Цены снижены! Бесплатная доставка контурной маркировки по всей России

Как увеличить мощность электродвигателя 220 вольт: Как увеличить мощность электродвигателя — ООО «СЗЭМО Электродвигатель»

Содержание

Как увеличить мощность электродвигателя — ООО «СЗЭМО Электродвигатель»

Бывает, что мощности электродвигателя недостаточно для обеспечения запуска и работы какого-либо устройства. Как увеличить мощность электродвигателя? Прежде всего, следует знать причину: почему не хватает мощности — а она кроется в параметрах тока, протекающего по обмоткам агрегата. Следовательно, нужно увеличить его значение, либо включив двигатель в сеть большей частоты (если это устройство переменного тока), либо внеся некоторые конструктивные изменения (при включении в бытовую сеть). Ниже мы рассмотрим последний случай.

Как повысить мощность электродвигателя в домашних условиях

Итак, для проведения работ вам следует «вооружиться»:

  • набором проводов разного сечения;
  • тестером;
  • частотным преобразователем;
  • источником тока с изменяемой ЭДС.

Сначала необходимо подключить электродвигатель к имеющемуся у вас источнику тока и изменяемой ЭДС и увеличить ее значение.

Напряжение в обмотках должно увеличиваться соответственно и поравняться со значением ЭДС (если не принимать во внимание потери в подводящих проводниках, но они незначительны).

Для расчета увеличения мощности двигателя определите значение увеличения напряжения и возведите эту цифру в квадрат. Например, если напряжение на обмотках выросло в два раза (со 110В до 220В), мощность двигателя увеличилась в четыре раза.

Иногда самый рациональный способ повысить мощность электродвигателя – перемотать обмотку. Во многих моделях это медный проводник. Вам следует взять провод из того же материала и той же длины, но большего сечения. Мощность двигателя (и ток в проводе) увеличатся во столько же раз, во сколько снизится сопротивление обмотки. Следите за тем, чтобы напряжение на обмотках оставалось неизменным.

Расчет в этом случае тоже достаточно прост. Разделите большую цифру сечения провода на меньшую. Если провод сечением 0.5 мм заменен проводом сечением 0.75 мм, показатель мощности вырастает в 1. 5 раза.

Если вы включаете асинхронный трехфазный двигатель в однофазную бытовую сеть, на первую обмотку подается фаза, на второй фаза сдвигается конденсатором, на третьей сдвиг фаз отсутствует. Именно последняя обмотка создает момент вращения в противоположном направлении (тормозящий момент). Увеличить полезную мощность двигателя в этом случае можно путем отключения третьей обмотки. Это приведет к исчезновению тормозящего момента, генерируемого при работе всех обмоток, и, соответственно, повышению мощности. Данный метод удобен в том случае, когда одна обмотка у двигателя уже сгорела – двух оставшихся вам вполне хватит для подключения и обеспечения работы агрегата.

Еще лучшего результата вы достигнете, поменяв местами выводы третьей обмотки и создав таким образом момент вращения в правильном направлении. В этом случае двигатель «выдаст» более 50% мощности от номинала. Эту обмотку рекомендуется подключать через конденсатор с правильно подобранной емкостью.

У асинхронного двигателя переменного тока мощность можно увеличить, присоединив к нему частотный преобразователь, который повысит частоту переменного тока в обмотках.

Значение мощности в этом случае фиксируется с помощью тестера, поставленного на режим ваттметра. Существует два вида преобразователей частоты, отличающиеся принципом работы и устройством:

  • Приборы с непосредственной связью (выпрямители). Они не подходят для мощного оборудования, но с небольшим двигателем, использующимся в быту, способны «справиться». С помощью такого устройства осуществляется подключение обмотки к сети. Выходное напряжение, образованное им, имеет частоту от 0 до 30 Гц. При этом управлять скоростью вращения привода можно только в ограниченном диапазоне.
  • Приборы с промежуточным звеном постоянного тока. Они производят двухступенчатое преобразование энергии – выпрямление входного напряжения, его фильтрацию и сглаживание и последующую трансформацию в напряжение с требуемой частотой и амплитудой при помощи инвертора. В процессе преобразования КПД оборудования может быть несколько снижен. Благодаря возможности обеспечивать плавную регулировку оборотов и выдавать на выходе напряжение с достаточно высокой частотой, преобразователи данного типа более востребованы и широко применяются в быту и на производстве.

Произведя необходимые расчеты и выбрав наиболее эффективный в вашем случае способ, вы сможете заставить двигатель работать с нужной вам мощностью. Не забывайте о мерах предосторожности.

Увеличение оборотов электродвигателя

Увеличение оборотов электродвигателя также ведет к повышению его мощности. При выборе способа увеличения оборотов учитывайте тип агрегата, особенности модели и область ее применения.

Для повышения частоты вращения коллекторного двигателя следует или уменьшить нагрузку на вал, или увеличить напряжение питания. Обратите внимание на следующие нюансы:

  • Мощность двигателя должна держаться в рамках номинала.
  • Работа коллекторного двигателя с последовательным возбуждением без нагрузки, если не снижено питание, чревата его выходом из строя, так как он может разогнаться до слишком большой скорости.
  • Увеличение оборотов с помощью шунтирования обмотки возбуждения часто приводит к сильному перегреву мотора.

Вышеуказанный способ подходит и для электродвигателей с электронным управлением обмотками (в них используется обратная связь), поскольку их свойства очень схожи с коллекторными моделями (главное различие – невозможность осуществления реверса путем переполюсовки).

Все перечисленные ограничения должны соблюдаться при работе с двигателями данного типа.

В асинхронном двигателе, подключаемом непосредственно к сети, частоту вращения регулируют, изменяя напряжение питания. Этот способ не слишком эффективен, поскольку коэффициент полезного действия сильно меняется из-за нелинейного характера зависимости скорости от напряжения. К синхронному двигателю данный метод применять нельзя.

Трехфазный инвертор позволяет регулировать обороты электродвигателей обоих типов (синхронного и асинхронного). Прибор должен обеспечивать уменьшение напряжения при снижении частоты.

Зная, как сделать мощнее электродвигатель, вы сможете заставить оборудование, к которому он подключен, работать с гораздо большей эффективностью и КПД. Естественно, перед началом работ следует четко представлять себе номинальную мощность двигателя. Данные можно найти в паспорте или на табличке, прикрепленной к корпусу агрегата. Если они отсутствуют (или не читаемы), воспользуйтесь одним из способов определения мощности, описанных в предыдущих статьях.

Работая с электродвигателем, соблюдайте правила техники безопасности. Не допускайте его перегрева и следите, чтобы он эксплуатировался в подходящих условиях. При поломке агрегата или первых признаках неисправности проведите технический осмотр и устраните неполадки. Если проблема слишком серьезная, и вы не можете справиться с ней самостоятельно, обратитесь к специалисту. Срок службы двигателя зависит от множества факторов, но в ваших силах свести к минимуму возможность поломки и сделать так, чтобы устройство работало долго и эффективно.


Повышение мощности электродвигателя в Москве и Санкт-Петербурге: как поднять мощность двигателя

От мощностных характеристик электродвигателя напрямую зависит его КПД. Если мощности двигателя недостаточно для выполнения каких-то конкретных задач, крутящий момент можно увеличить, используя разные способы. Компания ООО «ПО «Электромашина» готова предложить свои услуги по увеличению мощности электродвигателя, благодаря чему может значительно вырасти эффективность его работы.

Способы увеличения мощностных показателей

Одним из главных факторов, влияющих на показатели мощности, является разновидность электротока. Если двигатель работает от постоянного тока, достаточно увеличить значение этого параметра. Если от переменного – меняют частоту питающего напряжения. Еще один способ связан с внесением изменений в конструкцию электродвигателя, когда повышения мощности добиваются перематыванием его обмоток. Чаще всего для этого используется проводник такой же длины, как и у старой обмотки, но большего сечения. Если оставить питающее напряжение на прежнем уровне, то сопротивление нового контура уменьшится, а крутящий момент увеличится во столько же раз. Например, замена провода сечением 0,5 мм на 0,75 мм уменьшает сопротивление и увеличивает мощность в 1,5 раза. Наконец, еще одним способом поднятия мощности является увеличение оборотов электродвигателя. При этом нужно учитывать тип двигателя, параметры конкретной модели и область ее применения.

Изменение характеристик в рамках продукта «Новая жизнь»

Нашей компанией был разработан продукт «Новая жизнь», в рамках которого Вы можете избежать сложных ремонтных работ и получить обновленный, более мощный электродвигатель в старом корпусе.

Кроме того, его характеристики могут быть приведены к современным требованиям к электрооборудованию. В результате проведенной работы мощность двигателя может быть увеличена, а заказчик избежит значительных трудностей, например необходимости разработки новой крупной электрической машины. Часто этот процесс может продолжаться несколько месяцев. Прежде чем приступить к работе, мы проведем полную диагностику электромашины и предоставим Вам полную информацию о ней. Все виды работ выполняются строго по технологическим картам и с учетом пожеланий заказчиков.

Для того чтобы поднять мощность электродвигателя, обратитесь в ООО «ПО «Электромашина». Уточнить любую интересующую информацию или оформить заявку на услугу Вы можете по телефону или оставив свои контактные данные для обратной связи.

Наши преимущества

Снижение затрат за счет сокращения времени простоя оборудования

Опыт работы со сложными, специализированными и крупногабаритными электродвигателями

Ответственный подход к диагностике и ремонту в реальные сроки и за разумную стоимость

Разработка и расчет Проектирование ключевых узлов электродвигателя

Подключение трехфазного двигателя к однофазной сети без потери мощности

Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).

Кроме того, затруднён запуск двигателя под нагрузкой.

В предлагаемой статье описан метод подключения двигателя без потери мощности.

В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.

Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.

На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.

К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.

Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.

При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.

Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.

Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

Таблица 1
P, Вт IC1=IL1, A C1, мкФ L1, Гн
100 0.26 3.8 2.66
200 0.53 7.6 1.33
300 0.79 11.4 0.89
400 1.05 15.2 0.67
500 1.32 19.0 0.53
600 1.58 22.9 0.44
700 1. 84 26.7 0.38
800 2.11 30.5 0.33
900 2.37 34.3 0.30
1000 2.63 38.1 0.27
1100 2.89 41.9 0.24
1200 3.16 45.7 0.22
1300 3.42 49.5 0.20
1400 3.68 53.3 0.19
1500 3.95 57.1 0.18

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.

Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20. ..40°.

На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.

Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.

Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.

В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:

IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,

получаем следующие значения этих токов:

IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).

При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.

На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.

Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85…0,9.

Таблица 2
P, Вт IC1, A IL1, A C1, мкФ L1, Гн
100 0. 35 0.18 5.1 3.99
200 0.70 0.35 10.2 2.00
300 1.05 0.53 15.2 1.33
400 1.40 0.70 20.3 1.00
500 1.75 0.88 25.4 0.80
600 2.11 1.05 30.5 0.67
700 2.46 1.23 35.6 0.57
800 2.81 1.40 40.6 0.50
900 3.16 1.58 45.7 0.44
1000 3.51 1.75 50.8 0.40
1100 3.86 1.93 55.9 0.36
1200 4. 21 2.11 61.0 0.33
1300 4.56 2.28 66.0 0.31
1400 4.91 2.46 71.1 0.29
1500 5.26 2.63 76.2 0.27

В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.

Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.

Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.

Если же в магнитопровод ввести зазор порядка 0,2…1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.

Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.

В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.

Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.

Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.

Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

Таблица 3
Зазор в
магнитопроводе, мм
Ток в сетевой обмотке, A,
при соединении выводов на напряжение, В
220 237 254
0.2 0.63 0.54 0.46
0.5 1.26 1.06 0.93
1 2.05 1.75

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

Таблица 4
Трансформатор Номинальный
ток, A
Мощность
двигателя, Вт
ТС-360М 1.8 600…1500
ТС-330К-1 1.6 500…1350
СТ-320 1.6 500…1350
СТ-310 1.5 470…1250
ТСА-270-1,
ТСА-270-2,
ТСА-270-3
1.25 400…1250
ТС-250,
ТС-250-1,
ТС-250-2,
ТС-250-2М,
ТС-250-2П
1.1 350…900
ТС-200К 1 330…850
ТС-200-2 0.95 300…800
ТС-180,
ТС-180-2,
ТС-180-4,
ТС-180-2В
0.87 275…700

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.

Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.

Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.

Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2…3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.

В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.

К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

Низкое или пониженное напряжение. Как повысить напряжение в сети

Содержание:

Низкое и пониженное напряжение. Причины

Почему в наших электрических сетях низкое или пониженное напряжение хорошо известно. Основные причины — старение электрических сетей, плохое их обслуживание, износ основного оборудования, неверное планирование сетей, значительный рост потребления энергии. В результате мы имеем миллионы потребителей, получающих низкое напряжение. Хорошо, если в сети параметры падают до 200 Вольт, часто бывает что в домах 180, 160 и даже 140 Вольт.

Как известно, напряжение в сети не одинаково у потребителей, подключенных к одной линии передач. Чем дальше потребитель находится от распределительного устройства, тем ниже будет его значение. Конечно, в этой ситуации необходимо повысить напряжение.

К понижению напряжения также приводит существенное увеличение мощности каждого потребителя в сети. Сейчас трудно найти дом, в котором есть только один чайник, один телевизор, один холодильник и пять лампочек. А ведь это примерный расчёт потребления электричества в советские годы, в то время в домах устанавливали автоматы (пробки) на 6,5 Ампер. Не сложный расчёт 6,5 х 220 показывает, что максимальная мощность электрических одновременно включенных приборов не должна была превышать 1,5 кВт. Сегодня один хороший чайник берет 2 кВт. В результате сеть просаживается, получаем низкое напряжение.

Ещё одно явление современной жизни, приводящее понижению параметров тока — сезонность и периодичность возрастания нагрузки. Особенно хорошо это явление можно проследить в дачных поселках. Летом потребление растёт: дачники приезжают, поливают, строят, варят, парят, охлаждают, качают, смотрят, вентилируют, сверлят, пилят, косят, отмечают, употребляют, закусывают — ну в целом «потребляют». А зимой нет никого — холодно и скучно. В результате летом напряжение падает, а зимой растёт. В выходные дни дачники приезжают, поливают, строят, варят, парят, охлаждают, качают, смотрят, вентилируют, сверлят, пилят, косят, отмечают, употребляют, закусывают — ну в целом опять «потребляют». А в рабочие дни нет никого — тихо и скучно. В результате в выходные дни напряжение падает, а в рабочие — растёт.

Чем опасно низкое и пониженное напряжение

Электрические приборы, которыми мы пользуемся, рассчитаны на входное напряжение в диапазоне 220—230 Вольт плюс-минус 5 %. Исходя из этого определяются все электрические параметры приборов: общее сопротивление, сопротивление отдельных частей схемы, длина и сечение всех проводников, количество витков в обмотках двигателей и электромагнитах, параметры транзисторов, резисторов, конденсаторов, трансформаторов, нагревательных элементов.
Если в сети низкое или пониженное напряжение, то электрические приборы могут работать не корректно, не эффективно или вовсе не работать. Низкое напряжение может привести к поломке прибора, перегреву, дополнительному износу или даже возгоранию устройства. Вот почему обязательно нужно повысить напряжение.

Какие приборы чувствительны к этой проблеме, а какие нет?

Легко переносят пониженное напряжение осветительные приборы: лампочки накаливания будут работать, но свет будут давать более тусклый. Будут работать и электроплиты, но менее эффективно. Легко переносят низкое напряжение современные телевизоры, оснащенные импульсными источниками питания с широким диапазоном входного напряжения.
Наиболее чувствительны к низкому напряжению электродвигатели, электромагниты, платы управления. Низкое напряжение приводит к существенному (кратному) увеличению нагрузки на обмотки электродвигателей. Чем ниже напряжение, тем больше сила тока в этих приборах. В результате могут перегреться и даже расплавиться провода, прибор сгорит. Вот почему холодильники и насосы не могут даже включиться при низком напряжении, от полного сгорания их спасает встроенная защита, отключающая прибор. Для нормально работы электродвигателей необходимо повысить напряжение.
Низкое напряжение опасно и для элементов электронного управления различных сложных приборов. При пониженном напряжении микросхемы и процессоры работают не корректно, что приводит к отключению прибора или его поломке. Нельзя эксплуатировать при низком напряжении современные колонки отопления, они имеют и электронное управление и электронасосы. Для нормально работы электронных устройств необходимо повысить напряжение.

Как повысить напряжение в сети

Чтобы повысить напряжение в сети есть два основных способа. Первый добиваться от энергетиков нормализации параметров электрического питания. Писать жалобы, ходить на приёмы к чиновникам, проводить экспертизы, идти в суд. Метод правильный, но очень трудный.
Второй способ повысить напряжение — использовать современные стабилизаторы. Конечно, этот способ работает не всегда, если напряжение очень низкое (меньше 120 вольт), то этот способ не сработает. Если вы решили использовать стабилизаторы чтобы повысить напряжение в вашем доме, нужно определиться с параметрами тока и величиной нагрузки. Исходя из этих параметров проводить выбор стабилизатора. Можно установить один мощный стабилизатор на входе в дом и обеспечить нормализацию параметров тока во всех помещениях. Этот способ самый эффективный, но требует вложения средств, профессионального монтажа, специального помещения.

Можно установить несколько локальных маленьких стабилизаторов в наиболее важных местах. Этот способ более простой и менее затратный. В первую очередь, необходимо повысить напряжение до нормального для таких потребителей как: насосы, холодильники, кондиционеры, газовые колонки.

Повысить напряжение с помощью стабилизаторов Skat и Teplocom

Большой выбор надежных стабилизаторов Skat и Teplocom вы найдете в разделе «Стабилизаторы напряжения». Высокое качество стабилизаторов напряжения Skat и Teplocom гарантируется 20-летним опытом производства электрооборудования.
На заводе введена, поддерживается и эффективно действует система управления качеством на основе принципов стандарта ISO 9001. Вся продукция компании соответствует требованиям стандартов ИСО 14001 и OHSAS 18001.
Стабилизаторы напряжения рекомендованы специалистами компаний: Vaillant, Baxi, Junkers, Thermona, Bosch, Buderus, Alphatherm, Gazeco, Termet, Chaffoteaux, Sime.

Надежная заводская гарантия — 5 лет!

Читайте также:

Как повысить силу тока, не изменяя напряжения

Из статьи вы узнаете как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I — сила тока, t — время, а q — заряд.

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

I=U/R.

Сила тока бывает двух видов — положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

Приведем проверенные рекомендации, которые позволят решить поставленные задачи.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Итоги

Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.

Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:

  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах.   Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
  • Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  • Нельзя дистанционно выключить и включить электродвигатель.
Похожие темы:

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Остановить

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Остановить

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Остановить

Вращающееся магнитное поле пронизывающее ротор

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

С помощью одной фазы нельзя запустить ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя.

Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


Максимальные и минимальные значения напряжения двигателя

Экономические убытки от преждевременного отказа двигателя огромны. В большинстве случаев цена самого мотора тривиальна по сравнению со стоимостью внеплановых остановок процессов. Как высокое, так и низкое напряжение могут вызвать преждевременный отказ двигателя, равно как и дисбаланс напряжений. Здесь мы рассмотрим влияние низкого и высокого напряжения на двигатели и соответствующие изменения производительности, которые вы можете ожидать при использовании напряжения, отличного от указанного на паспортной табличке.

Воздействие низкого напряжения. Когда вы подвергаете двигатель напряжению ниже номинального, указанного на паспортной табличке, некоторые характеристики двигателя изменяются незначительно, а другие — резко. Чтобы приводить в действие фиксированную механическую нагрузку, подключенную к валу, двигатель должен потреблять фиксированное количество энергии от линии. Количество потребляемой двигателем мощности примерно соответствует току напряжения 2 (в амперах). Таким образом, когда напряжение падает, ток должен увеличиваться, чтобы обеспечить такое же количество энергии.Увеличение тока представляет опасность для двигателя только в том случае, если этот ток превышает номинальный ток двигателя, указанный на паспортной табличке. Когда сила тока превышает номинальное значение, указанное на паспортной табличке, двигатель начинает нагреваться. Без своевременной коррекции это тепло приведет к повреждению двигателя. Чем больше тепла и чем дольше на него воздействуют, тем больше повреждение мотора.

Существующая нагрузка является основным фактором при определении того, насколько снижение напряжения питания может выдержать двигатель (см. Врезку ниже). Например, давайте посмотрим на двигатель с небольшой нагрузкой.Если напряжение уменьшается, ток будет увеличиваться примерно в той же пропорции, что и напряжение. Например, уменьшение напряжения на 10% приведет к увеличению силы тока на 10%. Это не приведет к повреждению двигателя, если ток будет ниже значения, указанного на паспортной табличке.

А что, если у этого двигателя большая нагрузка? В этом случае у вас уже есть большой ток, поэтому напряжение уже ниже, чем было бы без нагрузки. Возможно, вы даже приблизитесь к нижнему пределу напряжения, указанному на паспортной табличке.Когда происходит снижение напряжения, ток возрастает до нового значения, которое может превышать номинальный ток при полной нагрузке.

Низкое напряжение может привести к перегреву, сокращению срока службы, снижению пусковых возможностей и уменьшению крутящего момента при подъеме и оттягивании. Пусковой крутящий момент, крутящий момент и крутящий момент асинхронных двигателей изменяются в зависимости от приложенного напряжения в квадрате. Таким образом, снижение напряжения на 10% по сравнению с номинальным напряжением (от 100% до 90%, от 230 В до 207 В) снизит пусковой момент, крутящий момент отвода и крутящий момент отрыва в раз.92.9. Полученные значения составят 81% от значений полного напряжения. При напряжении 80% результат будет 0,82,8 или значение 64% от полного значения напряжения. Что это означает в реальной жизни? Что ж, теперь вы можете понять, почему трудно запустить «трудно запускаемые» нагрузки, если напряжение оказывается низким. Точно так же крутящий момент двигателя будет намного ниже, чем при нормальном напряжении.

Для малонагруженных двигателей с легко запускаемыми нагрузками снижение напряжения не будет иметь какого-либо заметного эффекта, за исключением того, что оно может помочь снизить потери при небольшой нагрузке и повысить эффективность в этих условиях. Этот принцип лежит в основе некоторого дополнительного оборудования, предназначенного для повышения эффективности.

Воздействие высокого напряжения. Люди часто делают предположение, что, поскольку низкое напряжение увеличивает силу тока на двигателях, высокое напряжение должно уменьшать потребляемую силу тока и нагрев двигателя. Это не тот случай. Высокое напряжение на двигателе приводит к насыщению магнитной части двигателя. Это приводит к тому, что двигатель потребляет чрезмерный ток, пытаясь намагнитить утюг за пределы точки, в которой намагничивание практически возможно.

Двигатели допускают некоторое изменение напряжения выше расчетного. Однако, если напряжение превышает расчетное, сила тока возрастет, что приведет к соответствующему увеличению нагрева и сокращению срока службы двигателя.

Например, производители ранее рассчитывали двигатели на 220/440 В с диапазоном допуска 510%. Таким образом, допустимый диапазон напряжения на высоковольтных соединениях составляет от 396 до 484 В. Несмотря на то, что это так называемый диапазон допуска, наилучшие характеристики будут достигнуты при номинальном напряжении.Крайние концы (высокие или низкие) создают ненужную нагрузку на двигатель.

Не попадайтесь в ловушку, думая, что с вами все в порядке, только потому, что ваше напряжение питания находится в этих пределах. Назначение этих диапазонов — приспособиться к обычным почасовым колебаниям напряжения на заводе. Постоянная работа на высоких или низких уровнях сокращает срок службы двигателя.

Такая чувствительность к напряжению характерна не только для двигателей. Фактически, колебания напряжения влияют на другие магнитные устройства аналогичным образом.Соленоиды и катушки, которые вы найдете в реле и пускателях, лучше переносят низкое напряжение, чем высокое. Это также верно для балластов в люминесцентных, ртутных и натриевых осветительных приборах высокого давления. И это касается трансформаторов всех типов. Лампы накаливания особенно чувствительны к высокому напряжению. Повышение напряжения на 5% приводит к сокращению срока службы лампы на 50%. Повышение напряжения на 10% выше номинального сокращает срок службы лампы накаливания на 70%.

В целом, для оборудования определенно будет лучше, если вы измените ответвления на входных трансформаторах, чтобы оптимизировать напряжение в цехе завода до уровня, близкого к номинальным характеристикам оборудования.На старых заводах вам, возможно, придется пойти на некоторые компромиссы из-за различий в стандартах для старых двигателей (220/440 В) и более новых стандартов с Т-образной рамой (230/460 В). Напряжение посередине этих двух напряжений (что-то вроде 225 В или 450 В), как правило, обеспечивает наилучшую общую производительность. Высокое напряжение всегда ведет к снижению коэффициента мощности, что увеличивает потери в системе. Это приводит к более высоким эксплуатационным расходам на оборудование и систему.

Стандартный рисунок (найденный в справочниках по двигателям и в оригинальной печатной версии этой статьи) иллюстрирует общее влияние высокого и низкого напряжения на характеристики двигателей с Т-образной рамой. Этот график широко используется в различных справочных материалах. Но это всего лишь пример и не дает точной информации, которая применима ко всем двигателям. Вместо этого он представляет собой только один тип двигателя, с большим количеством вариаций от одного двигателя к другому. Например, самая низкая точка на линии усилителя полной нагрузки не всегда возникает при напряжении на 21/2% выше номинального. На некоторых двигателях это может произойти при напряжении ниже номинального. Кроме того, увеличение тока полной нагрузки при напряжениях выше номинального имеет тенденцию быть более крутым для некоторых конструкций обмоток двигателя, чем для других.Боковая панель на странице 78 предлагает некоторые рекомендации по определению влияния колебаний напряжения на отдельные конструкции и корпуса двигателей.

Не подвергайте свои электродвигатели и другое электрическое оборудование нагрузке из-за того, что энергосистема работает на краях предельных значений напряжения или около них. Наилучший срок службы и наиболее эффективная работа обычно происходят при работе двигателей с напряжением, очень близким к номинальным значениям, указанным на паспортной табличке. Подавая напряжение на двигатели, держитесь подальше от «внешних границ».«

Этот текст является адаптацией «Документов Коверна», любезно предоставленных компанией Baldor Electric Co., Уоллингфорд, Коннектикут, отредактированной Марком Ламендолой, техническим редактором EC&M. Кауэрн — разработчик приложений Baldor.

Включите! Руководство по преобразователям с 110 В на 220 В

Будь то дом или офис, иногда новому устройству требуется больше мощности, чем у вас есть.

Если у вас есть холодильник, садовое освещение или электрическая плита, которые вы пытаетесь запитать, цепей на 110 В в большинстве домов и офисов будет недостаточно.Что вам нужно, так это 220 В, и установка этой цепи в ваше здание стоит недешево.

К счастью для вас, есть простое и доступное решение этой проблемы с питанием — преобразователи с 110 В на 220. Повышающие преобразователи на 220 В упрощают питание электроприборов без модернизации существующих цепей.

В нашем полном руководстве по преобразователям с 110 В на 220 вы найдете все необходимое для включения в кратчайшие сроки.

Что такое преобразователь 220В?

Какие устройства используют 220 вольт?

Где взять преобразователь 110В в 220В?

Могу ли я подключить 220 В к 110 В?

Можно ли преобразовать розетку с 110 В на 220 В?

Могу ли я использовать прибор на 220 В в США?

Могу ли я преобразовать 110 В в 220 В?

Может ли устройство на 220 В работать от 110 В?

Как преобразовать розетку с 110 В на 220 В

Как преобразовать 110 В в 220 В

Как использовать преобразователь питания с 110 В на 220 В

Как преобразовать 110 В в 220 В без трансформатора

Как преобразовать 110 В в 220 В из двух розеток

Легко ли преобразовать 110 В в 220 В?

Напряжение США 110 или 220?

Что такое преобразователь 220В?

Повышающий преобразователь 220 В принимает два источника 110 В и преобразует их в один источник 220 В. Не путать с понижающим преобразователем 220 В, который принимает существующий источник 220 В и преобразует его в источник питания 100 В. Повышающие преобразователи 220 В могут питать широкий спектр оборудования и бытовой техники для дома, офиса и т. Д.

Какие устройства используют 220 вольт?

Существует широкий ассортимент бытовой техники, рассчитанной на работу от сети 220 В. Мы перечислили несколько наиболее распространенных ниже:

  1. Посудомоечные машины
  2. Морозильные камеры
  3. Холодильники
  4. Верхняя часть плиты
  5. Вытяжки
  6. Вывоз мусора
  7. Кондиционеры
  8. Шайба
  9. Сушилки
  10. Осветительное оборудование для садоводства.

Эти приборы работают от сети 220 В и лучше всего подходят для розеток на 220 В. Но если вам нужно запитать одно из этих устройств, но у вас есть доступ только к напряжению 110 В, повышающий преобразователь 220 В сделает простую в использовании розетку на 220 В.

Где я могу получить преобразователь 110 В в 220 В?

Вы можете купить преобразователь напряжения в большинстве магазинов, торгующих электроникой, как онлайн, так и лично. Помните, покупаете ли вы понижающий преобразователь или повышающий преобразователь.220В на 110В, понижающие преобразователи, обычно используются для международных поездок. Системы Quick 220® продают простые в использовании преобразователи с 110 В на 220 В, которые объединяют две розетки 110 В в один источник питания 220 В.

Могу ли я подключить 220 В к 110 В?

Не рекомендуется подключать устройство 220 В к розетке 110 В. Если вы это сделали, весьма вероятно, что вы повредите или разрушите прибор. Если в вашем устройстве нет двигателя, оно будет работать плохо, потребляя половину необходимой энергии.Если у устройства есть двигатель, то более низкое напряжение может его повредить.

Можно ли преобразовать розетку с 110 В на 220 В?

Можно преобразовать розетку с напряжением 110 В в розетку с напряжением 220 В, но, по крайней мере, требуется электрик для некоторого изменения проводки. Гораздо проще и экономичнее установить преобразователь с 110 В на 220 В и использовать две существующие розетки на 110 В.

Могу ли я использовать прибор на 220 В в США?

Вы можете использовать электроприбор на 220 В в Соединенных Штатах, если у вас есть необходимое оборудование.В США и соседних странах бытовые розетки работают от 110 или 120 вольт. Не рекомендуется подключать прибор, требующий 220 или 240 вольт, к одной из этих розеток, потому что это может повредить или разрушить прибор. Если электрик не может заменить розетку, можно купить преобразователь 110–220 В. Преобразователь 220 В будет потреблять питание от двух розеток 110/120 В для создания источника 220 В для вашего устройства.

Могу ли я преобразовать 110 В в 220 В?

Да, вы можете преобразовать 110В в 220В.В большинстве случаев для этого электрик должен обновить существующую электрическую схему объекта. Но когда вы используете повышающий преобразователь с 110 В на 220 В, вы можете сделать это самостоятельно. При подключении преобразователя к двум независимым источникам 110 В повышающий преобразователь 220 В создает один источник питания 220 В.

Может ли устройство на 220 В работать от 110 В?

Не рекомендуется подключать прибор 220 В к розетке 110 В, так как это может привести к перегрузке прибора и повреждению.Если вы не можете нанять электрика для модернизации существующей схемы вашего здания, вы можете купить преобразователь 110–220 В. Преобразователь 220 В будет потреблять питание от двух розеток 110/120 В и создавать единый источник 220 В для вашего устройства.

Как преобразовать розетку 110 В в розетку 220 В

Преобразование розетки 110 В в розетку 220 В — сложный процесс самостоятельно, и лучше всего его выполнит профессиональный электрик. просто, если у вас есть подходящие инструменты.Если модернизация существующей розетки до 220 В не подходит для вас, вы можете легко использовать повышающий преобразователь 220 В, чтобы объединить две розетки на 110 В в один источник питания 220 В.

Как преобразовать 110 В в 220 В

Преобразование напряжения в вашем доме, квартире или офисе требует значительного изменения электропроводки и, скорее всего, осмотра здания. Не говоря уже о том, что такая качественная работа стоит очень дорого.

Как минимум, можно нанять электрика для установки розетки 220в.Но это обойдется вам в лучшем случае в несколько сотен долларов, а работа с подрядчиками может стать проблемой.

Повышающий преобразователь с 100 В на 220 В — еще одна альтернатива преобразованию 110 В в 220 В. Комбинируя две розетки на 110 В, преобразователь 220 В обеспечивает питание устройства на 220 В без изменения существующих схем. Кроме того, это простая установка своими руками!

Как использовать преобразователь питания с 110 В на 220 В

  1. Сначала проверьте розетку на 110/120 В с помощью тестера напряжения, чтобы убедиться, что розетка подключена правильно и в цепи отсутствует прерыватель замыкания на землю. (Преобразователи Quick 220 поставляются с одним входящим комплектом.)
  2. Вставьте шнур питания в розетку на 110/120 вольт.
  3. Вставьте другой шнур питания в другую розетку на 110/120 В. При необходимости используйте удлинитель соответствующей длины. (Эти две розетки, скорее всего, будут далеко друг от друга.)
  4. Если вы используете преобразователь 220 В от Quick 220®, желтая лампа на передней крышке загорится, когда он будет подключен к другой розетке в независимой цепи. Если лампа не загорается, попробуйте использовать другие розетки, пока она не загорится.Независимая цепь — это цепь, которая сдвинута по фазе на 180 градусов с первой. Системы Quick 220® автоматически проверяют это, без каких-либо специальных знаний или действий с вашей стороны.
  5. Наконец, подключите прибор к розетке 220/240 В, создаваемой преобразователем, и начните использовать.

Как преобразовать 110 В в 220 В без трансформатора

Трансформаторы обычно большие, тяжелые и дорогие, особенно при более высокой мощности. Если вы не можете обновить трансформатор, вы можете преобразовать 100 В в 220 В без трансформатора напряжения, используя повышающий преобразователь 110 В в 220 В.Преобразователи легче, компактнее, доступнее и поддерживают более высокую мощность, чем трансформаторы.

Как преобразовать 110 В в 220 В из двух розеток

Чтобы преобразовать две розетки на 110 вольт в источник 200 вольт, проще всего использовать преобразователь на 220 вольт. Преобразователи на 200 В легко установить своими руками и создают уникальный источник питания 220 В. Используя повышающий преобразователь 220 В, вы избавляетесь от неприятных ощущений, связанных с наймом электрика для модернизации розетки или внутренних цепей вашего здания.

Легко ли преобразовать 110 В в 220 В?

Да, вы можете преобразовать 110В в 220В. В большинстве случаев для этого электрик должен обновить существующую электрическую схему объекта. Но когда вы используете повышающий преобразователь с 110 В на 220 В, вы можете установить его самостоятельно. При подключении преобразователя к двум независимым источникам 110 В повышающий преобразователь 220 В создает один источник питания 220 В.

Напряжение США 110 или 220?

В большинстве стран мира напряжение бытовой розетки составляет 220 вольт.Однако в Соединенных Штатах и ​​соседних странах бытовые розетки работают от 110 или 120 вольт. Это может стать серьезной проблемой для путешественников. Подключение прибора на 220 В к розетке на 110 В может привести к повреждению или разрушению прибора.

Все еще недостаточно мощности?

На этом мы подошли к концу нашего полного руководства по преобразователям 110–220 В. Надеемся, вы нашли все, что искали.

Мы хотим, чтобы этот ресурс был постоянно развивающимся. Итак, если у вас все еще остались неотвеченные вопросы о преобразователях с 110 В на 220 В, оставьте комментарий ниже, сообщив нам об этом.

Мы обновим этот пост, добавив в него ваш вопрос и наш ответ, усиливая этот пост и расширяя знания будущих читателей.

Трехфазная электрическая мощность | Передача электроэнергии

Трехфазная электроэнергия — распространенный метод передачи электроэнергии. Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока. Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, при этом поддерживая однофазные устройства с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, так как нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки.Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и, следовательно, могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя. Наконец, трехфазные системы могут создавать магнитное поле, которое вращается в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства.

Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите.

На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора. Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы.В трехфазной системе фазы распределены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но более подробную информацию см. В разделе «Системы электроснабжения»).

Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до более подходящего для передачи.

После многочисленных дополнительных преобразований в передающей и распределительной сети мощность окончательно преобразуется в стандартное сетевое напряжение ( i.е. «бытовое» напряжение). На этом этапе питание может быть уже разделено на однофазное или все еще может быть трехфазным. Если понижение является трехфазным, выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся напряжением фаза-нейтраль. Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль.Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами) быть доступным из того же источника.

В большом оборудовании для кондиционирования воздуха и т. Д. Используются трехфазные двигатели из соображений эффективности, экономии и долговечности.

Нагреватели сопротивления, такие как электрические бойлеры или отопление помещений, могут быть подключены к трехфазным системам.Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют наличия вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением. Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.

Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче отфильтровать (сгладить), чем выходной сигнал однофазного выпрямителя.Такие выпрямители можно использовать для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.

Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

В большинстве стран Европы печи рассчитаны на трехфазное питание. Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить возможность подключения к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.

Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, например, жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование. Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.

Поскольку однофазная мощность стремится к нулю в каждый момент, когда напряжение пересекает ноль, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.

Один из методов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения. При правильной конструкции эти роторные преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания.В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Второй метод, который был популярен в 1940-х и 50-х годах, был методом, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов. Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод хорошо работает и имеет сторонников даже сегодня. Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.

Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузкой двигателя, хотя он обеспечивает только 2/3 мощности и может вызвать перегрев нагрузок двигателя, а в некоторых случаях — перегрев. Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или нагрузки индукционного или выпрямительного типа.

Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается созданием третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.

Преобразователи частоты (также известные как твердотельные инверторы) используются для точного управления скоростью и крутящим моментом трехфазных двигателей. Некоторые модели могут питаться от однофазной сети.VFD работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.

Цифровые фазовые преобразователи — это новейшая разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.

  • Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
  • Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что вопреки теории двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Установленные в 1895 году на Ниагарском водопаде генераторы были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазное питание может быть получено от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
  • Моноциклическое питание — это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивавшей Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было трудно анализировать, и его хватило не на то, чтобы разработать удовлетворительный учет энергии.
  • Системы высокого порядка фаз для передачи энергии были построены и испытаны. Такие линии электропередачи используют 6 или 12 фаз и конструктивные решения, характерные для линий электропередачи сверхвысокого напряжения. Линии передачи высокого порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.

Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений.

Один цикл напряжения трехфазной системы

На заре коммерческой электроэнергетики на некоторых установках использовались двухфазные четырехпроводные системы для двигателей.Основным преимуществом этого было то, что конфигурация обмотки была такой же, как у однофазного двигателя с конденсаторным пуском, и, используя четырехпроводную систему, концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы были заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено от трехфазной системы с использованием трансформатора, подключенного по Скотту.

Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют разделенной фазой.

Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазное питание завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, поэтому эти двигатели работают медленнее. Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — раньше все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.

Были использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с шагом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Они позволяют применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволяют увеличить передачу мощности в коридоре той же ширины линии электропередачи.

Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; Напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью «Системы электроснабжения» для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.

В Северной Америке в жилых многоквартирных домах может быть распределено напряжение 120 В (линия на нейтраль) и 208 В (линия на линию). Основные однофазные приборы, такие как духовки или плиты, предназначенные для системы с разделением фаз на 240 В, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 В; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут работать правильно при подаче напряжения на 13% ниже.

Конденсатор

— Как я могу заставить мой двигатель 380/380 вольт работать от 220 вольт?

Подключение конденсатора к трехфазному двигателю для однофазной работы называется подключением Штейнмеца. Если вы выполните поиск по «Steinmetz connection», вы найдете довольно много информации об этом.

Если двигатель имеет только шесть выводов или клемм для внешних подключений, он может работать только при напряжении 380 В на любой из двух указанных скоростей.Для низкой скорости U4, V4 и W4 соединяются вместе, а трехфазное питание подключается к U2, V2 и W2. Для высокоскоростной работы подключение к U2, T2 и W2 отсутствует, а питание подключается к Uw, T4 и W4. Номинальная механическая мощность одинакова для обеих скоростей, поэтому крутящий момент, доступный на высокой скорости, составляет половину крутящего момента на низкой скорости. Вы можете использовать частотно-регулируемый привод (VFD) с выходом 380 В для любого из этих подключений.

Если на каждом конце каждой обмотки имеется независимое внешнее соединение, 12 выводов или клемм, обмотки могут быть соединены в параллельном треугольнике. Это должно подходить для трехфазного питания 220 вольт. Я полагаю, что это все еще будет 4-полюсная низкоскоростная конфигурация. Вы можете использовать VFD с выходом 220 вольт для этого соединения.

У вас не должно возникнуть проблем с поиском частотно-регулируемого привода на 220 вольт, однофазный вход и 220 вольт, трехфазный выход. Возможно, вам удастся найти частотно-регулируемый привод со встроенной схемой повышения напряжения, чтобы обеспечить трехфазный выход 380 вольт и однофазный вход 220 вольт. В противном случае вам понадобится входной трансформатор для VFD и VFD на 380 В, который принимает однофазный вход.

Я не знаю, какие есть все варианты с подключением Steinmetz.

Если у существующего двигателя нет специального вала или шестерни, установленной непосредственно на нем. Лучшим вариантом может быть покупка другого двигателя и, возможно, частотно-регулируемого привода для регулирования скорости.

См. Схему ниже:

Для U2, V2 и W2 две катушки двигателя соединены вместе внутри двигателя или в клеммной коробке двигателя. Если вы можете разорвать это соединение, вы можете повторно подключить катушки, как показано красными линиями.Я почти уверен, что это позволит двигателю работать на высокой скорости на 220 вольт. Для однофазного подключения подключите конденсатор от одной из линий питания к точке, где должна быть подключена недостающая фаза. Это позволяет двигателю работать от однофазного тока, но его крутящий момент значительно снижается. Это связь Стейнмеца. Вы сможете найти номиналы конденсаторов и другую информацию, выполнив поиск «Steinmetz connection».

Как определить количественно разницу в мощности двигателя настольной пилы, подключенного к 240 и 120 вольт

Интуиция настаивает на том, что нет никакой разницы, но на практике эксплуатация реконфигурируемого на месте двигателя с двумя напряжениями 120/115 В вместо 240/230 В будет иметь тенденцию к уменьшению доступного крутящего момента … но расхождение между теорией (но это одно и то же!) и реальностью (нет, не совсем!) вызвано причинами, которые полностью не связаны с двигателем.

Двигатель (правильно подключенный) воспринимает точно такие же условия независимо от последовательного / параллельного подключения проводов двигателя — при условии, что условия статичны и нагрузка на двигатель (дерево относительно лезвия, его твердость, толщина, и сила вдавливания его в лезвие) не меняется. Конечно, с настольной пилой условия эксплуатации весьма разнообразны.

Двигатель настольной пилы потребляет больше энергии, когда к полотну приставлена ​​древесина, чем когда полотно просто вращается без работы. Больше работы означает увеличение тока, что двигатель делает автоматически, поскольку он «пытается» поддерживать заданную скорость вращения под нагрузкой.

Рассмотрим …

  • Падение напряжения в фактических вольтах (не в процентах) в цепи с заданным размером и длиной провода прямо пропорционально потребляемому току.

  • Ток, потребляемый двигателем, увеличивается с нагрузкой.

  • Ток удваивается, когда напряжение уменьшается вдвое, поэтому падение напряжения в цепи больше, чем больший ток требуется для более низкого напряжения. (Размер провода, конечно, увеличен, и это еще один фактор падения напряжения, но уменьшенного падения напряжения от более крупных проводов недостаточно, чтобы противодействовать увеличенному падению от удвоенного тока, если только провода намного больше , чем требует код. используются при более низком напряжении.)

  • Текущее увеличение под нагрузкой также удваивается, когда напряжение уменьшается вдвое.

  • Трансформатор поставщика электроэнергии может лучше справиться с потреблением, когда вся вторичная обмотка задействована в обеспечении пикового тока, а не только его половина.

… поэтому двигатель обычно испытывает более сильное падение напряжения под нагрузкой при работе с более низким напряжением.

И здесь все становится некрасивым из-за другого факта, связанного с двигателями переменного тока: номинальный крутящий момент доступен для передачи рабочей нагрузке только тогда, когда двигатель работает при номинальном напряжении, указанном на паспортной табличке, и падает по закону обратных квадратов по мере уменьшения напряжения питания . (Плохие вещи также случаются с перенапряжением, но это выходит за рамки этого ответа.)

Поскольку доступное напряжение питания уменьшается из-за увеличения падения напряжения, крутящий момент уменьшается в квадрате уменьшение напряжения от паспортного значения … таким образом, двигатель, работающий при пониженном напряжении на 10% (90% номинального), развивает крутящий момент всего 0,9 x 0,9 = 81% от номинальной мощности … и, когда физическая нагрузка на двигатель резко возрастает (например, когда вы вставляете кусок дерева в лезвие), ток увеличивается, и падение напряжения увеличивается более резко при настройке на 120 В, чем при настройке на 240 В.

Заставьте электродвигатель снова заработать: 6 шагов (с изображениями)

Электролитический конденсатор нередко высыхает и выходит из строя в аудиооборудовании через 20 лет или меньше. Но замена пускового конденсатора без предварительной проверки на короткое замыкание или разрыв обмоток, сброс обрыва и неисправный центробежный переключатель не заставят ваш двигатель работать, если конденсатор на самом деле не ваша проблема.

Многие двигатели имеют куполообразную крышку на внешней стороне двигателя, а конденсатор находится под ней.Конденсаторы двигателя обычно представляют собой цилиндры с выводами наверху. Но некоторые конденсаторы в старых двигателях также могут быть плоскими, например, короткая стопка учетных карточек 4 x 6. Они могут быть расположены в основании двигателя, так что по внешнему виду создается впечатление, что в двигателе нет конденсатора.

Конденсатор может вздуться или протечь при выходе из строя. Он может даже расколоться. Но это также может выглядеть совершенно нормально. Существуют различные процедуры тестирования конденсаторов, но эти тесты не являются надежными. Конденсатор может пройти несколько тестов и все равно выйти из строя под нагрузкой.

Если вы еще этого не сделали, воспользуйтесь отверткой, чтобы замкнуть любой остаточный заряд в конденсаторе двигателя. Сделайте это пару раз на всякий случай.

Если ваш конденсатор определенно нуждается в замене, скопируйте цифры напряжения и емкости, надеюсь, все еще читаемые. Вы всегда можете использовать запасной конденсатор, рассчитанный на более высокое напряжение, чем исходный конденсатор вашего двигателя, но значения емкости должны соответствовать как можно точнее. Таким образом, конденсатор переменного тока на 230 вольт может заменить конденсатор переменного тока на 125 вольт.Емкость будет иметь диапазон от 220 до 260 микрофарад. Конденсатор с номиналом от 210 до 250 мкФ должен быть достаточно близким для нормальной работы. (Если вы видите номиналы в миллифарадах, 1 миллифарад равен 1000 микрофарад.)

Вот несколько способов проверить конденсатор . Выберите те, которые подходят тому, что у вас есть.

Процедура A — Отключив хотя бы один провод от конденсатора и отключив питание цепи двигателя, подключите омметр к обоим выводам конденсатора.Аналоговый счетчик предпочтительнее, но не обязателен. Показание должно возрасти до высокого значения и внезапно упасть до нуля или обрыв цепи. Если есть стабильное показание некоторого значения, конденсатор закорочен. Если сначала показания не повышаются, что-то внутри конденсатора сломано и имеется разрыв цепи.

Процедура B — Отсоедините оба провода от конденсатора. Подключите его к шнуру лампы и последовательно с лампой накаливания мощностью около 60 Вт. Подключите его к розетке.Лампа должна гореть, хотя может быть тусклее, чем обычно.

Процедура C — Вы можете получить измеритель, который считывает значение емкости конденсатора, менее чем за 20 долларов плюс доставка. Вышеупомянутые тесты дают вам представление о том, работает ли конденсатор, но не дают никаких подсказок о фактической емкости конденсатора. (Высохший электролитический конденсатор может показаться хорошим, но его емкость слишком мала для запуска двигателя.) Счетчик меняет это. Поищите в инструкциях схемы измерителя емкости.По крайней мере, один использует модуль Arduino. Около 25 лет назад у меня был журнал по электронике с самодельной схемой для измерителя емкости на базе микросхемы 555. (Вот аналогичное устройство, которое вы можете сделать.) Теперь у меня есть цифровой мультиметр с измерением емкости. Некоторые измерители емкости используют генератор сигналов высокой частоты, который является частью измерителя. Их можно использовать «в цепи» и давать точные показания без обратной связи через другие части схемы.

Конденсаторы могут давать хорошие показания на измерителе и при этом оставаться слабыми или выходить из строя.Измеритель ESR измеряет внутреннее сопротивление, которое влияет на фактическую производительность.

Процедура C ‘ — Книга, упомянутая в следующем шаге, предоставляет еще один тест. Он включает в себя измерение тока (силы тока), используемого двигателем при включении питания. Математическая формула показывает, сколько микрофарад дает ваш конденсатор с учетом параметров теста. Это полезно, потому что это тест под нагрузкой.

Процедура D — Не всегда возможно купить несколько единиц испытательного оборудования, которое нельзя использовать более одного или двух раз. Если все остальное (короткое замыкание и размыкание, центробежный переключатель, сброс и т. Д.) Проверяется в вашем двигателе и конденсатор показывает, что он должен быть в порядке, но двигатель все еще не работает, новый конденсатор будет доставлен к вашей двери за 10-20 долларов. . В худшем случае у вас будет относительно небольшая сумма денег, и возможно, у вашего конденсатора есть недостаток, который не проявится в тестах, которые вы можете провести. В лучшем случае мотор может работать.

Когда закончите, восстанавливает подключения к конденсатору , либо старый, либо новый.

Измерение и анализ мощности электродвигателя

Билл Гэтеридж, менеджер по продукции, Power Measuring Instruments, Yokogawa Corporation of America

Часть 1: Основные измерения электрической мощности

Электродвигатели — это электромеханические машины, преобразующие электрическую энергию в механическую. Несмотря на различия в размере и типе, все электродвигатели работают во многом одинаково: электрический ток, протекающий через катушку с проволокой в ​​магнитном поле, создает силу, которая вращает катушку, создавая крутящий момент.

Понимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим, поэтому давайте начнем с обзора основных измерений электрической и механической мощности.

Что такое мощность? В самом простом виде мощность — это работа, выполняемая в течение определенного периода времени. В двигателе мощность передается на нагрузку путем преобразования электрической энергии в соответствии со следующими законами науки.

В электрических системах напряжение — это сила, необходимая для перемещения электронов.Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Умножив напряжение на соответствующий ток, можно определить мощность.

P = V * I, где мощность (P) в ваттах, напряжение (V) в вольтах, а ток (I) в амперах

Ватт (Вт) — единица мощности, определяемая как один джоуль в секунду. Для источника постоянного тока вычисление представляет собой просто умножение напряжения на ток: W = V x A. Однако определение мощности в ваттах для источника переменного тока должно включать коэффициент мощности (PF), поэтому W = V x A x PF для переменного тока. системы.

Коэффициент мощности представляет собой безразмерное отношение в диапазоне от -1 до 1 и представляет собой количество реальной мощности, выполняемой при работе с нагрузкой. При коэффициенте мощности меньше единицы, что почти всегда имеет место, будут потери реальной мощности. Это связано с тем, что напряжение и ток в цепи переменного тока имеют синусоидальную природу, а амплитуда тока и напряжения цепи переменного тока постоянно смещается и обычно не идеально совмещена.

Поскольку мощность равна напряжению, умноженному на ток (P = V * I), мощность является максимальной, когда напряжение и ток выстраиваются вместе, так что пики и нулевые точки на формах волны напряжения и тока возникают одновременно.Это типично для простой резистивной нагрузки. В этой ситуации две формы сигналов находятся «в фазе» друг с другом, а коэффициент мощности будет равен 1. Это редкий случай, поскольку почти все нагрузки не просто обладают идеальным сопротивлением.

Говорят, что две формы сигнала «не в фазе» или «сдвинуты по фазе», если два сигнала не коррелируют от точки к точке. Это может быть вызвано индуктивными или нелинейными нагрузками. В этой ситуации коэффициент мощности будет меньше 1, и реальная мощность будет меньше.

Из-за возможных колебаний тока и напряжения в цепях переменного тока мощность измеряется несколькими способами.

Реальная или истинная мощность — это фактическая мощность, используемая в цепи, и измеряется в ваттах. В цифровых анализаторах мощности используются методы оцифровки сигналов входящего напряжения и тока для расчета истинной мощности в соответствии с методом, показанным на Рисунке 1.

В этом примере мгновенное напряжение умножается на мгновенный ток (I), а затем интегрируется за определенный период времени (t).Истинный расчет мощности будет работать с любым типом сигнала независимо от коэффициента мощности (рисунок 2).

Гармоники создают дополнительную сложность. Несмотря на то, что электрическая сеть номинально работает на частоте 60 Гц, существует много других частот или гармоник, которые потенциально могут существовать в цепи, а также может присутствовать составляющая постоянного или постоянного тока. Общая мощность рассчитывается путем рассмотрения и суммирования всего содержимого, включая гармоники.

Методы расчета, показанные на Рисунке 2, используются для обеспечения точного измерения мощности и истинных измерений среднеквадратичного значения для любого типа сигнала, включая все гармонические составляющие, вплоть до полосы пропускания прибора.

Измерение мощности

Теперь мы посмотрим, как на самом деле измерить мощность в данной цепи. Ваттметр — это прибор, который использует напряжение и ток для определения мощности в ваттах. Теория Блонделя утверждает, что общая мощность измеряется минимум на один ваттметр меньше, чем количество проводов. Например, однофазная двухпроводная схема будет использовать один ваттметр с одним измерением напряжения и одним измерением тока.

Однофазная трехпроводная двухфазная система часто встречается в проводке общего корпуса.Эти системы требуют двух ваттметров для измерения мощности.

В большинстве промышленных двигателей используются трехфазные трехпроводные схемы, которые измеряются двумя ваттметрами. Таким же образом потребуются три ваттметра для трехфазной четырехпроводной схемы, при этом четвертый провод является нейтралью.

На рис. 3 показана трехфазная трехпроводная система с нагрузкой, подключенной с использованием метода измерения двух ваттметров. Измеряются два линейных напряжения и два связанных фазных тока (с помощью ваттметров Wa и Wc).Четыре измерения (линейный и фазный ток и напряжение) используются для достижения общего измерения.

Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, установка и конфигурация проводки упрощаются. Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, при которых требуется измерение только мощности или нескольких других параметров.

Для инженерных и научно-исследовательских работ лучше всего подходит трехфазный трехпроводной метод с тремя ваттметрами, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока. Измеряются все три напряжения (от a до b, от b до c, от c до a), и контролируются все три тока.

Рис. 4. При проектировании двигателей и приводов ключевым моментом является просмотр всех трех значений напряжения и тока, что делает метод трех ваттметров на рисунке выше лучшим выбором.

Измерение коэффициента мощности

При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Ø). Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн. Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как активная мощность в ваттах, деленная на полную мощность в напряжении-амперах. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных.

Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, потому что в расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат.

Таким образом, для несимметричных нагрузок лучше всего использовать метод трех ваттметров, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несбалансированных нагрузок.

Анализаторы мощности

от Yokogawa и некоторых других компаний используют описанный выше метод, который называется методом подключения 3V-3A (три напряжения и три тока). Это лучший метод для инженерных и проектных работ, поскольку он обеспечивает правильные измерения общего коэффициента мощности и ВА для симметричной или несимметричной трехпроводной системы.

Основные измерения механической мощности

В электродвигателе механическая мощность определяется как скорость, умноженная на крутящий момент.Механическая мощность обычно определяется как киловатты (кВт) или лошадиные силы (л.с.), причем один ватт равен одному джоулю в секунду или одному ньютон-метру в секунду.

Лошадиная сила — это работа, выполняемая за единицу времени. Один л.с. равен 33 000 фунт-футов в минуту. Преобразование л.с. в ватт достигается с использованием этого соотношения: 1 л.с. = 745,69987 Вт. Однако преобразование часто упрощается, используя 746 Вт на л.с. (рисунок 9).

Для асинхронных двигателей переменного тока фактическая скорость вращения ротора — это скорость вращения вала (ротора), обычно измеряемая с помощью тахометра. Синхронная скорость — это скорость вращения магнитного поля статора, рассчитанная как 120-кратная частота сети, деленная на количество полюсов в двигателе. Синхронная скорость — это теоретическая максимальная скорость двигателя, но из-за потерь ротор всегда будет вращаться немного медленнее, чем синхронная скорость, и эта разница скоростей определяется как скольжение.

Скольжение — это разница в скорости ротора и синхронной скорости. Чтобы определить процент скольжения, используется простой процентный расчет синхронной скорости минус скорость ротора, деленная на синхронную скорость.

КПД можно выразить в простейшей форме как отношение выходной мощности к общей входной мощности или КПД = выходная мощность / входная мощность. Для двигателя с электрическим приводом выходная мощность является механической, в то время как входная мощность является электрической, поэтому уравнение эффективности выглядит следующим образом: КПД = механическая мощность / входная электрическая мощность.

Часть 2: Выбор приборов для измерения и анализа мощности электродвигателя

Различные ассоциации разработали стандарты тестирования, которые определяют точность приборов, необходимых для соответствия их стандарту: IEEE 112 2004, NVLAP 160 и CSA C390.Все три включают стандарты для измерения входной мощности, напряжения и тока, датчиков крутящего момента, скорости двигателя и т. Д. Трансформаторы тока (CT) и трансформаторы напряжения (PT) являются одними из основных контрольно-измерительных приборов, используемых для выполнения этих измерений.

Соответствующие стандарты очень похожи, за некоторыми исключениями. Допустимые инструментальные ошибки для стандартов IEEE 112 2004 и NVLAP 150 идентичны; однако CSA C390 2006 имеет некоторую разницу в температурах и показаниях.

Например, входная мощность для CSA C390 2006 составляет ± 0,5% от показания и должна включать ошибки CT и PT, тогда как для IEEE 112 2004 и NVLAP 150 требуется только ± 0,5% от полной шкалы.

Датчики тока

Датчики тока обычно требуются для тестирования, потому что сильный ток не может быть подан непосредственно в измерительное оборудование. Доступен целый ряд датчиков для конкретных приложений. Накладные датчики могут использоваться с анализаторами мощности.Можно также использовать щупы для осциллографа, но при их использовании следует соблюдать осторожность, чтобы не допустить воздействия на инструмент высоких токов.

Для трансформаторов тока подводящий провод может быть подключен через окно (трансформаторы тока обычно имеют форму пончика или продолговатую, с отверстием или внутренней частью, называемыми окном), или слаботочные соединения могут быть выполнены с клеммами в верхней части устройство. Шунты обычно используются для приложений постоянного тока, но не переменного тока или искаженных частот, хотя их можно использовать для синхронных двигателей с частотой до нескольких сотен Гц.Доступны специализированные трансформаторы тока, которые хорошо работают на высоких частотах, которые чаще встречаются в осветительных приборах, а не в двигателях и приводах.

Yokogawa вместе с LEM Instruments разработали уникальную систему трансформаторов тока, которая обеспечивает высокую точность в диапазоне от постоянного тока до кГц. Это трансформатор активного типа, который использует блок кондиционирования источника питания и обеспечивает точность приблизительно от 0,05 до 0,02% от показаний. Этот тип системы трансформатора тока обеспечивает очень высокую точность измерений, особенно для частотно-регулируемых приводов, которая может варьироваться от 0 Гц до рабочей скорости подключенного двигателя.

Трансформаторы напряжения просто преобразуют напряжение с одного уровня на другой. В измерительных приложениях иногда требуются понижающие трансформаторы для снижения напряжения, подаваемого на измерительный прибор, хотя многие приборы могут работать с относительно высокими напряжениями и не требуют понижающего трансформатора.

Измерительные трансформаторы обычно представляют собой комбинацию трансформатора тока и трансформатора напряжения и могут уменьшить количество требуемых преобразователей в некоторых измерительных приложениях.

Рекомендации и меры предосторожности при выборе

При принятии решения, какое устройство использовать, первым вопросом является частотный диапазон измеряемых параметров. Для синусоидальных волн постоянного тока можно использовать шунты постоянного тока, которые обеспечивают высокую точность и простую установку. Для приложений переменного и постоянного тока можно использовать эффект Холла или измерительный трансформатор активного типа. Технология эффекта Холла имеет более низкую точность, в то время как активный тип обеспечивает большую точность. Различные измерительные трансформаторы могут работать на высоких частотах 30 Гц и более, но их нельзя использовать для постоянного тока.

Следующее соображение — требуемый уровень точности. Для измерительного трансформатора это обычно указывается как точность передаточного числа витков. Фазовый сдвиг — еще один важный фактор, и он очень важен, потому что многие трансформаторы предназначены только для измерения тока и не имеют компенсации фазового сдвига.

Фазовый сдвиг в основном зависит от коэффициента мощности для измерения мощности и, таким образом, влияет на расчет мощности. Например, трансформатор тока, который имеет максимальный фазовый сдвиг 2 ° как часть своей спецификации, внесет ошибку косинуса (2 °) или 0.06% погрешность. Пользователь должен решить, приемлем ли этот процент ошибок для приложения.

Источником тока является трансформатор тока. Согласно закону Ома, напряжение (E) равняется току через проводник (I), умноженному на сопротивление (R) проводника в единицах Ом. Открытие вторичной обмотки трансформатора тока эффективно увеличивает сопротивление до бесконечности. Это означает, что внутренний ток насыщает катушку, напряжение также стремится к бесконечности, и устройство повреждается или разрушается.Что еще хуже, трансформатор тока со случайно разомкнутой вторичной обмоткой может серьезно травмировать рабочих.

Никогда не размыкайте вторичную обмотку трансформатора тока. Пользователи могут получить серьезные травмы, а CT может быть поврежден или разрушен.

Совместимость приборов

Чтобы определить совместимость прибора, необходимо определить выходной уровень ТТ. Клеммные и другие трансформаторы тока обычно имеют выходную мощность, указанную в милливольтах на ампер, миллиампер на ампер или ампер.Типичный выход ТТ прибора может быть указан от 0 до 5 ампер.

Необходимо учитывать импеданс и нагрузку на ТТ, которые являются факторами, на которые влияет количество проводов, используемых для подключения ТТ к прибору. Эта проводка является сопротивлением или нагрузкой на прибор и, следовательно, может повлиять на измерения.

Пробники

при неправильном использовании могут создавать собственный набор проблем. Многие пробники осциллографа рассчитаны на работу с входным сопротивлением осциллографа, но диапазоны входного сопротивления анализатора мощности могут быть разными, и это необходимо учитывать.

Еще один аспект, который следует учитывать при определении совместимости прибора, — это физические требования к устройству. Размер необходимо учитывать вместе с типом трансформатора тока, например, накладным или кольцевым, каждый из которых будет лучше работать в конкретной ситуации.

Пример системы трехфазного двигателя

Теперь рассмотрим типичное трехфазное трехпроводное измерение мощности двигателя с помощью метода двух ваттметров. Теорема Блонделя утверждает, что количество требуемых измерительных элементов на единицу меньше количества токонесущих проводников.Это позволяет измерять мощность в трехфазной трехпроводной системе с использованием двух преобразователей при отсутствии нейтрали. Однако, когда есть нейтраль, используются три преобразователя, поскольку теперь имеется четыре проводника.

Трехфазное питание в основном используется в коммерческих и промышленных средах, особенно для питания двигателей и приводов, поскольку более экономично эксплуатировать большое оборудование с трехфазным питанием. Для расчета трехфазной мощности напряжение каждой фазы умножается на ток каждой фазы, который затем умножается на коэффициент мощности, и это значение умножается на квадратный корень из трех (квадратный корень из 3 равен равно 1. 732).

Для измерения трехфазной мощности, потребляемой нагруженным двигателем, подключается анализатор мощности. На рисунке 1 показано типичное соединение с дисплеем, на котором показаны все три напряжения, все три тока, общая мощность и коэффициент мощности.

На рисунке 2 показано трехфазное трехпроводное измерение мощности, выполненное с использованием метода двух ваттметров. Перечислены все три тока и напряжения, а также общие ВА и ВАР. Эта конфигурация может отображать отдельные показания мощности фазы, но их не следует использовать напрямую, потому что для этого метода измерения только полная мощность является точным показанием.

В основном, при использовании метода двух ваттметров в трехпроводной трехфазной системе невозможно измерить мощность отдельной фазы или измерить какие-либо параметры фазы, включая коэффициенты мощности фазы. Однако можно измерить все параметры фазы.

Для трехфазного двигателя с трехпроводным соединением в треугольник можно измерять линейные напряжения и токи отдельных фаз. Поскольку нейтрали нет, измерять фазные напряжения невозможно.Эта ситуация приводит к некоторым показаниям, которые необходимо пояснить.

Глядя на отображение формы сигнала на рисунке 3, можно увидеть линейные напряжения Vab, Vbc и Vac. Линейные напряжения, видимые прибором, в сбалансированной системе разнесены на 60 °. Токи — это фазные токи, которые приборы видят под углом 120 °.

Другое представление этой системы изображено на векторной диаграмме Phasor, показанной на рисунке 4. Треугольник в верхней части этого рисунка показывает измерения линейного напряжения черным цветом, значения фазного напряжения красным (но это теоретические значения). потому что нейтрали нет), а фазные токи синим цветом.

В нижней части рисунка показаны разности фаз между напряжениями и токами. Опять же, обратите внимание, что линейные напряжения разнесены на 60 °, а фазные токи разнесены на 120 °. Еще одна деталь заключается в том, что если бы верхняя диаграмма представляла чисто резистивную нагрузку, то синие токи были бы синхронизированы с красными напряжениями. Однако при индуктивной нагрузке (например, в двигателе) синие векторы тока не совпадают по фазе с напряжениями.

Кроме того, для этого метода измерения на нижней диаграмме векторы тока всегда будут иметь дополнительный сдвиг на 30 ° от напряжений.Суть в том, что правильно настроенный анализатор мощности учтет все эти условия.

Что делать, если фазная мощность и фазовый коэффициент мощности должны быть точно измерены в трехфазной трехпроводной системе, а не просто приблизительно? На рис. 5 показан метод, позволяющий измерять фазовые параметры трехфазного трехпроводного двигателя путем создания плавающей нейтрали.

Однако у этой техники есть ограничения. Он будет хорошо работать на входе асинхронного двигателя, синхронного двигателя или аналогичного двигателя без привода с регулируемой скоростью.Следует соблюдать осторожность при использовании этого метода в системе привода с регулируемой скоростью, поскольку высокочастотные искаженные формы сигналов и гармоники могут вызвать несогласованные измерения.

Более того, метод плавающей нейтрали работает только для оборудования с сигналами синусоидального типа. С помощью привода с широтно-импульсной модуляцией (ШИМ) можно включить линейный фильтр 500 Гц (фильтр нижних частот), который затем позволит отображать показания для основной частоты, но не для общей частоты.

Трехпроводные и четырехпроводные измерения мощности

Важно понимать, что мощность будет считываться одинаково независимо от того, измерена ли она трехфазным трехпроводным или трехфазным четырехпроводным методом.Однако при трехфазном четырехпроводном соединении измеряемые значения напряжения представляют собой фазные напряжения от линии к нейтрали.

Рисунок 6 — снимок экрана анализатора мощности, который показывает, насколько похожи показания мощности и коэффициента мощности для привода с ШИМ, работающего с двигателем, сравнивая трехфазный трехпроводной вход с фильтром 500 Гц с трехфазным четырехпроводным. вход с плавающей нейтралью.

В альтернативном решении используется функция измерения дельты, которая есть в анализаторах мощности Yokogawa.Функция измерения дельты использует мгновенные измерения линейного напряжения и фазного тока для получения истинного линейного напряжения, даже если фазы не сбалансированы. Это возможно благодаря вычислению векторной амплитуды внутри процессора. Эта функция также обеспечивает измерения фазной мощности в трехпроводной цепи. Решение для измерения дельты также обеспечивает нейтральный ток.

Часть 3: Измерения электрической мощности для трехфазного двигателя переменного тока

Полное тестирование системы привода и двигателя на основе ШИМ (широтно-импульсной модуляции) представляет собой трехэтапный процесс.Шаг 1 — это точное измерение входной и выходной мощности привода с регулируемой скоростью ШИМ для определения эффективности привода и потерь мощности. Шаг 2 — это точное измерение входной мощности двигателя, а шаг 3 — точное измерение механической мощности двигателя.

Оптимальный метод — объединить все три шага с использованием одного анализатора мощности, чтобы исключить временной сдвиг. Это также обеспечивает отличные расчеты эффективности в едином программно-аппаратном решении.

Рисунок 7: Этот снимок экрана анализатора мощности показывает, как функцию измерения дельты можно использовать для получения истинных показаний и мощности фазы, даже если фазы не сбалансированы.

Некоторые анализаторы мощности имеют опцию двигателя, в которой сигналы скорости и крутящего момента могут быть интегрированы таким образом. Эти анализаторы мощности могут измерять электрическую мощность и механическую мощность и отправлять данные на ПК с запущенным программным обеспечением от оригинального производителя анализатора или заказным программным обеспечением от системного интегратора.

Измерения привода ШИМ для двигателей переменного тока

При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто необходимо измерять как входной, так и выходной сигнал частотно-регулируемого привода с помощью шестифазного анализатора мощности. Эта установка может не только измерять трехфазную мощность, она также может измерять постоянную или однофазную мощность. См. Рисунок 1.

В зависимости от анализатора режим настройки будет выполняться в нормальном или среднеквадратичном режиме. Конфигурация проводки должна соответствовать приложению, например, трехфазный вход и трехфазный выход.

Любой линейный фильтр или фильтр нижних частот должен быть выключен, поскольку фильтрация затрудняет измерения. Однако фильтр пересечения нуля или частотный фильтр должен быть включен, поскольку он будет фильтровать высокочастотный шум, чтобы можно было измерить основную частоту.Это измерение необходимо при отслеживании частоты привода.

На рис. 2 показана форма выходного напряжения ШИМ с сильно искаженным напряжением, срезанными высокими частотами и с большим количеством шумов на токовой стороне, что затрудняет измерения. Высокочастотное переключение сигнала напряжения создает сильно искаженную форму волны с высоким содержанием гармоник. Частота варьируется от 0 Гц до рабочей скорости.

Для такого зашумленного сигнала нужны специальные датчики тока для измерения.Для точных измерений мощности с ШИМ также необходимы анализаторы мощности с широкой полосой пропускания, способные измерять эти сложные сигналы.

На рисунке 3 показан пример содержания гармоник напряжения на выходе ШИМ. Присутствуют частоты биений, а содержание гармоник напряжения превышает 500 порядков (примерно 30 кГц). Большая часть гармоник приходится на нижние частоты на токовой стороне.

Проблемы измерения привода двигателя с ШИМ

Напряжение инвертора обычно измеряется одним из двух способов.Можно использовать истинное среднеквадратичное измерение, которое включает полное содержание гармоник. Однако, поскольку основная форма волны — это в первую очередь то, что влияет на крутящий момент двигателя, можно выполнить и использовать более простые измерения. Для большинства приложений требуется измерение только основной формы волны.

Существует два основных метода измерения основной амплитуды волны напряжения. Первый и самый простой — использовать фильтр нижних частот для удаления высоких частот. Если в анализаторе мощности есть этот фильтр, просто включите его.Правильная фильтрация даст среднеквадратичное значение напряжения основной частоты инвертора. Однако этот тип фильтрации не обеспечивает истинного измерения полной мощности, поэтому фильтрация — не самый требовательный метод.

Второй метод — это метод измерения выпрямленного среднего, который выдает среднеквадратичное значение напряжения основной волны без фильтрации с помощью определения среднего значения напряжения, масштабированного до среднеквадратичного напряжения. Алгоритм выпрямленного среднего среднего за цикл обеспечит эквивалент основного напряжения, который будет очень близок к среднеквадратичному значению основной волны.

Используя этот метод, можно измерить полную мощность, общий ток и основное напряжение.

Измерение амплитуды основной волны с помощью гармонического анализа

Функцию гармонического анализа можно использовать для определения истинного основного напряжения с помощью быстрого преобразования Фурье (БПФ) для определения амплитуды каждой гармонической составляющей, включая основную волну. Это дает точное измерение среднеквадратичного напряжения основной волны. Новейшие анализаторы мощности могут выполнять одновременные измерения истинных среднеквадратичных значений и гармонических составляющих.

На рисунке 4 Urms2 (среднеквадратичное значение на выходе ШИМ) является очень большим числом, а F2 (среднее значение основной гармоники) несколько ниже. Значение Urms3 (фильтрация фундаментального) дает аналогичный результат. Наконец, U2 (1) получается из анализа гармоник или вычислений FFT основной гармоники. F2, Urms3 и U2 (1) дают очень близкие результаты, но расчет U2 (1) FFT считается наиболее точным.

Инверторный ток обычно измеряется только в одном направлении, и это как истинный среднеквадратичный сигнал, потому что все гармонические токи способствуют повышению температуры в двигателе и ответственны за него, поэтому все они должны быть измерены.

Еще одно важное измерение связано с приводом В / Гц (вольт-на-герц). Привод с ШИМ должен поддерживать постоянное соотношение В / Гц по сравнению с рабочей скоростью двигателя. Анализатор мощности может рассчитывать В / Гц, используя среднеквадратичное значение или значение основного напряжения. Заданная пользователем математическая функция анализатора используется для построения уравнения для этого измерения.

Измерение напряжения шины постоянного тока

Напряжение на шине постоянного тока в ШИМ может быть измерено для проверки условий повышенного и пониженного напряжения.Это измерение может быть выполнено внутри привода на клеммах конденсаторной батареи. Однако более простой способ — использовать отображение формы сигнала анализатора мощности с измерением курсора.

При отображении формы сигнала с помощью курсорного измерения необходимо убедиться, что курсор не находится прямо над небольшими выступами на дисплее. Вместо этого курсор должен располагаться поперек формы сигнала, чтобы выполнить точное измерение. На рисунке 5 показано измерение напряжения ШИМ при высокоскоростном переключении.Курсор помещается для чтения значения, например 302,81 В.

Измерение механической мощности

Механическая мощность измеряется как скорость двигателя, умноженная на крутящий момент двигателя. На рынке существует множество различных типов датчиков скорости и крутящего момента, которые работают с различными двигателями. Хотя анализаторы Yokogawa могут взаимодействовать с большинством датчиков скорости и крутящего момента, все же целесообразно подтверждать совместимость в каждом случае. Эти датчики могут использоваться для предоставления информации о механических измерениях для расчета измерений механической мощности в анализаторе мощности.

Многие датчики поставляются с интерфейсной электроникой для правильной обработки сигнала для работы с анализаторами мощности или другим оборудованием. Кондиционированный сигнал может быть аналоговым выходом или выходом последовательной связи, который идет на ПК и его прикладное системное программное обеспечение.

Одним из вариантов измерения механической мощности является использование как датчика, так и соответствующего измерительного прибора от данного производителя. Такой подход имеет преимущества, поскольку датчики будут точно согласованы с прибором.Будут доступны показатели крутящего момента, скорости и мощности, и, вероятно, будут варианты подключения к ПК вместе с соответствующим прикладным программным обеспечением.

Более интегрированный подход изображен на рисунке 6. В этой конфигурации выходные сигналы сигналов скорости и крутящего момента от измерительных приборов датчика подключаются непосредственно к входам скорости и крутящего момента анализатора мощности. Это дает большое преимущество, заключающееся в том, что измерения электрической и механической мощности могут оцениваться одновременно, а расчет эффективности выполняется непрерывно.

КПД двигателя, привода и системы

КПД инвертора в простейшей форме рассчитывается как выходная мощность, деленная на входную мощность, и выражается в процентах. Один из методов, используемых для измерения входной и выходной мощности, заключается в простом подключении измерителей мощности к входу и выходу, при этом показания двух измерителей используются для расчета эффективности.

Более комплексным методом является использование анализатора мощности с несколькими входами для одновременного измерения входа и выхода, как показано на рисунке 1.Это приводит к более точному расчету эффективности, поскольку он использует один анализатор мощности для устранения потенциальных ошибок, вызванных измерениями временного сдвига.

С помощью внутренних математических вычислений, предоставляемых анализатором, можно настроить очень простое вычисление через меню для расчета потерь привода и эффективности привода.

Какой метод мне следует использовать?

IEEE 112 — это промышленный стандарт США для тестирования двигателей, в котором описаны несколько методов.На рисунке 7 показан дисплей анализатора мощности, поддерживающий «Метод A» стандарта IEEE 112, в котором вся механическая мощность делится на общую мощность, потребляемую двигателем. Стандарт определяет многие параметры, помимо измерений тока и напряжения двигателя, и предоставляет инструкции по проведению общепринятых испытаний и составлению отчетов для многофазных и асинхронных двигателей и генераторов. Кроме того, стандарт содержит 11 методов испытаний, чтобы определить, как проводить измерения эффективности двигателей.

Метод испытания A — ввод-вывод, определенный в IEEE 112: КПД рассчитывается как отношение выходной мощности измерения к измеренной входной мощности после корректировки температуры и динамометра, если применимо.Испытания проводятся при номинальной нагрузке с помощью механического тормоза или динамометра. Этот рейтинг должен быть ограничен двигателями с номинальной полной нагрузкой не более 1 кВт.

Метод испытаний B — ввод-вывод с разделением потерь: В методе B выполняются измерения как входной, так и выходной мощности, но различные потери разделяются. Большинство этих потерь просто выделяют тепло, которое должно рассеиваться двигателем в сборе, и представляют собой энергию, недоступную для выполнения работы. Этот метод является признанным стандартом тестирования U.S. автомобилестроение для двигателей с полной нагрузкой от 1 до 300 кВт.

В то время как оба метода A и B работают, метод B требует большого количества приборов и обычно выполняется только производителями двигателей. Поскольку большинство производителей используют метод B, а большинство пользователей предпочитают метод A, расчеты эффективности между ними могут отличаться. Данные производителей двигателей и приводов могут использовать разные скорости двигателя, испытательные нагрузки или другие условия испытаний.

Заключение

При измерении мощности электродвигателя необходимо учитывать множество факторов, например, полный и истинный коэффициент мощности.Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

После принятия решения об использовании анализатора мощности необходимо принять решение о частотном диапазоне и уровне точности. Совместимость приборов — еще один важный аспект безопасного получения точных показаний, особенно с трансформаторами тока, и это та область, где необходимо учитывать ввод / опции анализатора. При правильных входных сигналах датчиков измерения механической мощности также можно проводить с помощью анализатора мощности.Выбор правильных датчиков скорости и крутящего момента — это первый шаг в определении механической мощности.

Некоторые анализаторы мощности также позволяют выполнять измерения с ШИМ. Однако настройка анализатора для измерения ШИМ также требует знания о том, как токи и напряжения будут влиять на измерения мощности.

Прецизионный высокочастотный анализатор мощности — важный инструмент для измерения как механической, так и электрической мощности. Его функции анализа и показания могут помочь улучшить работу и даже продлить срок службы двигателя.Выбор подходящего анализатора и его правильная реализация требуют знаний; однако при правильном использовании данные анализатора мощности предоставят точные и очень ценные данные.

.

alexxlab / 09.11.2018 / Разное

Добавить комментарий

Почта не будет опубликована / Обязательны для заполнения *