Цены снижены! Бесплатная доставка контурной маркировки по всей России

Коэффициент полезного действия идеальной тепловой машины – КПД тепловых машин. КПД тепловой машины

Максимальный кпд тепловых машин (теорема Карно)

Главное значение полученной Карно формулы (5.12.2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.

Карно доказал, основываясь на втором законе термодинамики*, следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т1 и холодильником температуры Т2, не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

* Карно фактически установил второй закон термодинамики до Клаузиуса и Кельвина, когда еще первый закон термодинамики не был сформулирован строго.

Рассмотрим вначале тепловую машину, работающую по обратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т1 и Т2.

Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) η’ > η. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина — по прямому циклу (рис. 5.18). Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5):

(5.12.11)

Рис. 5.18

Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q2 = ||

Тогда согласно формуле (5.12.7) над ней будет совершаться работа

(5.12.12)

Так как по условию η’ > η, то А’ > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.

Если допустить, что η > η‘, то можно другую машину заставить работать по обратному циклу, а машину Карно — по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: η‘ = η.

Иное дело, если вторая машина работает по необратимому циклу. Если допустить η

‘ > η, то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение т|’ < г| не противоречит второму закону термодинамики, так как необратимая тепловая машина не может работать как холодильная машина. Следовательно, КПД любой тепловой машины η≤ η, или

Это и есть основной результат:

(5.12.13)

Кпд реальных тепловых машин

Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и Т2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно:

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД — около 44% — имеют двигатели внутреннего сгорания.

Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения , где Т1 абсолютная температура нагревателя, а Т2 абсолютная температура холодильника.

Повышение КПД тепловых двигателей и приближение его к максимально возможному важнейшая техническая задача.

studfile.net

Тепловая машина. КПД (коэффициент полезного действия). Работа. Теплота. Формулы

Описанные нами циклические процессы чаще всего происходят в, так называемых, тепловых машинах. Тепловой двигатель (тепловая машина) – устройство, которое превращает внутреннюю энергию топлива в механическую энергию. Логика всех тепловых машин, в теории, одинакова (рис. 1).

Тепловая машина

Рис. 1. Тепловая машина

Классически, тепловая машина состоит нагревательного элемента, рабочего тела и холодильной установки. Каждый из этих элементов может инженерно выглядит как угодно, рабочее тело чаще всего газ. Нагреватель отдаёт рабочему телу теплоту 

, при этом рабочее тело (газ) расширяется и совершает работу (), часть энергии уходит к холодильнику  (на самом деле, холодильником может служить окружающая среда и  — это банальные теплопотери).

Тогда, исходя из закона сохранения энергии:

(1)

Для характеристики тепловой машины вводят понятие КПД тепловой машины (коэффициент полезного действия). КПД, как физический параметр, везде одинаков: отношение полезной работы к затраченной. В нашей системе полезной является работа газа (

), затраченной, в нашем случае, является энергия, принятая от нагревателя (), тогда:

(2)
  • где
    • — КПД.

Важно: необходимо помнить, что 

— абсолютное значение теплоты, т.е. следим, чтобы значение этой теплоты было положительным.

Вывод: задачи на КПД тепловой машины относятся к любой из формулировок соотношения (2). Поиск 

,  или  чаще всего идёт через первое начало термодинамики и уравнение Менделеева-Клапейрона.

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка…

www.abitur.by

Принцип действия теплового двигателя. Видеоурок. Физика 10 Класс

Темой текущего урока будет рассмотрение процессов, происходящих во вполне конкретных, а не абстрактных, как в прошлых уроках, устройствах – тепловых двигателях. Мы дадим определение таким машинам, опишем их основные составляющие и принцип действия. Также в ходе этого урока будет рассмотрен вопрос о нахождении КПД – коэффициента полезного действия тепловых машин, как реального, так и максимально возможного.

Тема: Основы термодинамики
Урок: Принцип действия теплового двигателя

Темой прошлого урока был первый закон термодинамики, который задавал связь между некоторым количеством теплоты, которое было передано порции газа, и работой, совершаемой этим газом при расширении. И теперь пришло время сказать, что эта формула вызывает интерес не только при неких теоретических расчётах, но и во вполне практическом применении, ведь работа газа есть не что иное как полезная работа, какую мы извлекаем при использовании тепловых двигателей.

Определение. Тепловой двигатель – устройство, в котором внутренняя энергия топлива преобразуется в механическую работу (рис. 1).

Рис. 1. Различные примеры тепловых двигателей (Источник), (Источник)

Как видно из рисунка, тепловыми двигателями являются любые устройства, работающие по вышеуказанному принципу, и они варьируются от невероятно простых до очень сложных по конструкции.

Все без исключения тепловые двигатели функционально делятся на три составляющие (см. рис. 2):

  • Нагреватель
  • Рабочее тело
  • Холодильник

Рис. 2. Функциональная схема теплового двигателя (Источник)

Нагревателем является процесс сгорания топлива, которое при сгорании передаёт большое количество теплоты  газу, нагревая тот до больших температур. Горячий газ, который является рабочим телом, вследствие повышения температуры, а следовательно, и давления, расширяется, совершая работу

. Конечно же, так как всегда существует теплопередача с корпусом двигателя, окружающим воздухом и т. д., работа не будет численно равняться переданной теплоте – часть энергии  уходит на холодильник, которым, как правило, является окружающая среда.

Проще всего можно представить себе процесс, происходящий в простом цилиндре под подвижным поршнем (например, цилиндр двигателя внутреннего сгорания). Естественно, чтобы двигатель работал и в нём был смысл, процесс должен происходить циклически, а не разово. То есть после каждого расширения газ должен возвращаться в первоначальное положение (рис. 3).

Рис. 3. Пример циклической работы теплового двигателя (Источник)

Для того чтобы газ возвращался в начальное положение, над ним необходимо выполнить некую работу (работа внешних сил). А так как работа газа равна работе над газом с противоположным знаком, для того чтобы за весь цикл газ выполнил суммарно положительную работу (иначе в двигателе не было бы смысла), необходимо, чтобы работа внешних сил была меньше работы газа. То есть график циклического процесса в координатах P-V должен иметь вид: замкнутый контур с обходом по часовой стрелке. При данном условии работа газа (на том участке графика, где объём растёт) больше работы над газом (на том участке, где объём уменьшается) (рис. 4).

 

Рис. 4. Пример графика процесса, протекающего в тепловом двигателе

Раз мы говорим о некоем механизме, обязательно нужно сказать, каков его КПД.

Определение. КПД (Коэффициент полезного действия) теплового двигателя – отношение полезной работы, выполненной рабочим телом, к количеству теплоты, переданной телу от нагревателя.

Если же учесть сохранение энергии: энергия, отошедшая от нагревателя, никуда не исчезает — часть её отводится в виде работы, остальная часть приходит на  холодильник:

Получаем:

Это выражение для КПД в частях, при необходимости получить значение КПД в процентах необходимо умножить полученное число на 100. КПД в системе измерения СИ – безразмерная величина и, как видно из формулы, не может быть больше одного (или 100).

Следует также сказать, что данное выражение называется реальным КПД или КПД реальной тепловой машины (теплового двигателя). Если же предположить, что нам каким-то образом удастся полностью избавиться от недостатков конструкции двигателя, то мы получим идеальный двигатель, и его КПД будет вычисляться по формуле КПД идеальной тепловой машины. Эту формулу получил французский инженер Сади Карно (рис. 5):

То есть КПД идеального двигателя зависит только от температур нагревателя и холодильника.

Рис. 5. Сади Карно (Источник)

Для понимания того, какого порядка значения КПД различных тепловых машин, рассмотрим следующую таблицу, в которой приведены различные примеры тепловых двигателей (рис. 6):

Рис. 6.

Темой следующего урока будет рассмотрение тепловых процессов, проходящих без притока теплоты, – адиабатических.

 

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. – М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Files.school-collection.edu.ru (Источник).
  2. Фестиваль педагогически идей (Источник).
  3. Кафедра ТЭФ, КМФ (Источник).

 

Домашнее задание

  1. Стр. 87: № 676–680. Физика. Задачник. 10-11 классы. Рымкевич А.П. – М.: Дрофа, 2013. (Источник)
  2. При сгорании топлива в тепловом двигателе выделилось количество теплоты 20 кДж, а холодильнику передалось 120 кДж. Каков КПД двигателя?
  3. Какой КПД идеальной тепловой машины, если температура нагревателя равна 347, а температура холодильника – 37?
  4. *Может ли процесс, происходящий с газом в тепловом двигателе, быть описан следующим образом в координатах P-V?

interneturok.ru

Принцип действия тепловой машины. Тепловая машина с наибольшим коэффициентом полезного действия

 Тема: «Принцип действия тепловой машины. Тепловая машина с наибольшим коэффициентом полезного действия».

Форма: Комбинированный урок с использованием компьютерных технологий.

Цели:

  • Показать важность применения тепловой машины в жизни человека.
  • Изучить принцип работы реальных тепловых двигателей и идеального двигателя работающего по циклу Карно.
  • Рассмотреть возможные пути повышения КПД реального двигателя.
  • Развить у учащихся любознательность, интерес к техническому творчеству, уважение к научным достижениям ученых и инженеров.

План урока.

№ п/п

Вопросы

Время
(минут)

1 Показать необходимость   применения тепловых машин в современных условиях.

2

2 Повторение понятия «тепловой машины». Виды тепловых машин: ДВС (карбюраторный, дизельный), паровая и газовая турбины, турбореактивный и ракетный двигатели.

7

3 Объяснение нового теоретического материала.
Схема и устройство тепловой машины, принцип работы, КПД.
Цикл Карно, идеальная тепловая машина, её КПД.
Сравнение КПД реальной и идеальной тепловой машины.

15

4 Решение задачи № 703 (Степанова),  № 525 (Бендриков).

8

5 Выполнение компьютерного теста по теме.
Работа с моделью тепловой машины.

8

6 Подведение итогов. Домашнее задание § 33, задачи № 700 и № 697 (Степанова)

5

Теоретический материал

С давних времён человек хотел освободиться от физических усилий или облегчить их при перемещении чего-либо, располагать большей силой, быстротой.
Создавались сказания о коврах самолётах, семимильных сапогах и волшебниках, переносящих человека за тридевять земель мановением жезла. Таская тяжести, люди изобрели тележки, ведь катить легче. Потом они приспособили животных – волов, оленей, собак, больше всего лошадей. Так появились повозки, экипажи. В экипажах люди стремились к комфорту, всё более совершенствуя их.
Стремление людей увеличить скорость ускоряло и смену событий в истории развития транспорта. Из греческого «аутос» – «сам» и латинского «мобилис» – «подвижный» в европейских языках сложилось прилагательное «самодвижущийся», буквально «авто – мобильный».

Оно относилось к часам, куклам-автоматам, ко всяким механизмам, в общем, ко всему, что служило как бы дополнением «продолжением», «усовершенствованием» человека. В ХVIII веке попробовали заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль».

Почему же счёт возраста автомобиля ведут от первых «бензиномобилей» с двигателем внутреннего сгорания, изобретённых и построенных в 1885-1886 годах? Как бы забыв о паровых и аккумуляторных (электрических) экипажах. Дело в том, что ДВС произвёл подлинный переворот в транспортной технике. В течение длительного времени он оказался наиболее отвечающим идее автомобиля и потому надолго сохранил своё главенствующее положение. Доля автомобилей с ДВС составляет на сегодня более 99,9% мирового автомобильного транспорта. <Приложение 1>

Основные части теплового двигателя

В современной технике механическую энергию получают главным образом за счет внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями. <Приложение 2>

Для совершения работы за счет сжигания топлива в устройстве, называемом нагревателем, можно воспользоваться цилиндром, в котором нагревается и расширяется газ и перемещает поршень. <Приложение 3> Газ, расширение которого вызывает перемещение поршня, называют  рабочим телом. Расширяется же газ потому, что его давление выше внешнего давления. Но при расширении газа его давление падает, и рано или поздно оно станет равным внешнему давлению. Тогда расширение газа закончится, и он перестанет совершать работу.

Как же следует поступить, чтобы работа теплового двигателя не прекращалась? Для того чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа возвращался каждый раз в исходное положение, сжимая газ до первоначального состояния. Сжатие же газа может происходить только под действием внешней силы, которая при этом совершает работу (сила давления газа в этом случае совершает отрицательную работу). После этого вновь могут происходить процессы расширения и сжатия газа. Значит, работа теплового двигателя должна состоять из периодически  повторяющихся  процессов  (циклов)  расширения и сжатия.

Рисунок 1

На  Рисунке 1 изображены графически процессы расширения газа (линия АВ) и сжатия до первоначального объема (линия CD). Работа газа в процессе расширения положительна (AF > 0) и численно равна площади фигуры ABEF. Работа газа при сжатии отрицательна (так как AF < 0) и численно равна площади фигуры CDEF. Полезная работа за этот цикл численно равна разности площадей под кривыми АВ и CD (закрашена на рисунке).
Наличие нагревателя, рабочего тела и холодильника принципиально необходимое условие для непрерывной циклической работы любого теплового двигателя.

Коэффициент полезного действия тепловой машины

Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 — |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть?
Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

 Цикл Карно.

Допустим, что газ находится в цилиндре, стенки и поршень которого сделаны из теплоизоляционного материала, а дно — из материала с высокой теплопроводностью. Объем, занимаемый газом, равен V1.

Рисунок 2

Приведем цилиндр в контакт с нагревателем (Рисунок 2) и предоставим газу возможность изотермически расширяться и совершать работу. Газ получает при этом от нагревателя некоторое количество теплоты Q1. Этот процесс графически изображается изотермой (кривая АВ).

Рисунок 3

Когда объем газа становится равным некоторому значению V1’< V2, дно цилиндра изолируют от нагревателя, после этого газ расширяется адиабатно до объема V2, соответствующего максимально возможному ходу поршня в цилиндре (адиабата ВС). При этом газ охлаждается до температуры T2  < T1.
Теперь охлажденный газ можно изотермически сжимать при температуре Т2. Для этого его нужно привести в контакт с телом, имеющим ту же температуру Т2, т. е. с холодильником, и сжать газ внешней силой. Однако в этом процессе газ не вернется в первоначальное состояние — температура его будет все время ниже чем Т1.
Поэтому изотермическое сжатие доводят до некоторого промежуточного объема V2’>V1(изотерма CD). При этом газ отдает холодильнику некоторое количество теплоты Q2, равное совершаемой над ним работе сжатия. После этого газ сжимается адиабатно до объема V1, при этом его температура повышается до Т1(адиабата DA). Теперь газ вернулся в первоначальное состояние, при котором объем его равен V1, температура — T1, давление — p1,и цикл можно повторить вновь.

Итак, на участке ABC газ совершает работу (А > 0), а на участке CDA работа совершается над газом (А < 0). На участках ВС и AD работа совершается только за счет изменения внутренней энергии газа. Поскольку изменение внутренней энергии   UBC = –UDA, то и работы при адиабатных процессах равны: АВС = –АDA. Следовательно, полная работа, совершаемая за цикл, определяется разностью работ, совершаемых при изотермических процессах (участки АВ и CD). Численно эта работа равна площади фигуры, ограниченной кривой цикла ABCD.
В полезную работу фактически преобразуется только часть количества теплоты QT, полученной от нагревателя, равная  QT1– |QT2|. Итак, в цикле Карно полезная работа  A = QT1 – |QT2|.
Максимальный коэффициент полезного действия идеального цикла, как показал С. Карно, может быть выражен через температуру нагревателя 1) и холодильника 2):

В реальных двигателях не удается осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД цикла, осуществляемого в реальных двигателях, всегда меньше, чем КПД цикла Карно (при одних и тех же температурах нагревателей и холодильников):

Из формулы видно, что КПД двигателей тем больше, чем выше температура нагревателя и чем ниже температура холодильника.

Задача № 703

Двигатель работает по циклу Карно. Как изменится КПД теплового двигателя, если при постоянной температуре холодильника 17оС температуру нагревателя повысить со 127 до 447оС?

Задача № 525

Определите КПД двигателя трактора, которому для выполнения работы 1,9 · 107Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания 4,2 · 107Дж/кг.

Выполнение компьютерного теста по теме.  <Приложение 4>  Работа с моделью тепловой машины.

urok.1sept.ru

Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей

Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2, которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q1, совершает работу А’ и передаёт холодильнику количество теплоты Q2 < Q1.

Для того чтобы двигатель работал непрерывно, необходимо рабочее тело вернуть в начальное состояние, при котором температура рабочего тела равна Т1. Отсюда следует, что работа двигателя происходит по периодически повторяющимся замкнутым процессам, или, как говорят, по циклу.

Цикл — это ряд процессов, в результате которых система возвращается в начальное состояние.

Коэффициент полезного действия (КПД) теплового двигателя.

Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Второй закон термодинамики может быть сформулирован следующим образом:

Второй закон термодинамики:
невозможно создать вечный двигатель второго рода, который полностью превращал бы теплоту в механическую работу.

Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

А’ = Q1 — |Q2|,         (13.15)

где Q1 — количество теплоты, полученной от нагревателя, a Q2 — количество теплоты, отданной холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы А’, совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η < 1.

Максимальное значение КПД тепловых двигателей.

Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, а также определить пути его повышения.

Впервые максимально возможный КПД теплового двигателя вычислил французский инженер и учёный Сади Карно (1796—1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т1, при этом он получает количество теплоты Q1.

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т2. После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q2, сжимаясь до объёма V4 < V1. Затем сосуд снова теплоизолируют, газ сжимается адиабатно до объёма V1 и возвращается в первоначальное состояние. Для КПД этой машины было получено следующее выражение:

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 — 800 К и Т2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский



Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Насыщенный пар — Давление насыщенного пара — Влажность воздуха — Примеры решения задач по теме «Насыщенный пар. Влажность воздуха» — Кристаллические тела — Аморфные тела — Внутренняя энергия — Работа в термодинамике — Примеры решения задач по теме «Внутренняя энергия. Работа» — Количество теплоты. Уравнение теплового баланса — Примеры решения задач по теме: «Количество теплоты. Уравнение теплового баланса» — Первый закон термодинамики — Применение первого закона термодинамики к различным процессам — Примеры решения задач по теме: «Первый закон термодинамики» — Второй закон термодинамики — Статистический характер второго закона термодинамики — Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей — Примеры решения задач по теме: «КПД тепловых двигателей»

class-fizika.ru

Урок 25. тепловые двигатели. кпд тепловых двигателей — Физика — 10 класс

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

resh.edu.ru

Тепловые машины. Цикл Карно. Максимальный КПД тепловой машины.

Теплова́ямаши́на — устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела — на практике обычно пара или газа.

Идеальная тепловая машина — машина, в которой произведённая работа и разница между количеством подведённого и отведённого тепла равны. Работа идеальной машины описывается циклом Карно.

При работе часть тепла Q1 передается от нагревателя к рабочему телу, а затем часть энергии Q2 передается холодильнику, который охлаждает машину КПД тепловой машины считается по формуле (Q1-Q2/Q1)х100

Периодически действующий двигатель, совершающий работу за счет получаемого извне тепла, называется тепловой машиной.Понятно, что КПД машины всегда меньше единицы, поскольку не все количество полученного тепла переходит в полезную работу.

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2изотермических процессов.

Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Описание цикла Карно

Пусть тепловая машина состоит из нагревателя с температурой TH, холодильника с температурой TX и рабочего тела.

Цикл Карно состоит из четырёх стадий:

1. Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуруTH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.

2. Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

3. Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.

4. Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия:

при δQ = 0.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

КПД тепловой машины Карно

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

.

Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику

.

Отсюда коэффициент полезного действия тепловой машины Карно равен

.

Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины, будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно.

КПД реальных тепловых машин Формула (2) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, КПД равно 1. В реальных тепловых двигателях процессы протекают настолько быстро, что уменьшение и увеличение внутренней энергии рабочего вещества при изменении его объема не успевает компенсироваться притоком энергии от нагревателя и отдачей энергии холодильнику. Поэтому изотермические про цессыне могут быть реализованы. То же относится и к строго адиабатным процессам, так как в природе нет идеальных теплоизоляторов. Осуществляемые в реальных тепловых двигателях циклы состоят из двух изохор и двух адиабат (в цикле Отто), из двух адиабат, изобары и изохоры (в цикле Дизеля), из двух адиабат и двух изобар (в газовой турбине) и др. При этом следует иметь в виду, что эти циклы могут также быть идеальными, как и цикл Карно. Но для этого необходимо, чтобы температуры нагревателя и холодильника были не постоянными, как в цикле Карно, а менялись бы точно так же, как меняется температура рабочего вещества в процессах изохорного нагрева и охлаждения. Другими словами, рабочее вещество должно контактироваться с бесконечно большим числом нагревателей и холодильников — только в этом случае на изохорах будет равновесная теплопередача. Разумеется, в циклах реальных тепловых двигателей процессы являются неравновесными, вследствие чего КПД реальных тепловых двигателей при одном и том же температурном интервале значительно меньше КПД цикла Карно. Вместе с тем выражение (2) играет огромную роль в термодинамике и является своеобразным «маяком», указывающим пути повышения КПД реальных тепловых двигателей.
В цикле Отто сначала происходит всасывание в цилиндр рабочей смеси 1—2, затем адиабатное сжатие 2—3 и после ее изохорного сгорании 3—4, сопровождаемого возрастанием температуры и давления продуктов сгорания, происходит их адиабатное расширение 4—5, затем изохорное падение давления 5—2 и изобарное выталкивание поршнем отработанных газов 2—1. Поскольку на изохорах работа не совершается, а работа при всасывании рабочей смеси и выталкивании отработавших газов равна и противоположна по знаку, то полезная работа за один цикл равна разности работ на адиабатах расширения и сжатия и графически изображается площадью цикла.
Сравнивая КПД реального теплового двигателя с КПД цикла Карно, нужно отметить, что в выражении (2) температура Т2 в исключительных случаях может совпадать с температурой окружающей среды, которую мы принимаем за холодильник, в общем же случае она превышает температуру среды. Так, например, в двигателях внутреннего сгорания под Т2 следует понимать температуру отработавших газов, а не температуру среды, в которую производится выхлоп.
На рисунке изображен цикл четырехтактного двигателя внутреннего сгорания с изобарным сгоранием (цикл Дизеля). В отличие от предыдущего цикла на участке 1—2 всасывается.атмосферный воздух, который подвергается на участке 2—3 адиабатному сжатию до 3•10 6 —3•10 5 Па. Впрыскиваемое жидкое топливо воспламеняется в среде сильно сжатого, а значит, нагретого воздуха и изобарно сгорает 3—4, а затем происходит адиабатное расширение продуктов сгорании 4—5. Остальные процессы 5—2 и 2—1 протекают так же, как и в предыдущем цикле. Следует помнить, что в двигателях внутреннего сгорания циклы являются условно замкнутыми, так как перед каждым циклом цилиндр заполняется определенной массой рабочего вещества, которая по окончании цикла выбрасывается из цилиндра.
Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится. Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и T2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно: Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД — около 44% — имеют двигатели внутреннего сгорания. Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения где T1 — абсолютная температура нагревателя, а Т2 — абсолютная температура холодильника. Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача. Коэффициент полезного действия тепловой машины Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 — |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины: Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть? Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г. 42.Энтропия. Второй закон термодинамики.   Энтропи́я в естественных науках — мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса). Энтропия в информатике — степень неполноты, неопределённости знаний. Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как внеобратимых — её изменение всегда положительно. , где dS — приращение энтропии; δQ — минимальная теплота подведенная к системе; T — абсолютная температура процесса; Употребление в различных дисциплинах § Термодинамическая энтропия — термодинамическая функция, характеризующая меры неупорядоченности системы, то есть неоднородности расположения движения её частиц термодинамической системы. § Информационная энтропия — мера неопределённости источника сообщений, определяемая вероятностями появления тех или иных символов при их передаче. § Дифференциальная энтропия — энтропия для непрерывных распределений § Энтропия динамической системы — в теории динамических систем мера хаотичности в поведении траекторий системы. § Энтропия отражения — часть информации о дискретной системе, которая не воспроизводится при отражении системы через совокупность своих частей. § Энтропия в теории управления — мера неопределённости состояния или поведения системы в данных условиях. Энтропия — функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы. Энтропия — функция, устанавливающая связь между макро- и микро- состояниями; единственная функция в физике, которая показывает направленность процессов. Энтропия — функция состояния системы, которая не зависит от перехода из одного состояния в другое, а зависит только от начального и конечного положения системы. Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0. Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения. 43.Эффективное сечение рассеяния. Средняя длина свободного пробега молекул. Средняя длина свободного пробега молекул
Под средней длиной свободного пробегапонимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями. За секунду молекула в среднем проходит расстояние, численно равное ее средней скорости . Если за это же время она испытает в среднем столкновений с другими молекулами, то ее средняя длина свободного пробега , очевидно, будет равна  
  (3.1.1)

Предположим, что все молекулы, кроме рассматриваемой, неподвижны. Молекулы будем считать шарами с диаметром d. Столкновения будут происходить всякий раз, когда центр неподвижной молекулы окажется на расстоянии меньшем или равном d от прямой, вдоль которой двигается центр рассматриваемой молекулы. При столкновениях молекула изменяет направление своего движения и затем движется прямолинейно до следующего столкновения. Поэтому центр движущейся молекулы ввиду столкновений движется по ломаной линии (рис. 1).

 

рис. 1

Молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. За секунду молекула проходит путь, равный . Поэтому число происходящих за это время столкновений равно числу молекул, центры которых попадают внутрь ломаного цилиндра, имеющего суммарную длину и радиус d. Его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным Если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно

  (3.1.2)

В действительности движутся все молекулы. Поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной.Предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости представить среднюю скорость относительного движения рассматриваемой молекулы. В самом деле, если налетающая молекула движется со средней относительной скоростью , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). Поэтому формулу (3.1.2) следует написать в виде:

  (3.1.3)

Предположим, что скорости молекул до столкновения были и Тогда Из треугольника скоростей имеем (рис. 2)

  (3.1.4)

Так как углы и скорости и , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее

рис. 2

от произведения этих величин равно произведению их средних. Поэтому

  (3.1.5)

С учетом последнего равенства формулу (3.1.4) можно переписать в виде:

  (3.1.6)

так как Cредняя квадратичная скорость пропорциональна средней скорости,

  (3.1.7)

т. е. .

Поэтому соотношение (3.1.6) можно представить так:

  (3.1.8)

С учетом последнего выражения формула для средней длины свободного пробега приобретает вид:

  (3.1.9)

Для идеального газа . Поэтому

  (3.1.10)

Отсюда видно, что при изотермическом расширении (сжатии) средняя длина свободного пробега растет (убывает).Как было отмечено во введении, эффективный диаметр молекул убывает с ростом температуры. Поэтому при заданной концентрации молекул средняя длина свободного пробега увеличивается с ростом температуры.Вычисление средней длины свободного пробега для азота (d = 3•10-10 м), находящегося при нормальных условиях (р = 1,01•105 Па, Т = 273,15 К) дает: , а для числа столкновений за одну секунду: . Таким образом, средняя длина свободного пробега молекул при нормальных условиях составляет доли микрон, а число столкновений – несколько миллиардов в секунду. Поэтому процессы выравнивания температур (теплопроводность), скоростей движения слоев газа (вязкое трение) и концентраций (диффузия) являются достаточно медленными, что подтверждается опытом.

Длина свободного пробега молекулы — это среднее расстояние (обозначаемое λ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.

Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега (<λ>). Величина <λ> является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

Формула

, где σ — эффективное сечение молекулы, n — концентрация молекул.


Рекомендуемые страницы:


Последнее изменение этой страницы: 2017-03-14; Просмотров: 2238; Нарушение авторского права страницы


lektsia.com 2007 — 2019 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.) Главная | Обратная связь

lektsia.com

admin / 07.09.2019 / Разное

Добавить комментарий

Почта не будет опубликована / Обязательны для заполнения *