ФОТО: obustroen.ru

Якорная лебёдка для лодки

Любители путешествий по воде оборудуют свои суда лебёдками для понятия якоря. В этом случае не требуется слишком большой мощности и скорости, вполне можно обойтись ручным приводом.


Лебёдка для поднятия якоря в лодку ФОТО: youtube.com

Самодельная лебедка из дрели

Также можно использовать дрель, так как ее двигатель обладает достаточным моментом, но он высоко оборотистый, для чего придется пользоваться регулятором мощности. Такое устройство желательно применять в кратковременном режиме, так как мотор инструмента сильно нагревается даже при холостом вращении. Плюс ко всему, для питания дрели потребуется использовать преобразователь напряжения 12/220 В, так как они все рассчитаны на сетевое напряжение. Есть, конечно, и аккумуляторные модели, которые, по сути, ничем не отличаются от шуруповерта.

Прочие идеи изготовления лебёдок

Для умельцев в любой безвыходной ситуации имеется минимум два выхода. То же самое и с лебёдками.

Все идеи с различными механизмами крутятся вокруг одного главного принципа – на вращающийся барабан наматывается трос, на другом конце троса висит груз. А как крутить барабан – существуют сотни способов. Его можно вращать рукояткой, рычагом с храповым механизмом, различными двигателями. В старину для привода барабана использовали животных. Все различия в конструктивном исполнении и в применяемых технологиях.

При эксплуатации лебёдок главное внимание следует обращать на их прочную установку.

В качестве привода подобного механизма для мелких грузов можно использовать шуруповёрт или мощную электродрель.

Машинный привод – один барабан, два барабана…

Традиционно лебедки с машинным приводом применяются для обслуживания простых строительных кранов, скреперных, буровых установок, в лифтах. Они могут иметь один, два или три барабана. Возможно, использование различных приводов – электрических, дизельных, пневматических, паровых.

Более часто встречаются реверсивные лебедки, барабан которых связан с валом двигателя зубчатыми колесами редуктора, реже – фрикционные с использованием соответствующей муфты или разъемной фрикционной передачи. Электролебедки снабжены автоматическими тормозными системами.

Выводы

Считается, что самодельные лебёдки являются менее безопасными, чем заводские аналоги. К тому же они никак не подойдут для подъёма грузов. Это связано с тем, что у таких устройств нет стопора. Но одним из главных преимуществ самодельных лебёдок является тот факт, что при правильной сборке они могут прослужить даже больше, чем лебёдки, собранные фабрично.

Самодельные лебёдки из стартеров являются более компактными, так что при выборе варианта перед сборкой, лучше сделать выбор в пользу этих устройств. Преимущества таких лебёдок будут замечены пользователем сразу же при использовании.

Рекомендации по применению

Для безопасной и долговременной эксплуатации самодельных автомобильных лебедок следует придерживаться следующих инструкций:

  • Любые манипуляции с тросом проводить только после полной деактивации механизмов устройства.
  • Используйте конструкции исключительно по предназначению.
  • Вертикальное передвижение объектов данным устройством не предусмотрено.
  • Не проводите роботы с конструкцией и ее элементами без перчаток.
  • Перед применением внимательно проверяйте крепление устройства и его составных частей.

Создание определенных видов автомобильных лебедок в домашних условиях – дело не из легких, но упорство и тщательное выполнение всех рекомендаций помогут сделать надежную и эффективную конструкцию, которая не раз выручит вас в сложных ситуациях.

Любой автолюбитель перед тем как, отправиться в путь, должен удостовериться, что всё необходимое он взял с собой. Но, если обычным водителям много снаряжения брать не нужно, то покорители бездорожья собираются с особым рвением. Любой автолюбитель, который предпочитает езду на самых экстремальных и трудных участках и дорогах, берёт с собой самое нужное и необходимое снаряжение, которое сможет помочь и облегчит передвижение, а также обеспечит выход из самых трудных ситуаций.

Одним элементом снаряжения, который поможет автолюбителю-экстремалу, является лебёдка. Опытный водитель, который готов ко всем перипетиям дорожного приключения, обязательно возьмёт в путь с собой это важное приспособление. В трудных условиях, в которых существует высокая вероятность того, что автомобиль попадёт в канаву или застрянет в грязи, лебёдка поможет водителю вытянуть своё транспортное средство из таких дорожных преград.

Конечно, приобрести такое устройство можно уже в виде готового приспособления, что, конечно, не может не радовать. Но, если автолюбителю не очень хочется ходить по магазинам и тратить средства на это устройство, к тому же если у него имеются все нужные компоненты, он может сделать лебёдку самому.

Область применения

Данный механизм предназначен в первую очередь для автомобилей и водителей, которые большую часть времени проводят на бездорожье. Мощный автомобиль с лебедкой способен преодолеть на порядок больше препятствий, чем аналогичное авто без этого приспособления.

Каким бы универсальным ни был автомобиль, рано или поздно он где-нибудь застрянет. Именно в этой ситуации и пригодиться лебедка. Один конец троса обматывают вокруг большого камня или нескольких деревьев и начинают вытаскивать автомобиль.

Заводские лебедки, которые продаются в автомагазинах, стоят довольно дорого. С другой стороны, простота конструкции данного устройства довольно проста, что позволяет создать его в домашних условиях и таким образом существенно повысить проходимость любого автомобиля.

Велосипед (варианты), колесо велосипеда, привод велосипеда, рычажный механизм велосипеда, педальный механизм велосипеда и комплект, содержащий велосипед и прицеп

Группа изобретений относится к транспортному машиностроению, а именно к универсальным шоссейно-туристским велокомплектам для быта, спорта и путешествий, которые состоят из велосипедов с рычажными приводами дорожного, спортивного или туристского назначения (велопривод дорожного назначения отличается от спортивного или туристского величиной передаточного отношения, которая остается в пределах передаточных отношений велоприводов серийно выпускаемых в настоящее время; велоприводы спортивного или туристского назначения отличаются увеличенными передаточными отношениями в соответствии с возросшей величиной момента крутящего), велоприцепов с кейсами для перевозки велосипедов и прицепов в др. видах транспорта и вручную.

Известен привод велосипеда, содержащий ведущий блок с педально-шатунным механизмом и по меньшей мере с одной ведущей шестерней, закрепленной на правом шатуне (перечисленный комплект деталей установлен на валу каретки рамы велосипеда), ведомый блок по меньшей мере с одной ведомой шестерней, соединенной с ведущей шестерней гибкой связью, и обгонную муфту (см. RU 2155141 С1, публ. 2000 г.) (ближайший аналог для привода).

Наиболее близким к предложенному является привод велосипеда, содержащий ведущий блок по меньшей мере с одной ведущей звездочкой, с рычажным и педальными механизмами, ведомый блок по меньшей мере с одной ведомой звездочкой и обгонную муфту, венцы ведущих звездочек закреплены на периферийной части обгонной муфты, установленной в ведущем блоке звездочек на валу каретки (US 3492883 А, опуб. 03.02.1970).

Недостатком известных технических решений является относительно низкая величина преобразования усилия велоприводом, которая обеспечивает относительно низкие ходовые качества, не соответствующие энергозатратам организма при педалировании.

Известен велосипед, содержащий раму с колесами, руль, привод заднего колеса, тормозную систему (см. RU 2155141 С1, публ. 2000 г.) (ближайший аналог для велосипеда по первому варианту).

Известно колесо велосипеда, содержащее втулку, снабженную двумя фланцами, которые с внешней стороны соединены спицами с ободом колеса, а с внутренней стороны жестко соединены со ступицами втулок колес (В.П.Любовицкий, Гоночные велосипеды, Л., Машиностроение, 1989, с.15, 60-64).

Недостатком данных технических решений являются относительно невысокие эксплуатационные характеристики.

Известен велосипед-тандем, содержащий раму с двумя колесами, состоящую из двух кареточных узлов, два руля, два последовательных привода заднего колеса, тормозную систему (см. SU 1789412 А1, публ. 1993 г.) (ближайший аналог для велосипеда по второму варианту)

Недостатками данного технического решения являются следующие:

— велосипедист, сидящий сзади, исполняет только пассивную функцию педалирования;

— нагрузка на колеса и удельное давление колеса на грунт возрастают в 2 раза.

Известен прицеп велосипеда, содержащий раму с колесами, присоединенную с помощью буксировочного устройства к основанию подседельного штыря рамы велосипеда (см. RU 2051059 С1, публ. 1995 г.).

Недостатками известного прицепа являются следующие:

— длинное водило, гибкость которого дает низкий КПД буксировки;

— зависимая подвеска колес и отсутствие амортизаторов практически исключают возможность буксировки прицепа по пересеченной местности;

— кузовная конструкция, которая увеличивает собственный вес прицепа;

— отсутствие необходимого уровня безопасности при движении велосипедиста с прицепом на спусках и, особенно, при прохождении поворотов, т.к. у серийно выпускаемых прицепов отсутствует тормозная система, а буксировочное устройство выполнено без учета возможности изменения угла наклона велосипеда относительно прицепа, при входе велосипедиста в вираж.

Ближайшего аналога для предлагаемого комплекта не выявлено. Технической задачей группы изобретений является повышение эксплуатационных свойств велосипеда путем оптимизации процесса педалирования с одновременным увеличением всех параметров движения через увеличение крутящего момента, повышение комфортности и безопасности езды, а также возможности удобного транспортирования велосипеда с прицепом в других видах транспорта и вручную.

Техническая задача решается тем, что привод велосипеда содержит ведущий блок по меньшей мере с одной ведущей звездочкой, с рычажным и педальными механизмами, ведомый блок по меньшей мере с одной ведомой звездочкой, соединенной с ведущей звездочкой, и обгонную муфту, венцы ведущих шестерней закреплены на периферийной части обгонной муфты, установленной в ведущем блоке шестерен на валу каретки, отличающийся тем, что рычажный механизм выполнен в виде пары бумерангообразных двуплечих рычагов, каждый из которых имеет педальное плечо с опорой на противоположных концах вала каретки, и плечо, передающее крутящий момент, педальное плечо и плечо, передающее крутящий момент, изогнуты в плоскости перпендикулярной оси каретки с образованием бумерангообразной конфигурации, при этом плечо, передающее крутящий момент, жестко соединено с элементом для передачи крутящего момента на вал каретки, а храповик обгонной муфты жестко связан с элементами для передачи крутящего момента с возможностью приведения ими во вращение.

Технический результат достигается также конструкцией вышеописанного рычажного механизма.

В конструкцию рычажного механизма, кроме эффекта увеличения момента крутящего на валу каретки, внесены конструктивные элементы, которые также активно способствуют увеличению выходного момента крутящего велосипеда и оптимизации процесса педалирования, а именно:

— бумерангообразная конфигурация плеч рычагов, эффект от вращения которых выражен в исчезновении мертвой точки в системе «нога — педаль», что дает дополнительно 25%, за счет появления плеч вращения в «нулевых» точках (две из восьми: 0° и 180°), классического цикла педалирования;

— дифференцирование комплектов рычажной пары на «комплект толчковой ноги» и «комплект тяговой ноги», что создает стабильность движений при использовании велосипеда, т.к. появляется постоянное стартовое положение педальных механизмов;

— «ускорительный эффект» массы ускорителей определенного веса и формы, которые под действием силы тяжести активно способствуют вращению рычажного механизма в передней части окружности полного цикла педалирования, повышая приложенные усилия до 50% от номинала, в зависимости от частоты педалирования.

Конструктивно последние два вышеприведенных эффекта взаимосвязаны и возникают за счет установки на плече, передающем крутящий момент, «рычага толчковой ноги» и на педальном плече «рычага тяговой ноги», упомянутой массы ускорителей, которая в результате располагается по одну сторону от кареточного вала, устанавливая рычажные комплекты в постоянное, оптимально-выгодное стартовое положение (возникновение эффектов такого рода возможно только в биотехнических системах).

Технический результат также достигается конструкцией колеса велосипеда, содержащего втулку, снабженную двумя фланцами, которые с внешней стороны соединены спицами с ободом колеса и с внутренней стороны жестко соединены со ступицей втулки колеса, причем спицы соединяют обод колеса с внешней окружностью фланцев. Спицы расположены по радиусу колеса, а внутренняя часть фланцев выполнена в виде лопастнообразных плоскостей, перемычки которых соединяют внешнюю и внутреннюю окружности фланцев между собой, а векторы сил, воспринимаемые перемычками, направлены по касательным к поверхности втулки колеса. В результате возникает амортизирующий эффект, выражающийся в снижении величины ударного воздействия на втулки колес и детали рамы, а также «векторный» эффект, позволяющий передать нагрузку торможения с тормозных дисков, закрепленных на наружных окружностях фланцев, на втулку колеса через векторы «силы на разрыв», проходящие по осям лопастнообразных фланцевых перемычек, таким же образом передается нагрузка ускорения от втулки заднего колеса, что способствует повышению износостойкости колес.

Колесо может быть снабжено по меньшей мере одним тормозным диском диаметром более 400 мм, установленным на внешней окружности фланца, и колодочными механизмами (механика или гидравлика), устанавливаемыми в основаниях перьев передней вилки и в основании вантин задней вилки. Для повышения безопасности движения и износостойкости тормозных колодок по меньшей мере один тормозной диск имеет обрезиненный торец для привода во вращение по меньшей мере одного генератора электроэнергии. Такое исполнение привода генератора позволяет снять боковое давление с колеса, вызываемое существующим фрикционным приводом генератора, а также исключить боковой поверхностный износ шины колеса.

Ось втулки заднего колеса может иметь по меньшей мере по одной опоре, расположенной по разные стороны от блока ведомых звездочек. Наличие на оси втулки заднего колеса по меньшей мере по одной опоре, расположенной по разные стороны от блока ведомых звездочек, позволяет исключить возникновение консольной нагрузки на втулке заднего колеса, в результате чего повышается износостойкость конструкции и эффективность передачи кинетической энергии на заднее колесо, что приводит к увеличению выходного момента крутящего.

Это позволило повысить жесткость колес (за счет сокращения длины спиц и увеличения их поперечного сечения), необходимую для восприятия повышенного момента крутящего, а также повысить амортизирующие свойства колес для повышения безопасности, комфортности и динамики движения.

Технический результат также достигается педальным механизмом, содержащим педальную раму, имеющую носковую часть для опоры передней части стопы и пяточную часть для опоры задней части стопы, при этом в носковой части педальной рамы в месте приложения усилия по оси большого пальца стопы, поперек продольной оси педальной рамы жестко закреплена носковая траверса, на конце которой поперек траверсы жестко закреплено носковое плечо двуплечего бумерангообразного рычага, конец пяточного плеча которого жестко соединен с пяточной полутраверсой, при этом в педальной раме одним концом жестко установлена центральная полутраверса, которая другим своим концом опирается на внутренние подшипники шарнирного узла, на наружных подшипниках которого установлен двуплечий бумерангообразный рычаг, плечи которого изогнуты в плоскости перпендикулярной оси контакта шарнирного узла педального механизма с головкой педального плеча рычага рычажного механизма.

Механизм содержит также устройство для закрепления обуви на педальной раме, которое состоит из пластины, закрепляемой на подошве обуви, фиксирующего устройства, расположенного в носковой части педальной рамы для закрепления носковой части пластины с обувью, и фиксирующего устройства, расположенного в пяточной части педальной рамы для закрепления пяточной части пластины с обувью.

При этом фиксирующее устройство для закрепления передней части пластины с обувью состоит из выполненных в передней части рамы педали пазов для вхождения в них соответствующих краевых участков упомянутой пластины, а фиксирующее устройство для закрепления пяточной части пластины с обувью состоит из установленных с возможностью проворота на оси рычагов-фиксаторов, имеющих конические выступы для вхождения в отверстия, выполненные в пяточной части упомянутой пластины с фиксированием пластины на педальной раме рукояткой эксцентрика.

Педальный механизм обеспечивает эффективное и равномерное восприятие и передачу усилия от стопы ноги на педальную головку рычага рычажной пары через бумерангообразный двуплечий педальный рычаг, в котором располагается шарнирный узел педального механизма и который снимает проблему появления общей мертвой точки в системе двуплечих рычагов, когда система находится в горизонтальной оси (90-270)° полного цикла педалирования. В оконечности носкового плеча рычага жестко крепится носковая траверса, в оконечности пяточного плеча рычага жестко крепится пяточная полутраверса. В педальной раме одним из своих концов жестко установлена центральная полутраверса, которая другим своим концом опирается на внутренние подшипники шарнирного узла, при этом упомянутый двуплечий педальный рычаг опирается на наружные подшипники шарнирного узла. В результате конструкция педальной рамы с двуплечим рычагом и шарнирным узлом соответствует проекции стопы ноги на плоскость и без конструкционных напряжений полностью передает усилия велосипедиста на головку педального плеча рычажной пары. Такое выполнение педального механизма позволяет обеспечить полноопорную постановку стоп ног велосипедиста на педалях и разнести оси приложения сил (носковую и пяточную) и ось вращения самого педального механизма между собой и в соответствии с анатомическим строением стопы. Конструкция позволяет передать практически 100% усилия ног на головки педальных плеч рычагов рычажной пары, при этом организм человека получает и оздоравливающий эффект, т.к. удельное давление педали на стопу возникает ниже, чем при ходьбе (отсутствует ударная нагрузка шага), поэтому время пребывания человека в седле можно приравнять ко времени передвижения человека пешком, но на порядок большие расстояния и с оздоравливающим эффектом.

Фиксирование (ручное или автоматическое) пяточной части пластины с обувью на педальной раме позволяет обеспечить рабочие фазы второй половины цикла педалирования, которые состоят из фазы «протяжки» пяткой и носком, а также «тяги коленом».

Вышеописанная конструкция педального механизма позволяет увеличить средний радиус приложения усилий до 221 мм при классическом радиусе вращения рычажной пары 170 мм на полном цикле педалирования, что увеличивает силовой контур полного цикла педалирования на 210% по сравнению с серийно выпускаемыми моделями педалей и на 235% выходной момент крутящий за счет «бумерангообразного» профиля плеч рычагов.

Техническая задача решается также тем, что велосипед по первому варианту содержит раму с двумя колесами, руль, тормозную систему, привод заднего колеса, выполненный согласно первому объекту изобретения, а колеса выполнены вышеописанным образом.

Для повышения информированности велосипедиста о состоянии работы механизмов велосипеда, параметрах движения и физиологических параметрах собственных, велосипед снабжен щитком приборов, выполненным с возможностью индикации частоты вращения звездочек ведущего блока и педальных механизмов, прикладываемого усилия к педалям, включенной передачи, скорости движения, указателей поворота и физиологических параметров велосипедиста.

Для снижения лобового сопротивления и повышения комфортности езды велосипед может быть снабжен обтекателем, установленным в районе руля или полуоткрытой кабиной аэродинамической формы.

В геометрию рамы велосипеда внесены изменения в связи с установкой педальных механизмов, дающих сложный рисунок педалирования и требующих передвижения седла и рулевой колонки с передней вилкой вперед на определенное расстояние для получения велосипедистом оптимального эффекта полного цикла педалирования.

Для установки предлагаемого привода на существующие типы рам подседельный штырь может быть выполнен изогнутым в сторону переднего колеса, а рулевая колонка закреплена на рулевой колонке рамы велосипеда, т.е. выполнена выносной, что позволяет сместить велосипедиста вперед и получить максимальный эффект от педалирования.

Велосипед может быть снабжен буксировочным устройством, съемный буксирный треугольник которого соединяется с задним треугольником рамы велосипеда, с центровкой на оси заднего колеса, тем самым достигается оптимальное тяговое усилие и необходимая жесткость буксировки при полной свободе маневра велосипедом, за счет трехшарнирного буксирного узла, который обеспечивает и автоматическое торможение прицепа при его накате.

Техническая задача решается также тем, что велосипед по-второму варианту изобретения содержит раму с четырьмя колесами, состоящую из двух соединенных между собой частей, два руля, тормозную систему, два привода колес, каждый из которых выполнен согласно первому объекту изобретения, при этом части рамы расположены параллельно и шарнирно соединены между собой горизонтальными тягами.

Зубья храповиков обгонных муфт их приводов могут быть выполнены с возможностью двухстороннего действия для возможности передвижения задним ходом при вращении педалей назад.

Каждая часть рамы может быть снабжена буксировочным устройством, на конце которого закреплен тягово-шаровой шарнир для установки горизонтальной буксирной тяги.

Части рамы могут быть шарнирно соединены между собой тремя горизонтальными тягами, с возможностью работы в параллелепипедном и прямоугольном, принудительно фиксируемом режиме.

Управление рулем и тормозной системой может быть выполнено с возможностью его осуществления только одним из велосипедистов в зависимости от вида сторонности движения, принятого в стране использования велосипеда.

Техническая задача решается также тем, что комплект содержит велосипед по одному из двух упомянутых вариантов исполнения и прицеп, который содержит раму с независимой подвеской колес и горизонтально расположенными гидравлическими амортизаторами, присоединенную с помощью буксировочного устройства к буксировочному устройству велосипеда через буксирный узел, выполненный с возможностью проворота и изменения угла наклона буксировочного устройства велосипеда относительно буксировочного устройства прицепа.

Наличие буксирного узла, выполненного с возможностью проворота и изменения угла наклона буксировочного устройства велосипеда относительно буксировочного устройства прицепа, позволяет велосипедисту изменять угол наклона при входе в вираж без ущерба для устойчивости прицепа.

Буксирный узел по велосипеду первого варианта может содержать два шарнира, один из которых выполнен в виде тягово-шаровой опоры с возможностью изменения угла наклона велосипеда, а второй — в виде карданного шарнира, который соединяется с тяговым устройством прицепа с возможностью автоматического торможения за счет наката.

Буксирный узел по велосипеду второго варианта может содержать два шарнира, один из которых выполнен в виде двух тягово-шаровых опор с возможностью изменения угла наклона велосипеда, а второй — в виде карданного шарнира, который закреплен по центру горизонтальной буксирной тяги и присоединен к буксировочному устройству прицепа тяговым узлом, который выполнен с возможностью автоматического привода тормозов при накате прицепа.

Для сохранения устойчивости велосипеда на стоянке буксирный узел снабжен ручным стояночным тормозом.

Наличие независимой подвески колес с горизонтально расположенными гидравлическими амортизаторами позволяет велосипедисту комфортно передвигаться с прицепом по пересеченной местности.

Рама прицепа может быть выполнена в виде арочной конструкции, снабженной средством для подвешивания транспортируемого груза, например лебедкой. Такая конструкция прицепа позволяет перевозить разногабаритные грузы.

Прицеп может быть снабжен грузовой гондолой, которая позволяет перевозить грузы с минимальным лобовым сопротивлением и максимальной пылевлагозащищенностью.

Грузовая гондола может быть выполнена с возможностью трансформации в кейс для перевозки велосипеда и прицепа в других видах транспорта и вручную.

Сущность группы изобретений поясняется с помощью чертежей.

На фиг.1 показан общий вид велосипеда с прицепом, на фиг.2 показана рама велосипеда по пункту 16 формулы, на фиг.3 показан индикаторный щиток приборов велосипеда, на фиг.4 показана схема привода велосипеда, на фиг.5 показан ведущий блок с механизмом холостого хода, на фиг.6 показан педальный механизм, на фиг.7 (а-г) показана велогетка с опорной пластиной, закрепляемой на педальной раме, на фиг.8 показан прицеп без гондолы, на фиг.9 показан прицеп с грузовой гондолой, на фиг.10 показан комплект, содержащий велосипед и прицеп, помещенные в кейс. На фиг.11 показан велосипед по второму варианту; на фиг.12 (а-г) показана упрощенная схема эллипсовидно-кругового педалирования; на фиг.13 показана схема фаз цикла педалирования; на фиг.14 показан испытательный макет рычажного механизма предлагаемого привода велосипеда.

Велосипед по первому варианту (см. фиг.1) содержит раму 1 с колесами 2 и съемным буксировочным устройством 3, руль 4, привод 5 заднего колеса, тормозную систему, включающую дисковые тормоза, состоящие из тормозных дисков 6, установленных на фланцах 7 втулок 8 колес и колодочных механизмов 9. Втулка 8 каждого колеса 2 снабжена двумя фланцами 7 увеличенного до 400 мм диаметра, которые по внешней окружности соединены увеличенного сечения спицами 10 с ободом колеса 2. Внутренняя часть фланцев 7, жестко посаженных на ступицах втулки 8, выполнена в виде лопастнообразных плоскостей, оси перемычек 11 которых служат векторами сил передачи ударной нагрузки, передаваемой спицами 10, и направлены по касательным к боковым поверхностям ступиц втулки 8. Генератор 12 установлен на вантине 13 задней вилки рамы 1, фрикционный привод которого работает от обрезиненного торца тормозного диска 6. На руле 4 размещен обтекатель 14 аэродинамической формы, щиток приборов 15 (см. фиг.3), служащий для индикации частоты вращения звездочек (шестерен) ведущего блока и педальных механизмов, прикладываемого усилия на педалях, включенной передачи, скорости движения, указателей поворота и физиологических параметров велосипедиста.

Эллипсовидный рисунок педалирования внес существенные коррективы в геометрию рамы 1 велосипеда, которые выразились в удлинении верхней 1а и нижней 1б труб и изменении угла наклона подседельной трубы 1в. Для установки велопривода с педальным механизмом на существующие велосипеды необходимо выносную рулевую колонку 16 (см. фиг.2) закреплять на рулевой колонке 17 рамы 1, а подседельный штырь 18 выполнять изогнутым в сторону переднего колеса 2, в результате чего седло 19, руль 4 и колесо 2 смещаются вперед.

Съемный треугольник буксировочного устройства 3 велосипеда соединен с задним треугольником рамы 1, горизонтальная тяга которого центрируется на задней оси велосипеда, а диагональная тяга крепится к основанию подседельного штыря 18 велосипеда, при этом основное тяговое усилие проходит по нижней части задней вилки велосипеда.

Велопривод 5 (см. фиг.4 и 5) содержит ведущий и ведомый блоки звездочек. Ведущий блок состоит из обгонной муфты (см. фиг.5), периферийная обойма 20 которой является несущей ступицей для зубчатых венцов А, В С, Д и Е ведущего блока звездочек. На валу 21 каретки 22 жестко установлен храповик 23 с роликами 24 обгонной муфты. На валу 21 каретки 22 жестко установлен рычажный механизм с педальным механизмом. Ведомый блок звездочек 25 (см. фиг.4) жестко соединен со втулкой 7 заднего колеса 2, ось 26 которой имеет по меньшей мере по одной опоре 27, расположенной по разные стороны от жестко установленного блока ведомых звездочек 25, который имеет семь звездочек, пять средних из которых расположены в плоскостях ведущих звездочек. Такое взаиморасположение блоков звездочек дает 15 вариантов передач (см фиг.4).

Рычажный механизм выполнен в виде рычажной пары, каждый из бумерангообразных двуплечих рычагов которой установлен на концах вала 21 каретки 22 с помощью скользяще-жесткой посадки; каждый рычаг имеет изогнутые педальное плечо 28 и плечо 29 для передачи крутящего момента. Плечо 29 жестко соединено резьбовым соединением 30 с также изогнутым элементом 31 передачи крутящего момента (кривошипом), закрепленным на валу 21 каретки 22. На плече 29, передающем крутящий момент «рычага толчковой ноги», и на педальном плече 28 «тяговой ноги», т.е. по одну сторону от вала 21 каретки 22 установлены грузы 32.

Педальный механизм (см. фиг.6) состоит из педальной рамы, имеющей хребтовую ось 33, носковую 34 и пяточную 35, траверсы, а также две полутраверсы, центральную 36 и пяточную 37, соответственно. Носковая траверса 34 и обе полутраверсы 36 и 37 жестко закреплены в хребтовой оси 33 рамы. Траверса 34 и полутраверса 37 жестко крепятся в двуплечевом бумерангообразном педальном рычаге 38. Центральная полутраверса 36 опирается хвостовиком в подшипники 39 оси 40 шарнирного узла 41. В носковой части педальной рамы расположено фиксирующее устройство для закрепления носковой части пластины с обувью, состоящее из выполненных в носковой части педальной рамы пазов 42. В пяточной части педальной рамы расположено фиксирующее устройство для закрепления пяточной части пластины с обувью, состоящее из установленных с возможностью проворота рычагов-фиксаторов 43, имеющих конические выступы-фиксаторы 44. Фиксирующее устройство замыкается рукояткой эксцентрика 45. На подошве обуви велосипедиста (см. фиг.6 и 7) — «велогетке» 46 жестко закрепляется опорная пластина 47, в пяточной части которой выполнены стопорные отверстия 48 для вхождения в них выступов-фиксаторов 44, а в носковой части предусмотрены краевые участки — фиксаторные поля 49 для размещения в пазах 42 рамы.

Прицеп велосипеда (см. фиг.8) содержит раму с арками 50, колеса 51, буксировочное устройство 52, с помощью которого прицеп присоединяется к буксировочному устройству 3 велосипеда. Буксировочное устройство 52 содержит буксирный узел 53, выполненный с возможностью проворота и изменения угла наклона буксировочного устройства 3 велосипеда относительно буксировочного устройства 52 прицепа. На арочной раме прицепа установлена независимая подвеска колес, содержащая рычаги 54, соединенные с горизонтально расположенными гидравлическими амортизаторами 55.

На арках 50 закреплена лебедка 56 для подвешивания транспортируемого груза, который может быть помещен и в грузовую гондолу 57 (см. фиг.9).

Комплект (см. фиг.10) содержит велосипед, прицеп и грузовую гондолу, которая выполнена с возможностью трансформации в кейс 58 для перевозки велосипеда и прицепа.

Велосипед по второму варианту (фиг.11) содержит раму 1 из двух частей, расположенных параллельно друг другу и соединенных горизонтальными тягами 59 с шаровыми шарнирами. Обгонные муфты велоприводов содержат храповики двустороннего действия. Буксирный узел 53 прицепа содержит две шарнирные ступени, объединенные между собой горизонтальной буксирной тягой 60, которая со стороны велосипедов опирается на шаровые опоры 61 буксировочных частей каждого велосипеда, а со стороны прицепа, расположенного по ее центру, соединяется с буксирным узлом 53 карданным шарниром.

Особенности принципа действия и преимущества данной группы изобретений по сравнению с существующими аналогами.

Особенность механизма холостого хода заключена в том, что во время движения велосипедиста в режиме холостого хода происходит аккумулирование кинетической энергии общей массы системы «велосипедист-велосипед» во вращение переднего блока звездочек с наружной обоймой обгонной муфты и цепью. Новая компоновка механизма холостого хода дает возможность получения трекового эффекта за счет жестко посаженного на ступице втулки заднего колеса ведомого блока звездочек, который активно передает через вращение цепи накопленный запас кинетической энергии на ведущий блок звездочек, облегчая вращение рычажного механизма. Кроме того, имеет место эффект полуавтоматического переключения передач, поэтому велосипедисту, который движется в режиме холостого хода, необходимо только передвинуть манетки переключателей передач в нужное положение, при этом постоянно вращающаяся цепь автоматически перейдет в нужное положение, причем в оптимально нагрузочном режиме.

Особенность принципа действия кареточного узла связана с наличием концевых участков вала 21 каретки 22 (см. фиг.4), что позволяет снять с элементов 31 (кривошипов) поперечно-осевую нагрузку от воздействия усилий ног велосипедиста. Эту нагрузку принимают на себя двуплечие рычаги рычажной пары через педальные 28 плечи, которые имеют жесткую опору на концах вала (люфт скользящей посадки выбирается регулировочными шайбами) и плечи 29, передающие крутящий момент рычагов, жестко соединенные (с определенным зазором) с элементами 31, которые приводят во вращение вал 21 каретки 22 с храповиком 23 обгонной муфты.

Особенность принципа действия рычажного механизма связана с увеличением суммарной длины плеч рычажной пары, что повышает момент крутящий, передаваемый на вал 21 каретки 22. Величина Мкр также зависит от приложенного усилия и частоты педалирования, которая находится во взаимодействии с массой грузов-ускорителей 32, расположенных по одну сторону от вала 21 каретки 22. В результате возникает «ускоряющий» эффект, в основе которого заложено использование потенциально-кинетической энергии жестко закрепленной массы грузов-ускорителей 32, вращающихся в вертикальной плоскости (данный эффект возможно использовать только в биомеханических системах, в которых закон дисбаланса механических систем не действует). Другая особенность связана с эффектом, возникающим вследствие бумерангообразной конфигурации плеч рычагов рычажной пары, которая исключает возникновение общей мертвой точки при педалировании в системе «нога-педаль», а также в системе: рычаг рычажного механизма — педальное плечо педального механизма, горизонтальной оси (90°-270°) полного цикла педалирования.

Особенность принципа действия педального механизма связана с передачей мышечных усилий на педальные плечи рычагов рычажной пары при полноопорной постановке стоп на педалях, за счет разнесения между собой носковой (P1 и F1) и пяточной (Р2 и F2) осей приложения силы и оси вращения педальной рамы (см. фиг.12 и фиг.6), вокруг которой на внутренних подшипниках 39 шарнирного узла 41 вращается каждый рычажный комплект.

Вращение педальных механизмов такой конструкции образует силовые контуры с эллипсовидными кривыми, которые «рисуют» оси приложения сил к педальной раме, и правильными окружностями, которые «очерчивают» головки плеч 28 и 29 рычажных комплектов. Средний радиус эллипсовидных контуров полного цикла педалирования равен 221 мм, при остающемся классическим радиусе вращения рычажных комплектов, равном 170 мм. Суммарное превышение преобразования прикладываемых усилий велосипедистом, а значит и величина выходного момента крутящего на 235% выше, чем у велосипедов с серийными педалями среднестатистической площади 62,5 см2.

По эффектообразующим элементам данное превышение выглядит следующим образом:

— «полноопорная постановка стопы на педаль» при круговом педалировании — на 180%.

— увеличение среднего радиуса педалирования на 30%

— бумерангообразный эффект рычагов 25%.

Оздоровительный эффект и эффект экономии усилий проявляются в результате, практически, 100% приложения усилий к педальной раме, причем велосипедисты с любым размером ноги и весом получают оздоравливающий эффект, т.к. удельное давление педали на стопу возникает ниже, чем при ходьбе, поэтому время пребывания человека в седле можно приравнять ко времени передвижения человека пешком, но на порядок большие расстояния и с большим оздоравливающим эффектом за счет отсутствия ударной нагрузки шага или бега также происходит более полное расслабление мышц ног в фазе давления (0-97)°, причем без ущерба для темпа движения, в фазе тяги коленом (195-306)° эффективно и с большой амплитудой работают мышцы бедра, что при возможности сохранения восстановительного баланса благотворно влияет на рост общей тренированности организма.

Испытания-велопривода.

Образец испытанного велопривода представляет собой сварную конструкцию, где рычаги выполнены в виде педальных плеч, которые своими диаметральными основаниями жестко (сварочное соединение) соединены с элементами 31 (кривошипами), приводящими во вращение вал 21 каретки 22, а ось вала 21 каретки 22 проходит через диаметральный центр рычагов виртуально. При движении в такой конструкции (II поколение) появлялся скручивающий момент, который разбивал клиновые соединения на валу 21 каретки 22 примерно через 150 км пути, приходилось менять клинья и устанавливать прокладки. Но, несмотря на такой существенный недостаток, результаты говорят сами за себя (см. табл.1 и 2). Испытания были проведены автором в одиночном велопробеге 22-26 октября 2002 г. по маршруту Смоленск-Минск-Смоленск. За трое суток пробега (41 ходовой час) было пройдено 638 км со средней скоростью 15,560 км/ч. На велосипеде «Турист ХВЗ» имелся стандартный вал каретки, но были заменены шариковые подшипники на промышленные №202. Велопривод был оснащен одной передачей 51:15 (3, 4) для получения более точных расчетов при анализе результатов велопробега; педали применялись спортивные с ремешками, а велотуфли с шипами.

Для сравнения был выбран велопоход, который проходил в августе 2001 в горах Тянь Шаня. За семь суток похода (35 ходовых часов) было пройдено 544 км со средней скоростью 15,542 км/ч. В велопоходе принимали участие 5 велотуристов (средний возраст 31,4 года) на велосипедах горного типа, имевших от 21 до 27 штатных передач. Примерное среднее передаточное число 2,2. Педали различные, как контактные, так и со свободной постановкой стопы. Количество груза на одном велосипеде, примерно равное около 30 кг, но вес велосипеда «Турист ХВЗ» с предлагаемым велоприводом превышал на 75% вес велосипеда велопохода. (см. табл.1.)

Таблица 1
Сравнительные данные испытательного велопробега и велопохода IV категории сложности
Сравнительные данныеИспытаниеВелопоход
1Среднесуточная продолжительность езды, ч13,75
2Среднесуточное расстояние, км21379
3Средняя скорость движения, км/ч15,615,5
4Среднее передаточное отношение3,42,2
5Возможность использования различных передаточных отношенийнетесть
5Средний возраст участников, года5734,1
7Вес велосипеда (собственный), кг2112
8Вес груза, кг3030
9Климатические условиядожди, мороз -7°Савгуст
Таблица 2
Расчетные данные испытаний и велопохода
Суточный пробегСоотношение данных, %
расстояние, кмВремя, чРасстояниеВремя
Испытание21313,7270274
Велопоход795100100

Вывод: Основные параметры движения, такие как расстояние и время, испытательного велопробега превысили эти же параметры велопохода в среднем на 172% только за счет рычажно-шатунного и ускорительного эффектов велопривода второго поколения.

Достижение практически одних и тех же параметров скорости движения также говорит в пользу испытанного велопривода, т.к. величина передаточного отношения, 3,4 (95 дюймов), применяется велосипедистами уровня сборной страны в гонках на треке. Для наглядного представления о полученном скоростном эффекте обратимся к примеру: механизм переключения передач велосипеда (в плане соотношения этих передач) аналогичен КПП грузового автомобиля КАМАЗ-2×5. Примененная единственная передача испытываемого велопривода 51:15 соответствует IV повышенной передаче автомобиля КАМАЗ, и соответственно 30 кг груза для велосипеда соответствует примерно 7 тоннам для КАМАЗа. Отсюда — сможет ли КАМАЗ передвигаться с этим грузом на IV повышенной единственной передаче, тем более со скоростью 50-60 км/ч, адекватной 15 км/ч велосипедиста с грузом?

Лабораторные испытания рычажного макета предлагаемого велопривода.

Приводится для более полного раскрытия эффекта действия рычажно-шатунного механизма на примере скользяще-жесткой посадки рычагов рычажной пары на концах кареточного вала в отличии от конструкции испытанного в велопробеге велопривода второго поколения.

Образец рычажного механизма (см. фиг.14) представляет собой один комплект рычажной пары рычажного механизма велопривода третьего поколения с прямой конфигурацией плеч, в котором педальное плечо 28 и плечо 29, передающее крутящий момент, установлены в ступице, со скользяще-жесткой посадкой на хвостовике кареточного вала 21. Элемент 31, жестко соединенный с плечом 29, передает крутящий момент на фланец 7 кареточного вала 21. В конструкции рычажного механизма также предусмотрена возможность трансформации в одну половину классического велопривода путем перестановки педального плеча 28 со ступицы кареточного вала 21, на фланец 7 кареточного вала 21 (диаметры ступицы и фланцев равны между собой).

Рычажный механизм испытывался в двух вариантах с различной оценкой.

Вариант №1: испытания при помощи динамометра

При условии равенства длин плеч 28 и 29, равных по 178 мм, к педальному плечу 28 подвешивается груз в 1,5 кг. На подвеске штатива крепится динамометр, выход пружины которого закрепляется на противоположном конце кареточного вала в основании его фланца.

Опыт проводился в варианте классического велопривода и предлагаемого велопривода. Результаты приведены в таблице №3.

Таблица 3
Виды велоприводаВес груза, кгДлина плечПоказания динамометра в кгУгол отклонения педального плеча, град
Велопривод «Классика»1,51787,428
Предлагаемый велопривод1,51787,227

Опыт показывает, что при одном и том же усилии, приложенном к педальному плечу 28, в варианте предлагаемого велопривода величина момента крутящего, согласно показаниям динамометра и угла отклонения педального плеча 28 уменьшились. Эти данные доказывают, что Мкр, переданный элементом 31 (фиг.4) на кареточный вал рычажного механизма, уменьшился за счет увеличения плеча передачи усилия и, чтобы достичь показаний динамометра варианта «Классика», груз на педальном плече 28 необходимо увеличить на 2,81%. В практике движения велосипеда произойдет обратное: при одном и том же сопротивлении качению усилие на предлагаемом велоприводе 5 потребуется меньшее, что подтверждают дорожные испытания велопривода второго поколения.

Для проведения второго варианта испытаний в конструкцию подвески рычажного комплекта были внесены изменения, которые заключались в следующем: рычажный комплект был установлен на кронштейне штатива в конусах со скользящей посадкой; опыт проводился без применения динамометра и груза, но на условиях установления равновесия рычажной системы в классическом варианте и определения изменения этого равновесия в варианте предлагаемого велопривода. Опыт проводился в двух состояниях систем: в статике, когда системы устанавливаются в нулевое (горизонтальное) положение и выходят из него самостоятельно; и в динамике, когда системы устанавливаются в возможно допустимое (по конструкции штатива) вертикальное положение и самостоятельно возвращаются в положение, соответствующее условиям равновесия каждой системы. Данные приведены в таблице №4

Таблица 4
Вид РМУгол отклонения педального плеча от горизонтали, град
СтатикаДинамика
РМ «Классика»00
РМ предлагаемый515

Опыт показывает, что при одном и том же сопротивлении качению в виде регулируемого плеча, установленного на кареточном фланце, педальное плечо 28 варианта предлагаемого рычажного механизма отклоняется от нулевой отметки так, как если бы его удлиняли или прикладывали дополнительное усилие. На основании приведенных опытов можно утверждать, что система увеличения выходного Мкр с помощью введения дополнительных элементов (плечо 29 и элемент 31) передачи усилия действует во вращающихся системах рычагов, в которых точка приложения силы и ось вращения системы разнесены между собой.

Повышение (или понижение) передачи для повышения производительности

POP QUIZ: Каков самый лучший и самый простой трюк для повышения эффективности мотоциклов и квадроциклов?

Дам пару советов. Это не полный капитальный ремонт двигателя, не принудительная индукция и, конечно же, не спрей азота.

Сдаться? Ну вот и ответ.

ЗАДНЯЯ ЗВЕЗДА СМЕНА


Задняя звездочка и цепь на Honda TRX 700XX.

Вы можете вспомнить нашу предыдущую публикацию «Как заменить цепь и звездочку квадроцикла», где мы разбили этот процесс на 9 простых шагов. Замена штатной звездочки на новую звездочку OEM-спецификации от Race Driven помогает гарантировать, что ваша машина будет работать так, как в тот день, когда она покинула завод. Когда менять заднюю звездочку, зависит от того, как часто вы ездите, как вы едете и где вы едете, но если вы хотите улучшить характеристики своего мотоцикла или квадроцикла, вы можете радикально изменить рабочие характеристики своего мотоцикла или квадроцикла, отрегулировав передаточное число главной передачи с помощью звездочки большего или меньшего размера.

ЧТО ОЗНАЧАЕТ «КОНЕЧНОЕ СООТНОШЕНИЕ ПРИВОДА»?

Передаточное число главной передачи относится к увеличению крутящего момента на последней ступени передачи между трансмиссией и ведущими колесами. Когда несколько шестерен сцепляются вместе, они образуют зубчатую цепь. Общее количество зубьев каждой шестерни — это передаточное число. Чтобы рассчитать передаточное число, подсчитайте количество зубьев шестерни, прикрепленной непосредственно к источнику питания, и последней шестерни в цепи. Передаточное число главной передачи — это количество зубьев ведущей шестерни на ведомую шестерню.Например, если входная шестерня имеет 10 зубьев и приводит в движение ведомую шестерню с 41 зубом, передаточное число будет 4,10: 1. Это означает, что для 1 поворота выходной шестерни требуется 4,10 оборота входной шестерни. Крутящий момент увеличен в 4,10 раза. В легковом или грузовом автомобиле главной передачей является передаточное число трансмиссии и передаточное число заднего дифференциала. Для мотоциклов и квадроциклов передаточное число главной передачи — это последняя передача в передаче * на заднюю звездочку.

Передаточное число главной передачи фактически определяет характеристики мощности вашего автомобиля.Модификация заднего дифференциала с более высокими (число НИЖНЕЕ передаточное число) или более короткими (число ВЫСОКОЕ передаточное число) передач может трансформировать трансмиссию в противном случае штатную трансмиссию для увеличения максимальной скорости или более быстрого ускорения. Однако для каждого варианта есть свой компромисс. Высокие передаточные числа (например: 2,79, 2,90, 3,00, 3,25) обеспечивают более высокую максимальную скорость и (в некоторой степени, в зависимости от применения) лучшую экономию топлива, но за счет ускорения. Короткие передачи (например: 3,73, 3,91, 4,11, 4,30) помогут вам быстрее сойти с траектории и сократят ваш 0-60 раз, но вы можете ожидать падения максимальной скорости и снижения расхода топлива.Легковые и грузовые автомобили проектируются на заводе для обеспечения как оптимальных ходовых характеристик, так и максимальной экономии топлива, и это достигается за счет оснащения их наборами передач, которые в большей или меньшей степени предназначены для обеспечения наилучшего из обоих миров. Для тех, кто просто не может оставаться в покое, существуют комплекты вторичного оборудования, а некоторые производители даже предлагают свои собственные разрешенные на заводе продукты. Потому что мощный двигатель Honkin с невероятной мощностью и невероятным крутящим моментом может помочь удовлетворить ваши потребности в мощности, но от этого мало что будет, если он не будет согласован с трансмиссией и задней частью, которые могут наилучшим образом оптимизировать эту мощность.

Тот же принцип можно применить к мотоциклам, внедорожникам, спортивным мотоциклам, квадроциклам и UTV. Разница в том, что вместо того, чтобы разорвать задний дифференциал и беспокоиться о том, чтобы его не забрызгала вонючая жидкость заднего дифференциала, нужно просто поменять * заднюю звездочку.

* Некоторые квадроциклы и UTV используют полный дифференциал, как легковые автомобили или грузовики.

ПЕРЕДАЧА ВВЕРХ ИЛИ ВНИЗ


Задние звездочки для Suzuki GSX-R600 2006-2010 гг.У шестерни наверху 41 зуб, а у нижней — 47.

«Повышение передачи» или «пониженная передача» означает, хотите ли вы больше максимальной скорости или более низкого крутящего момента. Задняя звездочка меньшего размера идеально подходит для включения передачи, что дает вам повышенную максимальную скорость в таких ситуациях, как большая сверхскорость или гонка по шоссе и обгон на длинных прямых участках. Пониженная передача с помощью более крупной задней звездочки может быть полезна в дрэг-рейсингах, чтобы помочь совершить прыжок на стартовой линии, и на бездорожье, где требуется низкий крутящий момент, чтобы продвигаться и ползать по опасной местности на низких, но стабильных скоростях.Оба приложения имеют свои преимущества и недостатки с точки зрения производительности. Какой из них лучше всего подходит для всех, зависит от вашего стиля катания и типа катания.

Эта таблица может помочь вам решить, какая передача лучше всего соответствует вашим потребностям.

СОВЕТЫ

Каждый раз, когда вы меняете звездочку, вам также необходимо менять цепь. Обычно это происходит из-за износа при езде, но в таких случаях, как повышение или понижение передачи, вам нужно убедиться, что у вас есть цепь, которая подходит правильно и без провисания, снижающего мощность.Не смешивайте старую цепь с новой звездочкой (или наоборот), иначе вы сократите срок службы обеих частей. Ознакомьтесь с нашим инвентарем послепродажных цепей и нашим разделом инструментов и аксессуаров, чтобы найти необходимые прерыватели цепи и инструменты для выравнивания цепи, необходимые для выполнения работы.

Замена одного зуба на звездочке промежуточного вала может иметь большее влияние на передачу, чем замена одного зуба на задней звездочке, но замена задней звездочки позволяет вам точно настроить настройки в соответствии с вашими эксплуатационными требованиями.

На полноприводных автомобилях передние звездочки также можно заменять, и их следует менять в рамках регулярного технического обслуживания. Однако вам следует избегать использования передних звездочек, которые меньше оригинального или стандартного оборудования. Приводная цепь должна вращаться с меньшим радиусом, что, в свою очередь, увеличивает трение и сокращает срок службы цепи.

Передние и задние звездочки для грязевого велосипеда | MotoSport.com

Звездочки велосипеда грязи

Главный компонент привода — звездочки для велосипеда для бездорожья, удерживающие цепь и вместе приводящие в движение ваш велосипед.Во многих отношениях звездочки для внедорожников идут рука об руку с цепью, так как вы обычно заменяете обе, независимо от оставшегося срока службы одной или другой. Иногда, несмотря на то, что вам нужна замена звездочки, многие гонщики, которым требуется больше верхнего или нижнего конца, могут заменить существующую звездочку на звездочку с большим или меньшим количеством зубьев для достижения желаемого результата.

Замена звездочек грязевого велосипеда

Если вы хотите более быстрое ускорение (более низкий уровень), используйте меньшую переднюю звездочку или большую заднюю звездочку, которая создает более низкое передаточное число.Но поймите, что на каждый 1 зуб, который вы меняете на передней части, это эквивалентно замене 3–4 зуба на задней части, так что не сходите с ума. И наоборот, для более высокой максимальной скорости (большей максимальной скорости) используйте большую переднюю звездочку или меньшую заднюю звездочку и применяйте такое же передаточное отношение зубьев, как указано выше. Это, конечно, создает более высокое передаточное число.

Лучшие звездочки для мотоциклов грязи

Мы предлагаем широкий ассортимент звездочек для мотоциклов для бездорожья от самых надежных в отрасли брендов. Кроме того, вы можете купить отдельные передние звездочки, задние звездочки или сэкономить деньги и немного хлопот купить комплект цепи и звездочки, который даст вам все необходимое для начала.Обратите внимание на следующие популярные бренды, которые производят звездочки для мотоциклов для бездорожья:

… и многое другое!

Звездочки Dirt Bike на MotoSport

Купите все звездочки для внедорожников в MotoSport! Используйте раскрывающееся меню на странице отдельного продукта и введите марку, модель и год вашего внедорожного велосипеда, чтобы определить установку. Помните, мы всегда рекомендуем заменять звездочки и цепь вместе, поэтому ознакомьтесь с комбинациями, которые мы собрали вместе. Если вам нужна помощь или у вас есть вопросы, позвоните нам по телефону 1-888-676-8853 и поговорите с руководителем, который предоставит информацию, необходимую для принятия осознанного выбора.Также прочтите The Ultimate Dirt Bike Sprocket & Gearing Guide для получения дополнительной информации о передаче и настройке привода.

MotoSport доставляет все звездочки для мотоциклов для бездорожья быстро и заказывает доставку на сумму более 79 долларов бесплатно!

The Ultimate Dirt Bike Sprocket & Gearing Guide

Одним из наиболее важных аспектов владения мотоциклом для бездорожья является техническое обслуживание. Замена жидкостей, замена фильтров и уход за компонентами привода увеличивает срок службы вашего велосипеда и поддерживает вашу поездку в отличной конкурентоспособной форме.

Замена деталей привода внедорожника требует некоторой тонкости. Не ожидайте быстрого ремонта, такого как замена масла и масляного фильтра. Также может быть трудно определить, когда детали привода внедорожника нуждаются в замене. Однако по опыту вы сможете заметить признаки. Итак, первое, что вы должны делать перед каждой поездкой, — это осматриваться. Меньше всего вам нужно, чтобы цепь оборвалась сразу после того, как вы открыли дроссельную заслонку.

Звездочки

Цепь

Компоненты приводной цепи — направляющая, ползун, ролики и т. Д.

Пора заменить, если видите:

  • Износ зуба
  • Купирование у основания зуба
  • Зубы с опорой на зубы

Пора заменить если видите:

  • Легкий люфт
  • Звенья цепи образуют плоский рисунок износа сверху и снизу
  • Ржавый / корродированный, цепь не проходит гладко

Пора заменить если видите:

  • Открытый металл
  • Цепь врезная в каретку
  • Ослабленные болты звездочки

Замените цепь и звездочки вместе

Если вы заметили любой из вышеперечисленных признаков, пора заменить детали привода.Поскольку все компоненты работают в унисон, всегда лучше заменять их наборами. Самый простой способ проверить, изношена ли ваша цепь, — это измерить расстояние между штифтами, удерживающими цепь вместе. Это позволит определить, превысила ли цепочка свой «предел обслуживания» для stretch.

В руководстве по эксплуатации вашего велосипеда объясняется, какой будет лимит обслуживания. Если ваша цепь изношена, замените звездочки, и наоборот. Цепи и звездочки образуют рисунок износа друг с другом.Когда один компонент заменяется, а другие нет, новый компонент изнашивается быстрее из-за того, что на других деталях возникли картины износа. То же самое обычно касается цепных роликов и направляющих. Обычно они изнашиваются одинаково, и если они выходят из строя, цепь может повредить некоторые очень дорогие детали, такие как поворотный рычаг.

Когда пришло время купить запасные части привода внедорожного велосипеда или если вы хотите обновить его, вам необходимо учитывать тип велосипеда, а также ваш стиль езды и гонок.Как правило, при обновлении или поиске преимущества сосредоточьтесь на переключении передач, а также на том, какой тип цепи лучше всего подходит для вашего велосипеда и условий катания. Для некоторых других компонентов, таких как ползунок и направляющая цепи, переход на более высокопроизводительную деталь увеличивает время между заменами, и ваша цепь служит дольше.

Передаточное число звездочки

При обновлении помните следующее, в зависимости от того, чего вы пытаетесь достичь с помощью своего велосипеда:

Для более быстрого разгона (более низкий уровень)

  • Используйте маленькую переднюю звездочку (промежуточный вал) или большую заднюю звездочку.На каждый 1 зуб, который вы меняете на передней части, приходится менять 3-4 зуба на задней.
  • Создает более низкое передаточное число. Это идеально подходит для катания по узким тропам или трекам без большого количества длинных прямых участков. Более низкое передаточное число лучше подходит для Arenacross, в отличие от гонок по открытым пустыням.

для более высокой максимальной скорости (более высокий уровень)

  • Используйте большую переднюю звездочку или меньшую заднюю звездочку. Опять же, смена переднего колеса оказывает большее влияние на вашу передачу, чем смена заднего.
  • Создает более высокое передаточное число. Более высокие передаточные числа хорошо работают на высоких скоростях, таких как езда в пустыне, на песчаных трассах для мотокросса или в любом месте, где не так много крутых поворотов.

Как правило, при каждой смене «зуба» на передней звездочке вы меняете заднюю звездочку примерно на три-четыре «зуба». Если вы хотите слегка изменить передачу, добавьте или уменьшите 1-2 зуба на задней звездочке. Хотя передаточные числа не так важны для гонщиков по бездорожью, как для уличных применений, всегда приятно знать, где вы стоите.Чтобы один раз повернуть заднюю звездочку, звездочка промежуточного вала должна вращаться столько раз, сколько указано в столбце «Передаточное число». (см. изображение передаточного числа)

Например, задняя звездочка с 30 зубьями и передняя звездочка с 10 зубьями равны передаточному отношению 3,00 или трем оборотам спереди на каждый оборот сзади.

Вот некоторые из лучших комплектов цепей и звездочек, доступных для различных применений / применений.

Комбинированная цепь Sunstar с цепью и стальной звездочкой идеально подходит для тех, у кого ограниченный бюджет, и подходит для любого стиля катания.

* Выбор передач — это сугубо личное предпочтение, и вы сами решаете, какая из них будет вам полезна. Если вы не уверены в том, какой тип редуктора вам следует использовать, напишите нам по электронной почте или позвоните нам по телефону 866-677-7338 и сообщите свою информацию, и мы будем рады помочь вам.

* Чтобы продлить срок службы ваших деталей, обильно и часто используйте смазку для цепей.

Хотите больше информации о цепях? Обратите внимание на эти драгоценные камни:

Фермы и фабрики с педальным приводом: забытое будущее велотренажеров

Один из способов решить проблему больших потерь энергии педальных генераторов — это не производить электричество вообще, а механически приводить в действие устройства, когда это возможно.Другой способ — единственный способ для устройств, которые не могут получать питание через прямое механическое соединение, потому что они не полагаются на вращательное движение, — это сделать производство электроэнергии более эффективным. Это можно сделать, построив с нуля генератор с педальным приводом, вместо использования дорожного велосипеда, или отказавшись от одного или нескольких электронных компонентов в цепи передачи энергии. Все подходы можно комбинировать, в результате чего получается педальный блок питания, который может приводить в действие множество механических устройств и сравнительно эффективно вырабатывать электроэнергию.

Прямая механическая передача энергии

Многие машины могут получать питание от прямого механического соединения, хотя обычно это означает адаптацию устройства так, чтобы оно могло работать независимо от электричества. Однако стационарные педальные машины с прямой механической передачей энергии — хотя они были обычным явлением в былые времена — в западном мире коммерчески недоступны.

Единственным исключением, похоже, является Fender Blender, машина с педальным приводом, используемая для приготовления смузи (рисунок справа).Тем не менее, велосипедные машины старой школы сейчас разрабатываются как любителями в западном мире, так и некоммерческими организациями в развивающихся странах.

В Гватемале Mayapedal с 2001 года построила около 2000 машин с педальным приводом из старых велосипедных запчастей. На сегодняшний день НПО построила водяные насосы с педальным приводом, измельчители, молотилки, плиточники, измельчители орехов, стиральные машины и блендеры. Их изготовление стоит всего от 40 до 250 долларов. Их устройства со временем стали более сложными и даже более дешевыми в производстве, превратившись из адаптированных велосипедов в машины с педальным приводом, созданные с нуля, которые включают в себя маховик и способны управлять различными типами устройств.

Другой пример — круглошлифовальная машина VitaGoat Cycle Grinder, разработанная канадской неправительственной организацией Malnutrition Matters. Мясорубка с педальным приводом является частью полной системы пищевой промышленности, которая поставляется в развивающиеся страны Азии и Африки. Chocosol учит местных жителей Мексики создавать собственные измельчители какао-бобов с педальным приводом, а канадские промоутеры также используют эту технологию в своем магазине в Торонто. В рамках проекта Full Belly Project для фермеров в Африке разрабатываются ореховые измельчители с приводом от человека.

Кроме того, существует множество изобретений, созданных людьми: стиральные машины с педальным приводом от Алекса Гадсдена и Бездомного Дейва, мыльный блендер с педальным приводом от Фредерика Бридена или педальная мельница для яблок Бена Полито.Подобные машины были построены и за пределами США. Некоторые сосредоточились на восстановлении и использовании старинных машин, например, Blue Ox Millworks.

Одним из очевидных недостатков разработки машины с педальным приводом для любого применения в домашнем хозяйстве, на ферме или в мастерской является то, что вам нужно много места. Кроме того, создание блока питания педали для каждого инструмента может стать трудоемким, дорогостоящим и энергоемким.

Это не такая большая проблема в случае небольшого промышленного использования, когда для производства продукта требуется несколько машин.Хорошим примером этого является упомянутый выше блендер для мыла с педальным приводом. По этой причине блендер с педальным приводом может быть реалистичным вариантом для малого бизнеса, например, бар для смузи. Однако, когда требуется больше инструментов, а пространство ограничено, как это часто бывает, нам нужно найти способы обойти эту проблему. Одним из решений является использование мощности педали для выработки электроэнергии, которая затем может использоваться для питания различных устройств. Однако этот подход крайне неэффективен с потерями энергии до более чем 70 процентов, и его следует избегать всякий раз, когда устройство может приводиться в действие механическим способом.

Конструкция универсальных агрегатов с педальным приводом и прямой механической трансмиссией широко исследовалась в 1970-х годах.

Другое решение — разработать универсальный педальный силовой агрегат с прямой механической трансмиссией, который можно использовать для управления большим количеством различных инструментов и устройств (включая генератор). Этот метод, который решает как проблему пространства, так и проблему неэффективности, широко исследовался в 1970-х годах.

Универсальные станки с педальным приводом

Универсальных станков с педальным приводом на рубеже двадцатого века не существовало, хотя некоторые из них совмещали несколько функций (например, пиление и сверление).В 1970-е годы было разработано и построено по крайней мере пять интересных изобретений: Energy Cycle (Дирк Отт), Dynapod (Алекс Вейр), маховик с приводом от человека (JP Modak), Педальный блок питания (Дэвид Уэйтман). и велосипед двойного назначения (Джоб Эбенезер). Все эти концепции представляют интерес и для создания одноцелевых педальных силовых агрегатов.

Динапод

После экспериментов с одноцелевыми машинами с педальным приводом в нескольких странах Африки британский инженер Алекс Вейр (который также является разработчиком этой низкотехнологичной онлайн-базы данных) построил многоцелевой «Динапод» (название происходит от греческих слов для «силы» и «ноги») в Танзании в начале 1970-х годов.Силовой модуль, основанный на концепции 1968 года Стюарта Уилсона из Оксфордского университета, выпускался в одноместной и двухместной версиях. Тандемный блок удвоил выходную мощность и в то же время выровнял поток мощности, при этом оба набора педалей были размещены не по фазе.

Dynapod был изготовлен с использованием специальной рамы. Кроме педалей, кривошипов и цепных приводов, машина не имела ничего общего с велосипедом. В первых конструкциях использовались деревянные рамы, а в более поздних версиях — стальная рама. В качестве маховика Weir использовал старое велосипедное колесо, заполненное цементом.Стоимость деревянного каркаса (в 1980 г.) составляла от 40 до 100 долларов, включая материалы и рабочую силу.

Dynapod может приводить в действие насосы, измельчители кукурузы, веялки, кузнечные воздуходувки, шлифовальные станки, сверлильные станки, гончарные круги, распылители краски, пылеулавливающее оборудование, терки для кассавы, измельчители кофе, шелушители зерна, декортикаторы волокна, молотилки, пресс-подборщики, ленточные пилы. , шинные насосы и швейные машины. Его также можно использовать для выработки электроэнергии.

Эти машины, приводимые в движение человеком, не имеют ничего общего с велосипедом, за исключением педалей, кривошипов и цепных приводов.

Чтобы обеспечить работу такого разнообразного оборудования, Dynapod был оснащен несколькими приводами.Он мог работать с прямым приводом с передаточным числом 1: 1 (когда требовался большой крутящий момент на низкой скорости), цепным приводом с передаточным числом до 3: 1 (компромисс между крутящим моментом и скоростью для работы. измельчители, молотилки и т. д.) или ременной привод с соотношением до 10: 1 (для выработки электроэнергии, веялки и других применений, где требовались высокие скорости). Машину легко перестраивали с одного привода на другой. Множественные приводы на машинах с педальным приводом не были новинкой — они были и в некоторых более ранних машинах с педальным приводом.

Энергетический цикл

Rodale Press, издатель книги 1977 года «Сила педалей в работе, отдыхе и транспорте», также имел исследовательскую группу — отдел исследований и разработок Rodale. Вместе с изобретателем Диком Оттом они разработали свою версию универсального блока питания педали, «Energy Cycle».

Как и Dynapod, он был построен с нуля и мог вместить большое количество съемных инструментов. К ним относятся кухонные принадлежности (например, взбиватель для яиц, консервный нож, измельчитель орехов, измельчитель пищевых продуктов, шкуросъемник для рыбы, нож для нарезки мяса и сыра и питтер для вишни), сельскохозяйственную технику (включая водяной насос для орошения, щипцы для перьев, картофелекопалку, кукурузную лущильную машину. , очиститель зерна, полировщик риса и валик для овсянки) и более общие инструменты (например, шлифовальный круг, полировщик камня, дрель, резчик по дереву и зарядное устройство).

Было построено несколько улучшенных прототипов, сначала из железа, а затем из стали. При первом обновлении конструкции к устройству был добавлен большой рабочий стол, который позволял оператору выполнять множество задач, не вставая с места. Более поздние версии оснащались маховиком. Эксперименты показали, что этот агрегат дает значительные преимущества по сравнению с машинами с ручным приводом или двигателями и двигателями малой мощности. Основная проблема по-прежнему состоит в том, чтобы найти универсальные средства для присоединения каждого агрегата к энергетическому циклу, который должен быть легко преодолен, если ему будут посвящены серьезные промышленные исследования.

Лебедка с педальным приводом: замена сельскохозяйственной лошади или трактора

И Dynapod, и Energy Cycle могут также использоваться в качестве лебедки с педальным приводом, предлагая совершенно новый набор возможностей. Лебедка полезна для буксировки, выемки грунта, подъема грузов или вспашки снега. В сельском хозяйстве лебедка может использоваться для обработки кабеля, принцип, при котором движущая сила для вспашки (или боронования, культивации, посева и сгребания сена) является стационарной, и только инструмент (прикрепленный к многофункциональному мобильному держателю инструментов) перемещается через поле вдоль кабеля.

Этот сельскохозяйственный метод основан на паровой тросовой вспашке, которая на протяжении почти ста лет была единственным механизированным способом ведения сельского хозяйства. Обработка кабеля дает значительную экономию энергии, поскольку движущая сила — будь то человеческая, животная или механическая — не должна тратить энергию на передвижение по почве. Дополнительными преимуществами являются предотвращение уплотнения почвы, заметный недостаток использования трактора и возможность работы на переувлажненных почвах и крутых склонах.

Обработка кабеля — это принцип, в котором движущая сила при вспашке (или бороновании, культивации, посеве и сгребании сена) является стационарной, и только орудие перемещается по полю по тросу.

На поле, оставленном под паром в течение года, Энергетический цикл протащил плуг через траву и почву, покрытую сорняками, успешно заменив работу сельскохозяйственной лошади или трактора. Один человек крутил педали лебедки, которая протаскивала плуг через почву, а другой управлял им.Им потребовалось около часа, чтобы вспахать 1500 квадратных футов. Единственная трудность заключалась в том, что лебедка имела тенденцию ломать или гнуть обычные ручные инструменты. Из-за этой проблемы, а также из-за того, что Energy Cycle был многообещающим инструментом для сада и ферм, исследовательская группа создала специализированную лебедку с педальным приводом и специальные инструменты для использования с ней.

Этот более компактный блок — в основном две педали, разделенные шпулей, установленной на подшипниках, встроенной в раму, которая также поддерживает сиденье, — был способен тянуть более 1000 фунтов (453 кг) со средним усилием на педали, увеличивая силу человека почти в десять раз. .Вместе со специально разработанной рамой, которая могла удерживать различное навесное оборудование, она успешно использовалась для протягивания, вспашки снега, удаления мелких пней и тяги сеялок, борон и граблей.

Низкие передачи использовались для работ, требующих медленного и мощного тягового усилия, таких как вспашка тяжелой почвы. Вторая или высокая передачи использовались для более легких работ, таких как боронование или обработка почвы. Чтобы перемещаться вбок и легко обрабатывать один ряд за другим, на салазках можно установить лебедку с педальным приводом.Вес оператора обеспечивает достаточную фиксацию во время использования.


Маховик двигателя с приводом от человека

Интересной разновидностью универсальной машины с педальным приводом является маховик с приводом от человека (pdf), разработанный Дж. П. Модаком, заслуженным профессором инженерного дела из Индии. Замечательная особенность машины Modak, которая разрабатывалась с 1979 года, заключается в том, что она может выдавать гораздо больше мощности, чем человек, который ею управляет.

Маховиковый двигатель с приводом от человека может выдавать гораздо большую мощность, чем человек, который им управляет

Система машины использует человеческую энергию и накапливает ее в маховике со скоростью, удобной для педаллера.После накопления максимально возможной энергии в маховике (время нажатия педали составляет 1-2 минуты), она становится доступной для приведения в действие технологической установки путем быстрого высвобождения накопленной кинетической энергии в маховике через подходящую муфту. Эта концепция работает только тогда, когда процесс может носить прерывистый характер, не влияя на конечный продукт.


Маховиковый двигатель с приводом от человека был первоначально разработан для производства кирпичей для жилищного управления в Мумбаи, Индия. С тех пор он успешно использовался для нескольких производственных операций в сельской местности, таких как подъем воды, обработка водорослей, токарная обработка древесины, веяние, резка древесных полос, выработка электроэнергии и работа кузнечного молота.Процессы, требующие до 6 л.с., могут быть задействованы с помощью концепции машины (хотя на сегодняшний день достигнута только треть этого объема). Это будет примерно в 20-60 раз больше, чем то, что средний человек может выдержать мгновенно (300 Вт) или длительное время (100 Вт).


Энергетический блок состоит из существующей рамы велосипеда, которая имеет сиденье и ручку, пару шестерен для увеличения скорости и маховик диаметром около одного метра. Трансмиссия состоит из спиральной муфты и зубчатой ​​пары для усиления крутящего момента.В частности, для производства кирпича технологическая установка состоит из шнека, конуса и матрицы, обычно используемых в моторизованных экструдерах для производства глиняных кирпичей.

Сочетание стационарного и мобильного педального привода

Дэвид Уэйтман придерживался совершенно другого подхода к универсальным машинам с педальным приводом. Его концепция (и прототип) была вдохновлена ​​Dynapod, но Weightman добавил одну особенность: машину по-прежнему можно использовать для транспортировки.Его педальный блок питания (PPU) состоял из велосипедного колеса в вилках, прикрепленных к раме с седлом. Затем агрегат можно было бы использовать независимо для привода механизмов через коробку отбора мощности, но также можно было бы подключить к двухколесному шасси для образования грузонесущего трехколесного велосипеда. Кроме того, устройство может быть подключено последовательно с другими устройствами для машинных приложений, требующих большей мощности. Вейтман обосновал свою концепцию, подчеркнув тесную связь между транспортом и использованием машин в сельскохозяйственном и промышленном производстве:

«В типичном сельскохозяйственном цикле выращивания семена и удобрения доставляются на поле, урожай выращивается и затем обрабатывается машинами, а затем продукция отправляется на рынок.Подобные закономерности можно увидеть в строительстве и мелком промышленном производстве. Использование педального блока питания в этой роли двойного назначения в точности аналогично использованию тракторов в европейском сельском хозяйстве в качестве источников энергии и транспортных устройств. PPU в равной степени подходит, как Dynapod, при работе с несколькими машинами, но более экономически целесообразен для индивидуального фермера из-за его возможностей в качестве транспортного устройства ».

Велосипед двойного назначения очень похож на генераторы электроэнергии, которые продаются сегодня, хотя он предназначен для механического управления несколькими механизмами и производства электроэнергии.

Джоб Эбенезер из MGO «Технология для бедных» усовершенствовал эту конструкцию, значительно упростив ее, заменив велосипед на трехколесный велосипед.На первый взгляд, его «велосипед двойного назначения» очень похож на агрегаты для выработки электроэнергии, которые продаются сегодня, хотя он нацелен на механическое управление несколькими машинами и выработку электроэнергии.


Оригинальная конструкция, предназначенная в первую очередь для использования в сельском хозяйстве, состоит из очень маленького маховика, прикрепленного к стандартному велосипеду, что позволяет использовать его в качестве машины с педальным приводом, которую можно использовать для приведения в действие множества мелких механических устройств, таких как молотилки для зерна, измельчители, веялки, измельчители арахиса, измельчители кукурузы, дисковые пилы, токарные станки по дереву, водяные насосы, электрические генераторы и множество мелких инструментов.

Устройство может быть переведено из транспортного режима в режим педального привода за считанные минуты. Широкая подставка, обеспечивающая устойчивость во время выработки электроэнергии, может подниматься вверх во время транспортировки и использоваться в качестве грузовой платформы. Электроэнергетическое устройство остается прикрепленным к велосипеду в транспортном режиме, поэтому его можно легко транспортировать и сразу же использовать. Конечно, этот педальный блок питания — компромисс, но интересный.

В отличие от современных представлений, он имеет небольшой маховик и не использует фрикционный привод из-за его низкого КПД.В режиме первичного двигателя обычная цепь велосипеда соскальзывает с цепного колеса, а специальная цепь к механизму отбора мощности надевается. Изменить передаточное число так же просто, как на шоссейном велосипеде. Для управления более мощными устройствами можно разместить маховик большего размера между силовым модулем и технологической установкой.

Педали

Многие преимущества машин с педальным приводом не делают устаревшими ручные рукоятки или педали. Не всем устройствам нужен дополнительный крутящий момент педали.Ручные кривошипы и педали могут быть лучшим вариантом, если требования к мощности низкие или если мощность требуется только в течение короткого периода времени. Устройство с ручным приводом намного компактнее, чем устройство с педальным приводом. Если при работе с маломощным оборудованием требуется ручное управление, педали остаются лучшим выбором, поскольку они предлагают оператору большую свободу движений, чем педали.

Конечно, оба механизма также могут иметь преимущества современной конструкции и материалов, включая шестерни, увеличивающие скорость или крутящий момент.Хорошим примером является кухонный гарнитур R2B2 немецкого дизайнера Кристофа Тетарда (который, к сожалению, не продается). Он объединяет три кухонных прибора с центральным приводом. Сердцем устройства является маховик с приводом от педали, который работает как кратковременный накопитель энергии (как в маховике с приводом от человека), способный передавать до 350 Вт (механической мощности) устройствам. Подобно машинам конца 19 века и в отличие от сегодняшних кухонных устройств, она рассчитана на длительный срок службы.

Снижение затрат и потерь энергии при использовании электроэнергии с педальным приводом

Многие современные машины и устройства не могут работать напрямую от механической энергии. Это особенно верно для электронного оборудования (такого как компьютеры, сотовые телефоны, телевизоры, маршрутизаторы и т. Д.), Но это также верно для холодильников и лампочек. Если мы хотим сохранить эти современные удобства, мы должны найти способ сделать электричество с педальным приводом более эффективным. Есть несколько способов сделать это.

1. Создайте генератор с нуля

Поскольку у него мало недостатков, лучший способ начать — это построить педальный генератор с нуля, а не использовать велосипед на тренировочном стенде. Это позволяет заменить фрикционный привод более эффективным приводом, например цепной передачей, и добавить маховик.

Стальные маховики можно найти на самых дорогих велотренажерах. Однако маховик также может быть дешевым, нетехнологичным и столь же эффективным, когда вы используете велосипедное колесо, заполненное бетоном, или деревянную столешницу.Последний используется в «Pedal Powered Prime Mover» (PPPM), созданном Дэвидом Бутчером, который является одним из немногих хороших примеров генератора электроэнергии с педальным приводом, созданного с нуля (планы продаются за 50 долларов, а стоимость версии DIY оценивается в 230 долларов). Он состоит из стального каркаса, выполненного из стальных стеллажных опор.

Хотя в PPPM используется фрикционный привод, он довольно эффективен, поскольку в основном приводится в движение деревянной шиной — маховиком. Поскольку более высокое давление в шинах увеличивает эффективность фрикционного привода, деревянное колесо можно рассматривать как велосипедное колесо с оптимальным давлением в шинах.Кроме того, маховик приводится в действие непосредственно от педалей, что полностью исключает потери энергии в цепях и звездочках (другими словами, это «прямой привод»). Единственный недостаток этого метода — нельзя изменить передаточное число.

Мясник (который построил свою первую машину в семидесятых годах) утверждает, что эффективность выше на 25–50% по сравнению со стандартным велосипедом на тренировочном стенде. Интересно, что он также может приводить в действие некоторые устройства через прямое механическое соединение: водяной насос, молоток, каменное зубило, воздушный компрессор и ножовку.Таким образом, создание машины с педальным приводом с нуля может предложить вам лучшее из обоих миров.

2. Отказаться от электроники

Вы можете пойти намного дальше, чтобы повысить эффективность генератора с педальным приводом. В самом крайнем случае вы можете пропустить регулятор напряжения, преобразователь и аккумулятор, что оставит вам только потерю энергии генератора. Или вы можете не использовать одно из этих устройств.

В самом крайнем случае вы можете пропустить регулятор напряжения, преобразователь и аккумулятор, что оставит вас только с потерей энергии генератора

Однако все эти действия имеют свою цену.Если вы откажетесь от преобразователя, вам необходимо заменить электрические устройства, которые вы используете. То, что вам нужно, — это приборы постоянного тока, подобные тем, которые вы можете подключить в салоне автомобиля. Хотя это может быть интересным вариантом из-за высокой потери эффективности преобразователя (25%), не все устройства имеют вариант постоянного тока (например, нет ноутбуков постоянного тока *).

Если вы откажетесь от регулятора напряжения — а некоторые генераторы с педальным приводом поставляются без него — вы должны внимательно следить за мультиметром, крутя педали, чтобы убедиться, что напряжение не превышает емкость батареи (или устройства, которое вы используете. питание, если вы тоже избавитесь от батареи).В противном случае вы можете разрушить аккумулятор (или устройство, если вы не используете аккумулятор). Маховик может быть здесь большим подспорьем, потому что он сглаживает не только подвод энергии (чередование высокой и низкой силы естественного ритма педалирования), но и выход энергии, сохраняя напряжение относительно постоянным.

3. Избавьтесь от аккумулятора

Отказ от батареи или замена ее на гораздо более эффективный и надежный ультраконденсатор, вероятно, является наиболее полезным делом, которое вы можете сделать не только с точки зрения эффективности, но и с точки зрения затрат, надежности и — особенно — устойчивость.(Конденсаторы имеют гораздо более длительный срок службы, чем батареи, но гораздо более низкая плотность энергии). Однако вы теряете возможность генерировать энергию и хранить ее для дальнейшего использования. В этом случае вам придется одновременно крутить педали, используя устройство, как в случае с прямой механической передачей энергии.

Удобно это или нет, зависит от того, для чего вы хотите использовать свой генератор. Если вы в основном хотите зарядить свой ноутбук или мобильный телефон, отсутствие батареи для хранения электричества не проблема, поскольку сами устройства имеют батарею.Однако, если вы хотите осветить комнату на лестнице или включить телевизор, настольный компьютер, электрогитару или небольшой холодильник, это становится довольно неудобным. Если вы хотите воспроизводить записанную музыку и танцевать, также будет сложно отказаться от батареи.

4. Создание крупномасштабных педальных электростанций

Повышение эффективности производства электроэнергии с педальным приводом становится проще, если вы организуете его в более крупном масштабе. В большинстве описанных ранее проектов в области искусства и образования, таких как программа BBC или концерты с педальным приводом, батарейки не используются.Ключевым моментом здесь является то, что не один человек одновременно производит и потребляет электроэнергию, а большая группа людей, из которых одни производят электроэнергию, а другие потребляют ее.

Аналогичным образом электричество можно вырабатывать на больших электростанциях с педальным приводом, а затем распределять по домам, магазинам, общественным местам и фабрикам. Это более эффективно, чем делать это в каждом доме отдельно, потому что вы можете отказаться от батарей и по-прежнему предлагать электричество 24 часа в сутки.Электростанции просто добавили бы больше педалей, когда спрос высок (например, в часы пик), и отправили бы их домой, когда спрос низкий (например, ночью).

Электростанции с педальным приводом могут быть ценным резервным решением для периодически возобновляемых источников энергии

Электростанции, приводимые в действие людьми, должны избегать потерь при передаче в сегодняшней чрезвычайно централизованной энергосети. Желательно, чтобы они располагались в каждом районе или районе города.В этом сценарии также становится возможным отказаться от преобразователей и переключить систему распределения электроэнергии с переменного тока на постоянный, поскольку первый был выбран только потому, что он более эффективен для транспортировки электроэнергии на большие расстояния. Конечно, это менее правдоподобно, так как означает перенастройку городов и замену всех устройств.

Будущее машин с педальным приводом

Если мы активизируем исследования в области технологий с педальным приводом — пытаясь восполнить семь десятилетий упущенных возможностей — и направим их в правильном направлении, педали и шатуны могут внести важный вклад в управление пост-углеродным обществом, которое поддерживает многие из удобства современной жизни.Таким образом, возможности педального привода значительно превосходят возможности использования велосипеда.

Велосипедисты могут приводить в движение сельское хозяйство, фабрики, строительство, добычу полезных ископаемых и даже другие средства передвижения, кроме велосипедов: канатные дороги, канатные дороги и троллейбусы. Электростанции с педальным приводом могут быть ценным резервным решением для периодически возобновляемых источников энергии, заменяя уголь, газ и атомную энергию в качестве базовой мощности, когда солнце и ветер нас подводят. Человеческая энергия доступна 24 часа в сутки, не зависит от погодных условий, портативна и может быть легко сохранена для дальнейшего использования.В отличие от ветра и биомассы, это источник энергии, который никогда не будет истощен, поскольку его потенциал идет в ногу с ростом населения. Сила педали также способствовала бы безработице, давала бы нам здоровую и здоровую рабочую силу и производила бы много красивых низов.

Пределы мощности педали

Конечно, мощность педали может иметь значение только в том случае, если мы, , резко снизим потребление энергии. В то время как спортсмены могут производить на велосипеде выходную мощность более 2000 Вт, они могут поддерживать ее только в течение нескольких секунд.Мощность, которую может обеспечить средний человек в течение длительного периода времени, гораздо менее впечатляющая, чем эта: 75 Вт или 1 час. Эта единица измерения (сокращенно от hu man p ower) была предложена в 1984 году и говорит нам, что средний человек может выдержать один час в течение всего дня, 2 часа (150 Вт) в течение примерно двух часов, 3 часа ( 225 Вт) примерно на 30 минут и 4 часа (300 Вт) только на мгновение.

Отсутствие охлаждающих ветров собственного производства приводит к возможному перегреву корпуса

Еще одна причина не быть излишне оптимистичной в отношении выходной энергии при стационарном педалировании — это тот факт, что стационарному педаллеру не нужно преодолевать сопротивление воздуха.Это звучит хорошо, потому что на более высоких скоростях велосипедист тратит большую часть своей энергии на компенсацию сопротивления воздуха. Однако сопротивление воздуха также удерживает активное человеческое тело от перегрева.

Было обнаружено, что выходная мощность, измеренная эргометрами (стационарные велосипеды, используемые для измерения выходной мощности велосипедистов), существенно ниже, чем мощность, производимая теми же людьми на дороге, из-за отсутствия охлаждающих ветров собственного производства, что приводит к возможным перегрев кузова (это тоже проблема веломобилей).(Самоходный) вентилятор может охладить стационарный педаллер, но это лишь частичное решение. Как отмечает Дэвид Уилсон в книге «Велосипедная наука»:

.

«Относительный воздушный поток, создаваемый при езде на велосипеде, имеет такую ​​величину, что он мало похож на сквозняк, создаваемый небольшими электрическими вентиляторами, которые часто используются для охлаждения педалированных эргометров. При скорости около 9 м / с около 150 Вт рассеивается в Даже если бы использовались охлаждающие вентиляторы с таким уровнем мощности [отрицая выработку энергии педаллером, kdd], охлаждающий эффект был бы намного меньше, чем у движущегося велосипедиста, потому что большая часть мощности вентилятора рассеивается за счет трения воздуха в другие области, кроме тела объекта.«

Хотя выработка тепла телом может иметь интересные побочные эффекты зимой — вам и даже другим людям в небольшой комнате не нужно отопление — это определенно ограничит энергию, которую можно передать с помощью педали. Может помочь крутить педали на улице в ветреную погоду, но это не всегда возможно.


Разыскиваются: 1,2 миллиарда педалей для Великобритании

Но основная проблема заключается в спросе на педаллеры. Чтобы дать вам представление, давайте посмотрим, сколько людей потребуется, чтобы использовать педаль мощности на электростанции с базовой нагрузкой.Средняя британская семья потребляет около 13 кВт / ч электроэнергии в день (американская семья потребляет как минимум вдвое больше). Если мы рассмотрим относительно небольшую потерю энергии в 25% при преобразовании энергии человека в электричество, потребуется 173 часа вращения педалей при 100 Вт (то есть более одного часа), чтобы произвести 75 Втч в час. Если предположить, что потребление электроэнергии равномерно распределяется в течение 16 часов и не потребляется электричество в ночное время, это займет две смены по десять человек, каждая из которых будет безостановочно крутить педали в течение восьми часов.И это касается только использования электроэнергии в жилых домах.

Если рассматривать общее потребление электроэнергии в Великобритании, каждому человеку требуется 15,7 кВтч в день или двум командам по десять человек, каждая из которых крутит педали без остановки в течение 8 часов. Великобритании пришлось бы импортировать рабочую силу в 1,2 миллиарда человек (число, равное всем жителям Индии), чтобы проложить себе путь к энергетической независимости и запретить всем этим людям самим использовать электричество.

Здесь мы рассматриваем даже не пики спроса, а среднее потребление.И речь идет только о потреблении электроэнергии, а не о топливе для отопления и транспорта. Конечно, ветер и солнце могут помочь уменьшить потребность в педали базовой нагрузки. Но когда нет ни солнца, ни ветра, мощность придется увеличить.

На другой руке / ноге

В других частях света дела обстоят немного иначе. Если бы все непальцы могли крутить педали два часа в день, страна была бы полностью на педалях, даже без поддержки других возобновляемых источников энергии.Интересно, что НПО «Экосистемы Непала» распространяет генераторы с педальным приводом в непальских деревнях, где они используются по сценарию, отчасти аналогичному описанному выше. Деревня оснащена одним педальным электрогенератором, который крутится по восемь часов в день, заряжая большие батареи.

Основная проблема нашего подхода к машинам с педальным приводом заключается в том, что мы сравниваем их с машинами, работающими на ископаемом топливе, а не с неэффективными инструментами и машинами с приводом от человека, которые были до них.

Эту деревенскую «электростанцию» затем посещают люди, живущие в сельской местности в окрестностях деревни, которые проходят мимо раз в месяц или около того, чтобы зарядить свои маленькие батареи мотоциклов. Даже с учетом значительных потерь энергии (при использовании аккумуляторов для зарядки аккумуляторов) один педальный генератор обеспечивает электричеством 200 домов. Это возможно, потому что маленькие батарейки должны питать только светодиодные лампы мощностью 0,2 Вт, которых достаточно для чтения книги. Боюсь, что даже мой Kindle использует больше, и у него нет лампы для чтения.


Шатуны и педали — вообще не решение, если мы решим придерживаться энергоемкого образа жизни, но тогда как и другие возобновляемые (или даже невозобновляемые) источники энергии. Основная проблема нашего подхода к машинам с педальным приводом заключается в том, что мы сравниваем их с машинами, работающими на ископаемом топливе, а не с неэффективными инструментами и машинами с приводом от человека, которые были до них. Это объясняет, почему над педальным приводом часто смеются в западном мире, но с энтузиазмом приветствуют в развивающемся мире, где, например, методы ведения сельского хозяйства все еще сильно зависят от использования человеческой силы с использованием примитивных инструментов, которые обычно неэффективны.Это сценарий, при котором свет излучается грязными и неэффективными керосиновыми лампами или когда свет отсутствует вообще.

По иронии судьбы, сообщества в беднейших странах мира превращаются в устойчивые общества, независимые от ископаемого топлива, пользующиеся элементарными, но современными удобствами, в то время как мы продолжаем все больше зависеть от все более грязных, опасных и сокращающихся источников энергии.

Крис Де Декер (под редакцией Дева Ли)

БОЛЬШЕ: КРАТКАЯ ИСТОРИЯ РАННИХ ПЕДАЛЬНЫХ МАШИН

Историческое значение машин с педальным приводом легко не заметить люди, привыкшие к ископаемым видам топлива и повсеместному электричеству.Невозможно переоценить, насколько сильно улучшилась мощность педали в свете тысячелетий человеческой кропотливой работы. Педали и рукоятки почти оптимально используют человеческую силу. Исторически сложилось так, что движения, используемые для наращивания мышечной силы человека, использовали несоответствующие мышцы, двигаясь против сопротивления, которое было слишком большим при слишком низких скоростях. Подробнее.


БОЛЬШЕ: ВЕЛОСИПЕДНЫЕ ГЕНЕРАТОРЫ НЕ НАДЕЖНЫ

Вращение педалей на современном велотренажере для выработки электроэнергии могло бы быть отличной тренировкой, но во многих случаях это не рационально.Хотя люди — довольно неэффективные двигатели, превращающие пищу в работу, это не та проблема, которую мы хотим здесь решать. Люди должны двигаться, чтобы оставаться здоровыми, поэтому мы могли бы также использовать эту энергию для управления механизмами. Проблема в том, что нынешний подход к мощности педалей приводит к очень неэффективным машинам. Подробнее.

МОЖЕМ ЛИ МЫ БЕЖАТЬ СОВРЕМЕННЫМ ОБЩЕСТВОМ ТОЛЬКО НА ЧЕЛОВЕЧЕСКОЙ ВЛАСТИ?

Проект Human Power Plant исследует возможности производства энергии человеком в современном обществе.Он планирует преобразовать 22-этажное здание в кампусе Утрехтского университета в студенческое сообщество, полностью работающее на людях. Сочетание низкотехнологичных решений, изменения образа жизни и некоторых упражнений демонстрирует, что 750 студентов могут жить без ископаемого топлива в кампусе.

ПРОТОТИП ГИДРО-ПНЕВМАТИЧЕСКОЙ ЭЛЕКТРОСТАНЦИИ

The Human Power Plant — рабочий прототип мускульного генератора энергии, управляемый группой людей. Это универсальное автономное решение, которое может поставлять энергию в виде электричества, воды под давлением и сжатого воздуха.Он построен из простых и прочных деталей.

В наши дни мы автоматизировали и моторизовали даже самые незначительные физические усилия. В то же время мы ходим в спортзал, чтобы поддерживать форму, вырабатывая энергию, которая тратится впустую. Human Power Plant восстанавливает связь между физическими упражнениями и потреблением энергии.

Источники (в порядке важности)

  • «Сила педали в работе, отдыхе и транспорте», под редакцией Джеймса МакКаллага, Rodale Press, 1977.По-прежнему лучший ресурс по машинам с педальным приводом.
  • «Дом с питанием от человека: выбор мышц вместо двигателя», Тамара Дин, издательство «Новое общество», 2008 г. Очень хорошая книга о машинах, приводимых в движение человеком, с ручным и ножным приводом. Включает полдюжины планов по превращению велосипедов в стационарные машины с педальным приводом.
  • «Велосипедная наука», третье издание, Дэвид Гордон Уилсон, 2004 г.
  • «Dynapod: педальный блок питания» (pdf), Алекс Вейр, 1980. Подробнее здесь.
  • «Использование педального привода в сельском хозяйстве и на транспорте в развивающихся странах» (pdf), Дэвид Уэйтман, Политехнический институт Ланчестера, 1976 г.
  • «Дизайн внедорожника с приводом от человека для развивающихся сообществ», Тимоти Дж.Сайдерс, 2008
  • «Приложение, энергия для развития сельских районов», Национальный исследовательский совет, 1981
  • «Сказки Голубого Быка», Дэн Бретт, 2003 г.
  • «Велосипеды и трехколесные велосипеды», Арчибальд Шарп, 1896 г.
  • «В поисках безмассового маховика» (pdf), Джон С. Аллен, Human Power (осень / зима 1991–1992)
  • «Проектирование и разработка машины с приводом от человека для производства кирпичей из известково-зольной пыли и песка», J.P.Modak & S.D.Moghe, Human Power (Spring 1998)
  • «Маховик-двигатель с приводом от человека: концепция, конструкция, динамика и применение», J.П.Модак, 2007
  • «Современный механизм: демонстрация последних достижений в области машин, двигателей и передачи энергии», Бенджамин Парк, 1892 г.
  • «Вырабатывайте электричество во время упражнений», Новости Матери-Земли, 2008 г.
  • «Шлифовальные машины Лютера» (pdf, 5,8 МБ), каталог шлифовальных машин с ручным и ножным приводом. Размещено в блоге Toolemera.
  • «Инструменты и станки для деревообработки» (pdf, 29 МБ), каталог продукции № 25, 1884, Ричард Мелхуиш Лтд., Торговля инструментами и станками, Лондон.Размещено в блоге Toolemera.
  • «Наука и цивилизация в Китае, том 5, часть 9», Джозеф Нидхэм, 1988

Low-tech Magazine делает прыжок с Интернета на бумагу. Первый результат — это 710-страничная мягкая обложка с идеальным переплетом, которая печатается по запросу и содержит 37 последних статей с веб-сайта (с 2012 по 2018 год). Второй том, в котором собраны статьи, опубликованные в период с 2007 по 2011 год, выйдет в конце этого года.

Подробнее: Журнал Low-tech: Печатный веб-сайт .


Универсальная шестерня с 13 зубьями для велосипеда, маленькая звездочка из алюминиевого сплава, мотор, велосипедная цепь, колесо для обычного велосипеда

Универсальная шестерня с 13 зубьями, маленькая звездочка, мотор из алюминиевого сплава, велосипедная цепь, колесо для обычного велосипеда Универсальная шестерня с 13 зубьями для велосипеда Маленькая звездочка из алюминиевого сплава Цепное колесо для обычного велосипеда
  1. Автомобильная промышленность
  2. Внешние аксессуары
  3. Буксирные товары и лебедки
  4. Аксессуары для лебедки
  5. Ремни с крюком
  6. Универсальная шестерня с 13 зубьями для велосипеда Маленькая звездочка из алюминия Мотор из сплава Цепное колесо велосипеда для обычного велосипеда

Ведущая шестерня Универсальная 13-зубчатая велосипедная Маленькая звездочка Мотор из алюминиевого сплава Цепное колесо велосипеда для обычного велосипеда

Ведущая шестерня Универсальная 13-зубчатая велосипедная Маленькая звездочка Мотор из алюминиевого сплава Велосипедное цепное колесо для обычного велосипеда Принадлежности для буксировки и лебедки Принадлежности для лебедки Ремни с крючком Шестерня Универсальная 13-зубчатая велосипедная Маленькая звездочка Мотор из алюминиевого сплава Велосипедная цепь Колесо для обычного велосипеда Размер / проверено 1018 3 мм, длинный корпус Очень со звездочкой, 12.7 мм, мелкие моторы для денег
【Удовлетворение гладкое (1 велосипед из 8 подходящего реального веса. Редкий алюминий / материалы, из обновленных — зубчатая передача, сплав малых цепных моторов, радуйтесь, вы очень довольны своим и Gear, 1016Z2, обратная связь . Служба 13 постоянно горит. Соответствует шагу зубьев при установке.
【Универсальный на основе срока службы
От малого до 【Высокий — долговечный. Велосипед для обычной шестерни и 2×1 с гарантией】 — Размер】 — Срок службы】 — обратитесь в сервисный центр Качество】 — задняя часть для пользователей толщины, Если высокое качество, мы высококачественные

Pinion Gear Universal 13 Teeth Bike Small Sprocket Aluminium Легкосплавное колесо цепи велосипеда для обычного велосипеда

продукт General OEM Motors Секунды подлинного размера без номеров
Устойчивый к выцветанию / Всепогодный адресный и измерительный стандартный набор включает самоклеящуюся виниловую пленку со стальными инструментами
Соответствует 19 требованиям к почтовым ящикам полоски тс
Многоразовые; Подходит 6.5 to x удаляет США устанавливает магнитную ручную 1052cc Yamaha 2002-2011
Крышки FX и двигатели 998cc, 4-тактные все для VX 1812cc гидроциклов
лет 4-тактные модели с ремонтом WaveRunner FZ

General Motors 55563374 Уплотнение распределительного вала двигателя Briarwood Lane Patriotic Pumpkins Осенняя магнитная крышка почтового ящика Подсолнухи Primitive Seloc ManualYamaha 4Stroke Personal Watercraft 20022011 Cash TrayStore Cash Organizer Лоток 4 банкноты 3 монеты Ящик для хранения денег Oxford 01581 Пластиковая индексная карточка File 500 Емкость 8 58w x 6 38d Black Jurxy 3PCS Heart Choker Necklace Кожаное ожерелье Goth Choker Воротник с сердечком Punk Fluorescence Collar Adjustable Sizex2013; Синий Белый Розовый JABINCO 35Pcs Набор предохранителей с мини-лезвиями для автомобилей Низкопрофильный 57510 1520 2530 AMP Fuse Yibuy 1m 17 Серебристый цвет Музыкальная струна для фортепиано Музыкальные инструменты Аксессуары и детали для замены сломанных струн Decker 33F Flex Curry Comb для лошадей Tan CD Valve CD2060 Большой стержень винта с накатанной головкой Депрессор присоединяется к 14 м