Цены снижены! Бесплатная доставка контурной маркировки по всей России

Как работает дизельный мотор: Устройство дизельных двигателей | Yanmar Russia

Содержание

Как работает дизельный двигатель

Содержание статьи
 

  1. Введение
  2. Сравнение дизельных и бензиновых двигателей
  3. Система впрыска дизельного топлива
  4. Дизельное топливо
  5. Улучшение качества дизельного топлива и Биодизель
  6. Узнать больше
  7. Читайте также » Статьи про все типы двигателей

В данной статье описаны основные процессы, связанные с внутренним сгоранием топлива, рассказывается о четырёхтактном цикле, а также обо всех подсистемах, благодаря которым происходит работа двигателя. 
 
История дизеля начинается с изобретения бензинового двигателя. В 1876г. Николаус Август Отто изобрел и запатентовал бензиновый двигатель. В основе работы его модели лежал четырехтактный цикл сгорания топлива, также известный как «Цикл Отто», который используется в большинстве современных автомобильных двигателей.

На первых порах бензиновый двигатель не обладал большой эффективностью, как и его основные конкуренты, например, паровой двигатель. В таких двигателях лишь 10% топлива реально использовалось для движения автомобиля. Остальное же топливо производило бесполезное тепло.
 
В 1878г. на занятиях в Высшей политехнической школе в Германии (аналог инженерного колледжа) Рудольф Дизель узнал о низком КПД бензиновых и паровых двигателей. Эта проблема вдохновила его на создание более производительного двигателя. Спустя много лет, в 1892г. Дизель запатентовал одноименный «Мощный двигатель внутреннего сгорания».
 
Но если дизельные двигатели более эффективные, почему бензиновые более популярные? Представляя себе дизельный двигатель, Вы, скорее всего, подумаете об огромном грузовике, который извергает черный грязный дым и сильно шумит. Именно по этим причинам в США автомобилистам и не нравится дизель. Несмотря на то, что этот тип двигателя превосходно подходит для перевозки грузов на большие расстояния, дизельные автомобили редко покупают для повседневной езды.   Однако прогресс не стоит на месте, и идет модернизация дизельного двигателя для уменьшения загрязнения атмосферы и снижения уровня шума.
 
Если Вы еще не знаете, то, скорее всего, Вам будет интересно сперва узнать, «Как работает автомобильный двигатель», чтобы иметь общее представление о процессе внутреннего сгорания топлива. Когда прочитаете, возвращайтесь на эту страницу и узнаете все о секретах работы дизельного двигателя и последних инновациях.
 
КПД 4,5-литрового двигателя Duramax V-8 на 25% выше по сравнению с бензиновыми, при этом выхлопы намного чище. 
 
Рудольф Дизель, изобретатель дизельного двигателя.
 



Сравнение дизельных и бензиновых двигателей
 
По большому счету, дизельные и бензиновые двигатели имеют схожее устройство. И те, и другие являются двигателями внутреннего сгорания, преобразующие химическую энергию топлива в механическую.

Эта механическая энергия перемещает поршни вверх-вниз внутри цилиндров. Поршни соединяются с коленвалом, и их линейное движение преобразуется в круговое движение, которое необходимо для вращения колес.
 
Как дизельный, так и бензиновый типы двигателей преобразуют топливо в энергию посредством серии взрывов или сгораний. Основное различие дизельных и бензиновых двигателей состоит в том, как происходят эти взрывы. В бензиновых двигателях подаваемая смесь топлива и воздуха сжимается во время хода поршня и воспламеняется искрой свечи. В дизельном же двигателе сначала происходит сжатие воздуха, затем происходит подача топлива. Нагреваемый при сжатии воздух воспламеняет топливо.
 
Ниже представлена анимация, наглядно демонстрирующая цикл дизеля. Сравните с анимацией цикла бензинового двигателя для того, чтобы увидеть основные различия.
 
В дизельном двигателе, как и в бензиновом, используется четырехтактный цикл сгорания топлива. Четыре такта работы:
 
Такт впуска — Впускной клапан открывается, происходит впуск воздуха и движение поршня вниз. ­
Такт сжатия — Поршень движется вверх, сжимая воздух.
Рабочий такт — Как только поршень достигает верхней точки, происходит впуск и возгорание топлива, при этом поршень движется вниз.
Такт выпуска — Поршень снова движется вверх, выталкивая продукты сгорания через выпускной клапан.
 
Необходимо помнить, что в дизельных двигателях не используются свечи зажигания, т.к. происходит впуск и сжатие воздуха, затем впрыск топлива непосредственно в камеру сгорания (прямой впрыск). В дизельном двигателе возгорание топлива происходит за счет тепла сжатого воздуха. В следующем разделе статьи представлен процесс впрыска дизельного топлива.
 

Компрессия
 
Выполняя расчеты, Рудольф Дизель предположил, что более высокий уровень сжатия топливной смеси способствует повышению эффективности и мощности. Это происходит при сжатии воздуха поршнем в цилиндре, в результате чего увеличивается концентрация воздуха. Дизельное топливо обладает высокой энергоемкостью, поэтому увеличивается вероятность реакции с концентрированным воздухом. Иными словами, чем ближе молекулы воздуха расположены друг к другу, тем больше количество молекул кислорода, с которыми происходит реакция топлива. Рудольф оказался прав — компрессия в бензиновом двигателе происходит при соотношении от 8:1 до 12:1, в то время как компрессия в дизельном двигателе происходит при соотношении от 14:1 до 25:1.

 



Система впрыска дизельного топлива
 
Существенным различием между дизельным и бензиновым двигателем является процесс впрыска топлива. В большинстве автомобильных двигателей используется впрыск во впускные каналы или карбюратор. При впрыске во впускные каналы, топливо поступает до начала такта впуска (вне цилиндра).

В карбюраторе происходит смешивание воздуха и топлива до их попадания в цилиндр. Следовательно, в бензиновом двигателе топливо поступает в цилиндр в течение такта впуска, затем происходит сжатие. Степень сжатия смеси топливо-воздух определяет компрессию двигателя – если воздух слишком сильно сжать, смесь топливо-воздух самопроизвольно воспламеняется, вызывая детонацию. При этом происходит резкое повышение температуры, что может привести к повреждениям двигателя.
 
В дизельных двигателях используется система прямого впрыска топлива — дизельное топливо поступает непосредственно в цилиндр.
 
Дизельная форсунка является наиболее сложной деталью двигателя, которая претерпела многочисленные изменения. Расположение форсунки зависит от конкретного двигателя. Форсунка должна противостоять высокой температуре и давлению внутри цилиндра, распыляя при этом топливо. Равномерное распределение распыленного топлива в цилиндре также представляет собой сложную задачу, для этого на некоторых дизельных двигателях устанавливаются впускные клапаны, камеры предварительного сгорания и другие устройства, способствующие образованию вихревого потока воздуха для улучшения процесса сгорания топлива.

 
В некоторых дизельных двигателях используются свечи накаливания. В холодном двигателе процесс сжатия воздуха не всегда может обеспечить температуру, необходимую для воспламенения топлива. Свеча накаливания представляет собой электрически нагреваемую проволоку (аналогичные проволоки используются в тостерах), которая повышает температуру камеры сгорания, что способствует запуску даже холодного двигателя. По словам высококвалифицированного специалиста по тяжелому оборудованию Клэя Бротертора:
 
Все функции современных дизельных двигателей контролируются электронной системой управления, которая представляет собой блок датчиков для измерения всех показателей, от оборотов двигателя, температуры масла и охлаждающей жидкости до точного положения поршня (верхней мертвой точки). Свечи накаливания редко используются в больших двигателях. Электронная система управления отслеживает температуру окружающего воздуха, задерживая запуск двигателя в холодную погоду.
При этом впрыск топлива происходит позже, чем обычно. Воздух в цилиндре сжимается сильнее, создавая больше тепла, что способствует запуску.
В небольших двигателях и двигателях без сложной электронной системы управления используются свечи накаливания для решения проблемы холодного запуска.
 
Необходимо помнить, что механическая конструкция не является единственным отличием дизельного двигателя от бензинового. Само топливо также отличается.
 
 


Дизельное топливо
 
Сырая нефть является естественным природным образованием. В процессе переработки нефти может быть получено несколько видов топлива, включая бензин, авиационное топливо, керосин и, конечно же, дизель.
 
Если сравнить бензиновое и дизельное топливо, можно легко найти отличия. Они имеют разный запах. Дизельное топливо более тяжелое и маслянистое. Дизель испаряется значительно медленнее бензина – его точка кипения значительно выше, чем у воды. Дизель напоминает жидкое масло.
 
Испарение дизеля происходит медленнее, т.к. он тяжелее. Он содержит больше атомов углерода в более длинных цепочках, чем бензин (цепочка бензина C9h30, тогда как у дизеля уже C14h40). Для производства дизеля требуется меньше очистки, поэтому он дешевле бензина. Однако с 2004г. спрос на дизельное топливо увеличился по нескольким причинам, включая активное развитие промышленности и строительства в Китае и США [Источник: Управление по энергетической информации министерства энергетики США].
 
Энергетическая плотность дизеля значительно выше, чем у бензина. В среднем, 1 галлон (3,8 л) дизельного топлива содержит 155×106 Дж (147000 БТЕ), в то время как 1 галлон бензина содержит123×106 Дж (125000 БТЕ).

Энергетическая плотность и эффективность дизельных двигателей объясняют экономный расход топлива, по сравнению с аналогичными бензиновыми двигателями.
 
Дизельное топливо используется в различных сферах деятельности. Помимо грузовиков, несущихся по шоссе, оно также незаменимо в лодках, автобусах, поездах, кранах, фермерском хозяйстве, автомобилях аварийно-спасательных служб и силовых генераторах. Дизель настолько важен для экономики, что без него промышленность и сельское хозяйство мгновенно пострадали бы из-за больших инвестиций в альтернативное топливо с низкой мощностью и эффективностью. Около 94 % грузоперевозок в поездах, фурах и на кораблях зависят от дизеля.
 
Что касается вопросов экологии, у дизельного топлива есть свои преимущества и недостатки. Среди преимуществ следует отметить тот факт, что дизель выпускает незначительное количество угарного, углекислого газов и углеводородов, которые способствуют глобальному потеплению. К недостаткам можно отнести высокое количество выделяемых азотных соединений и сажи, которые становятся причиной кислотных дождей, смога и плохого самочувствия. На следующей странице представлена информация о последних разработках по устранению недостатков дизеля.
 



Улучшение качества дизельного топлива и Биодизель
 
Во время нефтяного кризиса 1970-х гг., автомобильные компании Европы начали рекламировать дизельные двигатели для коммерческого транспорта как альтернативу бензиновым. Те, кто попробовал перейти на дизельные двигатели, были разочарованы — двигатели работали очень громко, возвращаясь домой, водители обнаруживали, что автомобили полностью покрыты сажей, из-за которой в крупных городах образовывался смог.
 
Однако за последние 30-40 лет были значительно улучшены показатели двигателей и чистота топлива. Прямой впрыск топлива контролируется сложными компьютерами, благодаря чему увеличивается КПД двигателей, снижается количество вредных выбросов. Высокоочищенный дизель, такой как топливо со сверхнизким содержанием серы, позволяет уменьшить количество вредных выбросов и выйти на уровень экологически чистого топлива. Среди других технологий следует отметить сажеуловитель с постоянной регенерацией, в котором используются фильтры и каталитический нейтрализатор отработавших газов. Происходит сжигание сажи и снижение выбросов угарного газа и углеводородов до 90% [Источник: Форум дизельных технологий]. Благодаря постоянному ужесточению экологических стандартов топлива, Европейских Союз подталкивает автомобильную промышленность к решению вопроса снижения выбросов. 
 
Скорее всего, все слышали о биодизеле. Отличается ли он от обычного дизеля? Биодизель является альтернативным топливом или присадкой для дизельных двигателей, использование которых не предполагает значительных изменений конструкции двигателя. Биодизель не является продуктом переработки нефти, он получается из растительных масел или животных жиров после химического изменения. (Интересный факт: Рудольф Дизель изначально планировал использования масла семян овощей в качестве топлива для своего изобретения.) Биодизель добавляют в обычный дизель или используют в качестве отдельного топлива. 
 
 

Как это работает: дизельный двигатель. Часть 1.

    В самом первом выпуске рубрики «Как это работает», мы рассказывали про основные типы двигателей, их историю, обозначили преимущества и недостатки каждого типа, а так же в общем рассмотрели их принцип работы. Теперь самое время углубиться в нюансы работы одного из самых распространенных, но малопонятных — дизельных двигателей.


    Опишем его работу в двух статьях. Итак, в первой части Вы вспомните основы работы дизеля и узнаете про разделенные и неразделенные камеры сгорания (непосредственный впрыск).

 

 

 

    На первый взгляд дизельный двигатель почти не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения топливо-воздушной смеси. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте. В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях — непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

 

 

    Рабочий процесс в дизеле происходит следующим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля (в последующем будет рассказано, как эти показатели снизили).

 

 


 

 

 

    Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

 

 

    Особенности:

 

Свечи накаливания в дизельных двигателях

     Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.
   

 
    Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

 

 

 

    Типы камер сгорания:

 
    Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.


     Раньше на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

 

 

 

    При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

 

    Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.


    Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.


    Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

 

    Тем не менее, трудности были решены и система непосредственного впрыска открыла «второе дыхание» для дизельных двигателей. Подробности об этом будут в следующей части.

 

Как работает дизельный двигатель?

Автомобили с дизельными двигателями составляют почти половину от всего количества транспортных средств, ежегодно продаваемых как на официальных дилерских площадках, так и на вторичном рынке.

Силовые установки этого типа характеризуются экономичностью, значительной мощностью и динамикой. Такие агрегаты демонстрируют высокий крутящий момент и принципиально недоступный для бензиновых двигателей КПД (35%-35% у дизельных систем против 25%-35% у их аналогов). Эти преимущества, а также понизившийся уровень шума при эксплуатации и полное соответствие перманентно усложняющимся стандартам безопасности окружающей среды и обеспечили популярность дизелей как в легковом, так и в коммерческих классах транспортных средств.

Как происходит запуск дизельного двигателя?

Принцип работы дизельного двигателя следующий: в цилиндры поступает чистый воздух, который вследствие высокого сжатия нагревается до 700°С и более. После этого, при приближении поршня к верхней точке его траектории в камеру сгорания под давлением подается горючее, которое воспламеняется при контакте с горячим воздухом. Момент воспламенения сопровождается резким повышением давления в цилиндре. Такой принцип работы позволяет мотору работать на максимально обедненных смесях, что обеспечивает экономичность его эксплуатации.

Для холодного старта дизеля используется система предпускового нагрева, основным элементом которой являются свечи накаливания –нагревательные элементы, размещенные в камерах сгорания. Они позволяют за несколько секунд поднять температуру воздуха до требуемого значения. При включении системы в салоне загорается лампочка. Ее обесточивание свидетельствует о готовности двигателя к запуску. Подача электроэнергии к свечам прерывается автоматически, спустя 15сек – 25 сек после старта. Это условие позволяет обеспечить стабильную работу непрогретого агрегата. Современные системы данного типа делают возможным легкий запуск дизеля при температурах до -30°С при условии исправности мотора и использования масла и топлива соответствующей сезонности и качества.

Конструктивные особенности

Схема дизельного двигателя в целом повторяет механизм бензинового силового агрегата с той разницей, что аналогичные детали значительно усиливаются с учетом более высоких нагрузок. Поскольку воспламенение происходит в результате сжатия, из схемы исключаются компоненты системы зажигания, а свечи заменяются на элементы накаливания, не дающие искры и предназначенные для предварительного прогревания воздуха в камерах сгорания.

Характерной особенностью конструкции дизельного двигателя, связанной с самим принципом его работы, является геометрия днища поршней. Их форма определяется спецификой камеры сгорания. В верхней точке хода поршня, его днище оказывается выше самой крайней точки блока цилиндров. В некоторых случаях, в донышке поршня и располагается сама камера сгорания. От ее типа и реализованного способа подачи смеси и зависят технические и экологические характеристики конкретной модели дизельного двигателя.

Типы камер сгорания

В зависимости от их геометрии различают следующие виды камер сгорания.

Разделенные. В этом случае первичный впрыск горючего производится в отдельную полость, расположенную в головке блока. Такая технология позволяет снизить нагрузку на поршневую группу, а также значительно уменьшить шум от работы двигателя.

При этом процесс образования смеси может быть:

  • Форкамерным (предкамерным). Топливо под давлением поступает в предварительную камеру, соединенную с цилиндром несколькими каналами, где ударяется о ее стенки и таким образом смешивается с воздухом. После воспламенения смесь передается в основную камеру, где и дожигается полностью. Необходимый для максимально быстрого истечения газов через каналы перепад давления между цилиндром и форкамерой возникает в момент хода поршня на сжатие и на расширение.
  • Вихрекамерным. В этом случае первичное возгорание смеси также производится в отдельной камере, имеющей сферическую геометрию. В момент хода поршня на сжатие порция воздуха поступает в нее по соединительному каналу и интенсивно закручивается, образуя вихревой поток, за счет чего хорошо смешивается с горючим, поданным в определенный момент.

Характерными недостатками агрегатов с разнесенными камерами сгорания является усложненный запуск и повышенный расход топлива в связи с потерями при переходе порции воздуха в дополнительную камеру и обратного хода воспламененной смеси – в цилиндр.

Неразделенные. В этом случае горючее под давлением подается в цилиндр, а камерой служит полость, выбранная в донце поршня. В силу того, что такие агрегаты характеризуются повышенным уровнем шума и вибраций в процессе работы, особенно – при разгоне, до недавнего времени неразделенные агрегаты использовались на низкооборотистых моторах большого объема, предназначенных для коммерческого транспорта. Появление электронных систем впрыска позволило оптимизировать сгорание смеси в таких двигателях и значительно снизить уровень шума от их работы, что в свою очередь сделало неразделенные конструкции наиболее перспективным технологическим решением при проектировании новых типов силовых агрегатов.

Устройство топливной системы дизельного двигателя

Принцип работы дизельного двигателя обуславливает важность подачи в камеру сгорания строго дозированной порции смеси в определенный момент времени и под четко рассчитанным давлением. Система впрыска включает в себя следующие основные компоненты.

Топливный насос высокого давления (ТНВД). Этот элемент предназначается для забора порции горючего от расположенного в баке насоса подкачки и поочередной раздачи дозированных порций в индивидуальные трубопроводы форсунок на каждый цилиндр. Конструкция таких распылителей подразумевает их открытие при повышении давления в топливных магистралях. В зависимости от технологических решений различают следующие типы ТНВД:

  • Многоплунжерные рядные. Этот вариант насоса состоит из отдельных секций, по одной на цилиндр. Как правило, блоки  имеют рядную сборку. Каждая секция снабжена гильзой и плунжером, который приводится в движение мотором через кулачковый вал. Давление в подаваемом горючем зависит от частоты оборотов коленвала. Специфика конструкции такого насоса обуславливает высокий уровень шума при его работе и сложность в соблюдении актуальных экологических норм.
  • Распределительные. Этот тип насосов поддерживает необходимое давление в соответствии с режимом эксплуатации двигателя и отличаются равномерностью подачи горючего по цилиндрам, а также – стабильной работой на высоких оборотах. Конструкции данного типа имеют один плунжер, который перемещается в двух плоскостях. Поступательные движения обеспечивают нагнетание порции горючего, а вращательные – распределяют его по форсункам. Специфика распределительных насосов обуславливает требовательность к качеству топлива, так как оно служит для смазки трущихся деталей, а прецизионные элементы имеют минимально допустимые зазоры.

Топливные фильтры. Эта деталь дизельного двигателя предназначается для отделения и последующего отвода воды из заправленного в бак горючего, для чего используется сливная пробка в нижней части. Удаление воздуха из системы производится с помощью ручного насоса, расположенного на верхней стороне корпуса. Несмотря на относительную простоту конструкции, фильтр требует внимательного подбора по таким параметрам, как пропускная способность, тонкость очистки и т.д. Для предотвращения забивания кристаллизующимися парафинами и облегчения запуска в холодное время года система может снабжаться электроподогревом.

Турбонаддув. Этот элемент предназначен для нагнетания в цилиндры дополнительного объема воздуха, что позволяет увеличить подачу горючего и повысить мощность силового агрегата. Принцип работы дизельного двигателя подразумевает высокое давление выхлопных газов, которое дает возможность обеспечить эффективность наддува с низких оборотов и при этом избежать эффекта «турбо-ямы». Отсутствие дроссельной заслонки в силовых агрегатах этого типа упрощает схему управления компрессором и позволяет поддерживать эффективность наполнения цилиндров во всем диапазоне оборотов. В первую очередь, наддув позволяет оптимизировать процессы сгорания смеси в ситуациях, в которых атмосферный силовой агрегат будет испытывать нехватку воздуха. Наличие турбины обеспечивает повышение мощности при меньшем рабочем объеме и меньшей массе мотора. При этом снижается жесткость его работы. Установка дополнительного интеркулера – промежуточного охладителя воздуха, позволяет дополнительно повысить мощность силового агрегата на 15% и более за счет увеличения массового наполнения цилиндров.

Специфика работы турбины обуславливает срок ее эксплуатации, значительно меньший, чем ресурс самого дизельного двигателя. При этом, в связи с форсированием, снижается и срок работы силового агрегата, в камерах сгорания которого постоянно поддерживается повышенная температура, требующая охлаждения подаваемым через дополнительные форсунки маслом. Эта конструктивная особенность влечет за собой критическую требовательность мотора к качеству смазочных материалов.

Форсунки. Этот элемент топливной системы предназначен для подачи строго отмеренной дозы горючего в точно рассчитанный момент времени. Появление электронного управления подачей топлива позволило организовать его двухступенчатую подачу неравномерными порциями. При воспламенении первичной дозы повышается температура в камере, после чего в нее поступает основной «заряд» на этот цикл. Такая схема дала возможность исключить скачкообразное нарастание давления и снизить шум работы двигателя. В зависимости от конструкции различают два типа распылителей.

  • Насос-форсунки. Эта конструкция объединяет в себе распылитель и плунжерный насос.  Данный элемент устанавливается по одному на каждый цилиндр и приводится в действие толкателем, соединенным с кулачком распредвала. Линии подачи и слива горючего представляют собой технологические каналы в головке блока, благодаря чему может быть достигнуто давление до 2200 бар. Электронный блок управления отвечает за дозирование порции топлива и контроль угла опережения впрыска путем отправки сигналов на запорные пьезоэлектрические или электромагнитные клапаны. Конструкция насос-форсунок позволяет эксплуатировать их в многоимпульсном режиме, совершая от 2 до 4 впрысков за один цикл. Такая технология позволяет смягчить работу силового агрегата и снизить токсичность выхлопа.
  • Common Rail. Эта конструкция представляет собой общую топливную магистраль (рампу), в которой накапливается горючее, после чего по команде электронного управляющего блока впрыскивается через пьезоэлектрические или электромагнитные форсунки. Конструкция данного типа подразумевает применение ТНВД только для нагнетания давления в аккумуляторе, не используя его для регулировки момента впрыска и дозирования порций топлива. Такое конструктивное решение позволило сократить расход горючего до 20% при одновременном возрастании крутящего момента на малых оборотах до 25%. Электронный блок управления распылителями контролирует длительность фазы впрыска и оптимальный момент ее проведения по показателям ряда датчиков – температурного режима мотора, текущей нагрузки на него, давления в рампе, положение педали акселератора и т.д.

Сочетания турбины и системы Common Rail на сегодняшний день считается наиболее эффективным способом увеличения мощности дизельного двигателя при одновременном уменьшении токсичности его выхлопа.

Дизельный двигатель — это… Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Возможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF — фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

Работает дизельный мотор. Как работает дизельный двигатель. Дизельный двигатель

Приветствую вас друзья! Дизельный силовой агрегат уже давно завоевал любовь и уважение в кругу автолюбителей! Он экономичнее, надежнее, да и общее КПД на порядок выше нежели у бензинового собрата. Однако, более сложное устройство и принцип работы дизельного двигателя не дают многим отечественным шоферам решиться на покупку автомобиля такого типа. Оно и не странно, заставляет обратить внимание на стоимость обслуживания автотехники и это правильно! Но все же, дабы развеять опасения коллег, сегодня я попытаюсь в понятной форме описать вам все особенности такого агрегата. Но обо всем, как обычно по порядку…

Немножко предыстории

Первый мотор такого типа был создан французским инженером Рудольфом Дизелем, который жил в эпоху XIX века. Как вы сами понимаете, мастер не долго думал над названием своего изобретения и пошел по стопах великих изобретателей, прозвав его своей фамилией. Функционировал двигатель на керосине, а использовался исключительно среди кораблей и стационарных станков. Почему? Все очень просто, огромный вес и повышенный шум движка, не позволял увеличить спектр его применения.

И так было вплоть до 1920 года, когда первые экземпляры уже существенно модернизированного дизеля, начали применять в общественном и грузовом транспорте. Правда только спустя 15 лет, появились первые модели легковых автомобилей, работающих на солярке, но наличие все тех же минусов не позволяли использовать силовой агрегат повсеместно. Лишь в 70-х годах, свет увидели действительно компактные дизели, к слову говоря, многие эксперты привязывают это событие к резкому скачку цен на нефть. Как бы там ни было, дизельный силовой агрегат за время своего становления на чем только не работал. Экспериментаторы лили в него все что под руку попадется: рапсовое масло, сырая нефть, мазут, керосин и наконец солярка. В наши дни, мы все видим к чему это привело – на фоне дорогого бензина, дизель покоряет не только Европу, но и весь мир!

Особенности конструкции

Устройство дизельного двигателя, по большому счету имеет не так уж много отличий в сравнении с бензиновым аналогом. Это все тот же поршневой мотор внутреннего сгорания, в котором воспламенение топлива осуществляется не посредством искры, а за счет сжатия или нагрева. В его конструкции можно выделить несколько основных элементов:

  • Поршни;
  • Цилиндры;
  • Топливные форсунки;
  • Свечи накаливания;
  • Клапан впускной и выпускной;
  • Турбина;
  • Интеркулер.

Для сравнения: КПД бензинового мотора в среднем составляет порядка 30%, в случае с дизельным вариантом этот показатель увеличивается до 40%, а с турбонаддувом и во все до 50%!

Более того, схемы функционирования также очень похожи между собой. Отличаются лишь процессы создания топливовоздушной смеси и ее сгорания. Ну и еще одно глобальное отличие – это прочность деталей. Обуславливается такой момент значительно большим уровнем степени сжатия, ведь если в «зажигалках» допускается небольшой люфт между деталями, то в дизеле все должно быть максимально плотно.

Принцип работы

Давайте наконец разберемся, как работает дизельный двигатель. Если говорить о четырехтактном варианте, то здесь можно наблюдать отдельную от цилиндра камеру сгорания, которая тем не менее связана с ним специальным каналом. Данный тип моторов, продвинули в массы намного раньше нежели модификацию с двумя тактами, в связи с тем, что они были тише и имели повышенный диапазон оборотов. Если следовать логике, то становится понятно, если 4 такта, то соответственно рабочий цикл состоит из 4 фаз, рассмотрим их.

  1. Впуск – при повороте коленчатого вала в районе 0-180 градусов, воздух попадает в цилиндр сквозь впускной клапан, который открывается на 345-355 градусов. Одновременно с впускным открывается и выпускной клапан, при повороте коленвала на 10-15 градусов.
  2. Сжатие – двигаясь вверх при 180-360 градусах, поршень сжимает воздух в 16-25 раз, в свою очередь в начале такта при 190-210 градусах, закрывается впускной клапан.
  3. Рабочий ход – когда такт только начинается, топливо смешивается с горячим воздухом и воспламеняется, естественно происходит это все до достижения поршнем мертвой точки. При этом выделяются продукты сгорания, которые оказывают давление на поршень и тот двигается вниз. Обратите внимание, что давление газов постоянно, так сгорание топлива длится ровно столько же, сколько форсунка дизельного двигателя подает жидкость. Именно благодаря этому, развивается больший крутящий момент в сравнении с бензиновыми агрегатами. Осуществляется все это действие при 360-540 градусах.
  4. Выпуск – когда коленчатый вал поворачивается на 540-720 градусов, поршень двигаясь вверх выдавливает выхлопные газы через открытый выпускной клапан.

Принцип работы двухтактного дизельного двигателя отличается более быстрыми фазами, единым процессом газообмена и непосредственным впрыском. Для тех, кто не в теме напомню: в таких конструкциях камера сгорания находится непосредственно в поршне, а топливо поступает в пространство над ним. Когда поршень движется вниз, продукты горения покидают цилиндр через выпускные клапана. Далее, отворяются впускные клапана и поступает свежий воздух. При движении поршня вверх, все клапана закрыты, в это время происходит сжатие. Топливо впрыскивается распылителями и начинается его воспламенение до достижения поршнем верхней мертвой точки.

Дополнительное оборудование

Если отбросить сам ДВС в сторону, на общий план выходит целый ряд вполне себе подготовленных помощников. Рассмотрим главных профессионалов!

Топливная система

Устройство топливной системы дизельного двигателя намного сложнее нежели в бензиновых модификациях. Объясняется данный нюанс легко и просто – требования к давлению подаваемого топлива, количеству и точности – очень высоки, сами понимаете почему. ТНВД дизельного двигателя, топливный фильтр, форсунки их распылители – все это основные элементы системы. Отдельной статьи заслуживает не только аппаратура, но и устройство топливного фильтра. Возможно, вскоре разберем под микроскопом и их.

Турбонаддув

Турбина на дизельном двигателе существенно увеличивает его производительность за счет того, что топливо подается под высоким давлением и соответственно полностью выгорает. Конструкция данного агрегата в принципе не такая уж сложная, состоит она всего из двух кожухов, подшипников и защитной сетки из металла. Принцип работы турбины дизельного двигателя выглядит следующим образом:

  • Компрессор, к которому подсоединен один кожух всасывает воздух внутрь турбонагнетателя.
  • Далее, активируется ротор.
  • После, настает время охладить воздух, с этой задачей справляется интеркулер.
  • Пройдя несколько фильтров на своем пути, воздух через впускной коллектор попадает в двигатель, после чего клапан закрывается, а последующее его открытие происходит на завершающей стадии рабочего хода.
  • Как раз тогда через турбину, мотор покидают отработанные газы, которые еще и оказывают определенное давление на ротор.
  • В этот момент скорость вращения турбины может достигать 1500 оборотов в секунду, а посредством вала вращается и ротор.

Цикл турбины работающего силового агрегата повторяется раз за разом и именно благодаря вот такой стабильности, мощность мотора растет!

Форсунки и интеркулер

Принцип работы интеркулера, а также форсунки, да и вообще их предназначение, разумеется кардинально отличаются. Первый, путем теплообмена снижает температуру воздуха, который в горячем состоянии сильно влияет на долговечность двигателя. На форсунку же, ложиться задача в дозировке и распылении топлива.

Функционирует она в импульсном режиме за счет кулачка, отходящего от распредвала и собственно распылителей.

Рабочая температура дизеля

Не стоит пугаться если на панели приборов отсутствуют привычные 90 градусов. Дело в том, что рабочая температура дизельного двигателя довольно специфическая и зависит от конкретной марки автомобиля, собственно самого мотора и термостата. Так, если для «Фольксвагена» нормальным значением будет отметка в пределах 90-100 градусов, то рядовой «Мерседес» функционирует при 80-100, а «Опель» вообще в районе 104-111 градусов. Отечественный грузовик «КАМАЗ», например, работает при 95-98 градусах.

Какая бы рабочая температура, не была у вашего силового агрегата, одно очевидно – моторы на солярке сегодня актуальны, как никогда. Не верите мне? Оглянитесь по сторонам, сегодня можно встретить даже дизельный двигатель на «Ниву» и это я вам скажу, случай не единичный. Уже из этого можно сделать вывод – такой мотор во много лучше бензинового.

Да в скоростных качествах сравниться с бензиновыми ему вряд ли удастся, хотя современные модели с турбинами определенно создать конкуренцию могут.

Если же менять машину, а тем более двигатель желание нет, рекомендую собственными руками помыть мотор, ведь мы делаем это не так уж часто, как выглядит процедура я описал . В общем свое мнение я высказал, жду ваше в комментариях! Всего доброго!

дата: 14.03.2018

Принцип работы дизельного двигателя совсем иной, чем у мотора, работающего на бензине. Этим и объясняется принцип его питания. В двух словах – работа дизельного мотора строится на воспламенении топливной смеси от сильного сжатия, поскольку высокая температура вызывает ее возгорание.

Ремонт дизельных двигателей – дело не такое сложное, если знать, как он устроен, и на чем построена работа дизельного двигателя.

Порядок работы системы дизельного двигателя

Сначала цилиндры дизельного двигателя наполняются воздухом. Поршни в них движутся вверх, создавая очень высокое давление, от сжатия воздух раскалится до того, что дизельное топливо, будучи смешанным с ним, воспламенится.

Температура достигает максимального значения, когда поршень заканчивает движение вверх, затем дизтопливо впрыскивается посредством форсунки, она подает его не струйкой, а распыляет. Далее, из-за высокой степени нагрева сдавленного воздуха, воздушно-горючая смесь взрывается. Давление из-за взрыва достигает критической отметки и заставляет поршень опускаться вниз. На языке физики – совершается работа.

Система дизельного двигателя устроена так, что подает горючее в мотор, обеспечивая одновременно и несколько других функций.

Части системы дизельного двигателя, механизм его действия

Дизель состоит из:

  • бака для горючего,
  • насоса, подкачивающего дизтопливо,
  • фильтров,
  • топливного насоса, который подает горючее под высоким давлением,
  • свечи накаливания
  • основной части двигателя, которой является форсунка.

Подкачивающий насос отвечает за забор дизельного топлива из бака и отправляет его в топливный насос, а сам этот насос для подачи горючего под давлением – состоит из нескольких секций (их столько же, сколько двигатель ДВС имеет цилиндров – одна секция отвечает за обслуживание одного цилиндра).

Устройство насоса для подачи горючего под воздействием давления таково: внутри него по низу во всю длину располагается вал с кулачками, который совершает вращения от распредвала мотора. Кулачки воздействуют на толкатели, заставляющие функционировать плунжер (поршень). Поднимаясь, плунжер способствует давлению горючего в цилиндре. Таким образом и происходит выталкивание горючего посредством ТНВД в ту главную рабочую часть двигателя, которой и является форсунка.

Поступающему в магистраль дизельному топливу необходимо давление, чтобы продвинуться к форсунке для распыления через нее. Для этого и нужен поршень – он захватывает горючее внизу и продвигает к секционной верхушке. Поступающее под напором – горючее уже может качественно распыляться в камере сгорания. В этом насосе сила давления достигает 2000 атмосфер.

Одна из функций плунжера – контролировать объем подачи дизтоплива на форсунку своей двигающейся частью, открывающей и закрывающей канальца внутри него, эта часть соединяется с педалью, отвечающей за подачу газа в салоне машины. То, насколько открыты каналы подачи горючего и его объем – обусловлено углом, под которым повернут поршень. Его поворот осуществляет рейка, соединяющаяся с педалью газа.

Вверху насоса, подающего под давлением горючее, расположен клапан, он устроен так, чтобы открываться под давлением и захлопываться, если оно мало. Таким образом, когда поршень внизу, клапан – в захлопнутом положении, и горючее из шланга, к которому подсоединена форсунка, поступать в насос не может. Давление, образующееся в секции, достаточно для впрыскивания горючего в цилиндр, тогда топливо и доставляется по шлангу в форсунку, а она – производит распыление его в цилиндре.

Форсунка – назначение и виды

Очень часто ремонт дизельных двигателей связан с диагностикой работы форсунок и их починкой или заменой.

Они бывают двух видов:

  • управляемые механически
  • электромагнитные

В управляемых механически – отверстие, которое распыляет горючее, открывается в зависимости от силы давления в шланге. Ее отверстие закрывает игла, соединенная с поршеньком на верхушке форсунки. Пока не возникло давления, игла не позволяет горючему выйти через распылитель. Когда горючее поступает под напором, плунжер поднимается и оттягивает иголку. Отверстия распылителя раскрываются, и горючее выбрызгивается в цилиндр.

В нем установлены свечи накаливания, воспламеняющие горючее с воздухом. Они раскаляют воздух в специализированном отсеке, прежде, чем он окажется в цилиндре. По сути, свечи только облегчают запуск мотора ДВС, поскольку перед попаданием в цилиндр воздух уже достаточной температуры. Именно поэтому, когда на улице тепло, или если мотор еще не остыл после выключения зажигания, его запуск происходит и без участия свечей, а когда холодно – это невозможно.

Оснащенный электромагнитными форсунками дизель – более современный вариант. В таком случае – в насосе, подающем горючее, отсутствуют для каждого цилиндра своя секция, а шланг – один на все форсунки, и обеспечивает нужное давление и впрыск горючего сразу во все форсунки цилиндров ДВС.

При данной системе ДВС – на форсунки воздействуют электрические импульсы, поступающие от блока управления автомобилем: их клапаны, открывающие и закрывающие выходы для впрыска горючего – электромагнитные. Сам блок управления мотором считывает информацию со специальных датчиков, а затем дает команду электромагнитному управлению форсунками.

Такая система подачи топлива в дизельный двигатель еще и намного экономичней.

Форсунки начали использовать в производстве моторов еще в тридцатых годах XX столетия, их устанавливали сначала на авиамоторы, затем стали применять в двигателях гоночных машин. А массовое применение в автомобилестроении они получили лишь в семидесятые-восьмидесятые годы прошлого века. Тому послужили топливный кризис и осознание необходимости сбережения природы: чтобы сделать авто более мощными – специально переобогащали воздушно-горючую смесь, но это приводило к увеличению расхода топлива и переизбытку продуктов сгорания в газовых выхлопах автомобилей. И в 1967-м проблема была решена – тогда и была изобретена электромагнитная форсунка, в которой впрыск осуществляется электронной командой. Вне всяких сомнений, электроника всегда лучше механики, поскольку имеет перед ней массу очевидных преимуществ.

    Ежегодно растет количество транспортных средств, характерный звук работающего силового агрегата которых, выдает его тип. Именно дизельным двигателям будет посвящена эта публикация, в которой постараемся максимально описать их особенности, некоторые рабочие характеристики и отличия от бензиновых моторов.

    Отличительные черты дизельных агрегатов, такие как: экономичность, высокие рабочие показатели и топливо, которое стоит дешевле, делают этот вид моторов сегодня еще востребование. Последние модели дизелей по уровню своей шумности и экологическим показателям практически не отличаются от своих бензиновых собратьев , разве что они более экономичны и долговечны.

    Особенности конструкции

    Конструктивно работающие на солярке моторы ничем не отличаются от бензиновых, и имеют те же детали. За исключением того, что клапанные элементы дизелей производятся более усиленными, иначе они не выдержат всей нагрузки. Для сравнения: степень сжатия дизельного силового агрегата 19-24 единицы, а это в два раза выше, нежели у бензинового. По этой причине дизель имеет немного большие габариты и массу.

    Шумная работа этого силового агрегата обусловлена одной его особенностью. Дело в том, что самовоспламенение смеси внутри его цилиндров происходит только в момент возрастания давления. Благодаря этому допускается использование в моторе дешевого топлива (не путать с некачественным), и его работа на необогащенных смесях. За счет этого и достигается экономия. Поскольку агрегат работает на необогащенных смесях, соответственно, его вредные выбросы в атмосферу значительно снижены.

    Единственными минусами дизелей принято считать их шумную работу, сопровождаемую вибрацией, проблемы с пуском в холода и меньшую мощность в литраже. Но, подобные недостатки прерогатива исключительно старых моторов, у современных дизелей (ввиду их конструктивных особенностей) эти проблемы исключены.

    Дизеля с прямым впрыском

    Есть несколько конструкций дизельных моторов, которые отличаются друг от друга строением камеры сгорания. Агрегаты, в которых камера сгорания нераздельна, а впрыск топлива осуществляется непосредственно в пространство над поршнем, называются двигателями с прямым впрыском. Роль камеры сгорания у них играет поршень.

    Не так давно непосредственный впрыск применялся исключительно на низкооборотистых дизелях с повышенным рабочим объемом. Подобная мера связывалась только с проблемами при сгорании топлива, постоянной вибрацией и шумной работой.

    Однако ситуация изменилась с появлением топливного насоса высокого давления, управляемого при помощи электроники, инновационной системы двухуровневого впрыска и решением проблемы неполного сгорания топлива. Подобные мероприятия позволили получить стабильную работу агрегата уже на 4500 об/мин, сделали его более экономичным и малошумным.

    Дизеля с раздельной камерой

    Сегодня этот тип дизельных силовых агрегатов широко распространен на легковых транспортных средствах. Топливо в таком моторе впрыскивается в отдельную камеру, а не в цилиндр. Широко распространена модель вихревой камеры, которая располагается у основания блока цилиндров и через специальный канал соединяется с цилиндром таким образом, чтобы воздух, сжимаясь, попадал в нее, и уже далее закручивался внутри наподобие вихря. Это способствует хорошему насыщению смеси и повышает ее самовоспламенение, которое происходит в вихревой камере и уже далее переходит в основную.


    При такой конструкции мотора давление в его цилиндрах нарастает постепенно, в результате чего уровень шума агрегата значительно снижается, а обороты – повышаются. Практически на 90% дизельного транспорта установлены двигатели с вихревой камерой.

    Топливная система дизелей

    Пожалуй, эта система является важнейшей составной частью дизельного мотора, большей частью характеризующая его эффективность. Ее работа заключается в дозированной подаче топлива под определенным давлением и в определенное время. Повышенные требования к точности ее работы, и наличие высокого давления внутри системы делают этот узел дизельного агрегата дорогостоящим и сложным.

    Состоит система топливоподачи из:

  1. , который обеспечивает подачу солярки к форсункам двигателя по строго заданному циклу, который зависит от работы агрегата и прикладываемых водителем усилий к педали акселератора. Многорежимный ТНВД объединяет в себе работу главного исполнительного устройства, функция которого заключается в обработке команд водителя, и автоматическую систему управления силовым агрегатом.

Управляя педалью акселератора, шофер не уменьшает либо увеличивает подачу рабочей смеси, а всего лишь задает соответствующий режим регуляторам, которые самостоятельно корректируют топливоподачу в зависимости от давления, количества оборотов, положении регуляторов подачи и т. д. Отметим, что большинство выпускаемых сегодня дизельных внедорожников комплектуются распределительным типом ТНВД .

Распределительные ТНВД являются в основном прерогативой дизельных моторов установленных на легковом автотранспорте. Они отличаются правильно отрегулированной топливоподачей и повышенным быстродействием, за счет чего достигается их стабильная работа на высоких оборотах. Однако подобный тип топливных насосов слишком требователен к качеству солярке и ее чистоте, поскольку она смазывает рабочие поверхности их деталей.

  1. Форсунки дизельного мотора являются не менее важным, чем ТНВД элементом системы топливоподачи, которые совместно с топливным насосом осуществляют бесперебойную дозированную подачу рабочей смеси в камеру сгорания. Давление в системе топливоподачи зависит от угла размещения форсунки , а форму топливному факелу, от которой зависит вся правильная последовательность самовоспламенения и сгорания топлива, придает распылитель. Встречается два вида форсунок: многодырчатые либо шрифтовые.

Работа форсунки в дизельном агрегате обусловлена слишком тяжелыми для нее условиями. Это связано с тем, что рабочее движение иглы распылителя в два раза меньше оборотов мотора, при этом распылитель форсунки подвергается постоянному воздействию высокой температуры и топливных взрывов при контакте с камерой сгорания. Соответственно, такой элемент должен быть изготовлен из прочных и теплостойких материалов.

  1. Топливный фильтр, хотя и является простейшим элементом в системе топливоподачи дизеля, все же его отсутствие не сможет обеспечить полноценную работу мотору. Его характеристики (уровень фильтрации и пропускной возможности) обязательно должны быть подобраны в соответствии с типом и показателями мощности силового агрегата. Помимо фильтрации солярки, фильтр еще играет роль отделителя воды. Для этого в его конструкции предусмотрен нижний слив закрытый пробкой. Зачастую на топливный фильтр устанавливается ручная помпа, которая необходима для откачки воздуха из системы.

Редко, но все же бывают топливные фильтры с электроподогревом, который в разы облегчает запуск агрегата в холодное время.

Особенности запуска дизельных моторов

Благодаря предпусковому подогреву возможен холодный запуск двигателя работающего на солярке. Действует предпусковой подогреватель так: внутри камер сгорания располагаются специальные электрические нагреватели – свечи накаливания. В момент включения зажигания эти элементы обеспечивают мгновенный прогрев камер сгорания, облегчая при этом процесс самовоспламенения рабочей смеси. Соответствующий индикатор в салоне сигнализирует о работе системы.

Как только индикатор погас – силовой агрегат прогрелся и готов к пуску. После запуска мотора на нагревательный элемент, в течение 15-20 сек, еще продолжает поступать электропитание. Это позволяет стабилизировать работу еще холодного двигателя. Отметим, что предпусковой подогреватель способен обеспечить свободный пуск мотору (при условии его полной исправности и наличии соответствующего дизтоплива) при температуре до -30 градусов.

Турбированный дизель

Эффективно увеличить мощность дизельного двигателя возможно только с применением турбонаддува . Благодаря ему в цилиндры дизеля при помощи насоса подается больше воздуха, в результате чего возрастает подача смеси, улучшается ее горение и увеличивается мощность мотора. Поскольку выхлопные газы дизельного двигателя имеют большее в 1,5-2 раза давление в отличие от бензиновых агрегатов, их турбокомпрессор работает эффективнее даже на малых оборотах, что позволяет турбированному дизелю избежать провалов в работе (так называемых «турбоям»).

Однако турбодизель не лишен и недостатков, которые в основном заключаются в несовершенстве конструкции турбокомпрессора. Его рабочий ресурс редко превышает пробег в 150 тыс. км, что гораздо меньше ресурса самого агрегата.

Преимущества использования системы Common-Rail

Благодаря системе электронного управления топливоподачей предусмотрен впрыск солярки двумя последовательными дозами в камеру сгорания. Вначале подается небольшая порция, необходимая для разогрева камеры, а после нее – уже основная. Подобная система дозировки топлива очень важна для дизельных силовых агрегатов, поскольку она обеспечивает плавный рост давления внутри камер сгорания, которое обусловлено меньшей шумностью мотора и его стабильной работой.

Применение системы Common-Rail позволяет сократить потребление топлива на 20%, при этом на 25% повысить крутящий момент коленвала при работе двигателя на низких оборотах.

Видео покажет устройство и принцип работы дизельного двигателя:

Видео расскажет о эксплуатации современных дизельных двигателей:

Давно уже прошли времена, когда в индустрии гражданских автомобилей дизельный двигатель считался во многом компромиссным «меньшим братом» бензиновых моторов.

Благодаря особенностям дизельного топлива, такой тип имеет ряд очевидных преимуществ.

Сильные стороны настолько явны, что даже отечественные конструкторы ломали голову по внедрению этой технологии.

Сейчас такие моторы имеют Газель Next, УАЗ Патриот. Более того, были попытки установки дизельного двигателя на Ниву. К сожалению, выпуск ограничился небольшими экспортными партиями.

Позитивные факторы позволили дизельному двигателю завоевать популярность в каждом из автомобильных сегментов. Речь идёт о четырехтактной конфигурации, поскольку двухтактный дизельный двигатель не получил широкого применения.

Конструкция

Принцип работы дизельного двигателя заключается в преобразовании возвратно-поступательных движений кривошипно-шатунного механизма в механическую работу.

Способ приготовления и воспламенения топливной смеси – это то, чем отличается дизельный двигатель от бензинового. В камерах сгорания бензиновых моторов, приготовленная заранее топливно-воздушная смесь воспламеняется с помощью подаваемой свечой зажигания искры.

Особенность дизельного двигателя заключается в том, что смесеобразование происходит непосредственно в камере сгорания. Рабочий такт осуществляется путем впрыскивания под огромным давлением дозированной порции топлива. В конце такта сжатия реакция нагретого воздуха с дизтопливом приводит к воспламенению рабочей смеси.

Двухтактный дизельный двигатель имеет более узкую сферу применения.
Использование одноцилиндрового и многоцилиндрового дизелей такого типа имеет ряд конструктивных недостатков:

  • неэффективную продувку цилиндров;
  • повышенный расход масла при активном использовании;
  • залегание поршневых колец в условиях высокотемпературной эксплуатации и прочие.

Двухтактный дизельный двигатель с противоположным размещением поршневой группы имеет высокую первоначальную стоимость и очень сложен в обслуживании. Установка такого агрегата целесообразна лишь на морских судах. В таких условиях, благодаря небольшим габаритам, малой массе и большей мощности при идентичных оборотах и рабочем объеме, двухтактный дизельный двигатель более предпочтителен.

Одноцилиндровый агрегат внутреннего сгорания широко применяется в домашнем хозяйстве в качестве электрогенератора, двигателя для мотоблоков и самоходных шасси.

Такой тип получения энергии налагает определённые условия на устройство дизельного двигателя. Он не нуждается в бензонасосе, свечах, катушке зажигания, высоковольтных проводах и прочих узлах, жизненно необходимых для нормальной работы бензинового ДВС.

В нагнетании и подачи дизтоплива участвуют: топливный насос высокого давления и форсунки. Для облегчения холодного пуска современные моторы используют свечи накала, которые предварительно подогревают воздух в камере сгорания. Во многих автомобилях в баке устанавливается вспомогательный насос. Задача топливного насоса низкого давления в том, чтобы прокачать топливо от бака к топливной аппаратуре.

Пути развития

Инновации дизельного двигателя заключаются в эволюции топливной аппаратуры. Усилия конструкторов направлены на то, чтобы добиться точного момента впрыска и максимального распыления топлива.

Создание топливного «тумана» и деление процесса впрыска на фазы позволило достигнуть большей экономичности и повышения мощности.

Наиболее архаичные экземпляры имели механический ТНВД и отдельную топливную магистраль к каждой форсунке. Устройство двигателя и ТА такого типа обладали большой надежностью и ремонтопригодностью.

Дальнейший путь развития заключался в усложнении ТНВД дизельного двигателя. В нем появились изменяемые моменты впрыска, множество датчиков и электронное управление процессами. При этом использовались все те же механические форсунки. В таком типе конструкции давление впрыскиваемого топлива было от 100 до 200 кг/см².

Следующим шагом было внедрение системы Common raіl. В дизельном двигателе появилась топливная рампа, где может поддерживаться давление до 2 тыс. кг/см². ТНВД таких моторов стали значительно проще.

Основная конструктивная сложность заключается в форсунках. Именно с их помощью регулируется момент, давление и количество ступеней впрыска. Форсунки системы аккумуляторного типа очень требовательны к качеству топлива. Завоздушивание такой системы приводит к быстрому выходу из строя ее основных элементов. Дизельный двигатель с Common rail работает тихо, потребляет меньше топлива и имеет большую мощность. За все это приходится платить меньшим ресурсом и более высокой стоимостью ремонта.

Еще более высокотехнологичной является система с применением насос-форсунок. В ТА такого типа форсунка соединяет в себе функции нагнетания давления и распыления топлива. Параметры дизельного двигателя с насос-форсунками на порядок выше аналоговых систем. Впрочем, как и стоимость обслуживания и требования к качеству топлива.

Важность комплектации турбинами

Большинство современных дизелей комплектуются турбинами.

Турбонаддув – это эффективный способ повысить мощностные характеристики автомобиля.

Благодаря повышенному давлению выхлопных газов, использование турбин в паре с дизельным ДВС заметно повышает приёмистость и уменьшает расход топлива.

Турбина – далеко не самый надёжный агрегат автомобиля. Больше 150 тыс. км они зачастую не ходят. Это, пожалуй, её единственный минус.

Благодаря электронному блоку управления двигателем (ЭБУ), дизельному двигателю доступен чип тюнинг.

Преимущества и недостатки

Существует ряд факторов, которые выгодно отличают дизельные двигатели:

  • экономичность. КПД в 40% (до 50% с применением турбонаддува) просто недосягаемый показатель для бензинового собрата;
  • мощность. Практически весь крутящий момент доступен на самых низких оборотах. Турбированный дизельный двигатель не имеет ярко выраженной турбоямы. Такая приёмистость позволяет получить настоящее удовольствие от вождения;
  • надежность. Пробег самых надежных дизельных двигателей доходит до 700 тыс. км. И все это без ощутимых негативных последствий. Благодаря своей безотказности, дизельные ДВС ставят на спецтехнику и грузовики;
  • экологичность. В борьбе за сохранность окружающей среды дизельный двигатель превосходит бензиновые моторы. Меньшее количество выбрасываемого СО и использование технологии рециркуляции выхлопных газов (EGR) приносят минимум вреда.

Недостатки:

  • стоимость. Комплектация, оснащённая дизельным двигателем, будет стоить на 10% больше, чем такая же модель с бензиновым агрегатом;
  • сложность и дороговизна обслуживания. Узлы ДВС выполнены из более прочных материалов. Сложность устройства двигателя и топливной аппаратуры требует качественных материалов, новейших технологий и большого профессионализма в их изготовлении;
  • плохая теплоотдача. Большой процент КПД значит то, что при сгорании топлива происходят меньшие потери энергии. Другими словами, выделяется меньше тепла. В зимнее время года эксплуатация дизельного двигателя на короткие расстояния будет негативно сказываться на его ресурсности.

Рассмотренные минусы и плюсы не всегда уравновешивают друг друга. Поэтому вопрос о том, какой из двигателей лучше, будет стоять всегда. Если вы собираетесь стать владельцем такого автомобиля, учтите все особенности его выбора. Именно ваши требования к силовой установке будут тем фактором, который решит что лучше: бензиновый или дизельный двигатель.

Стоит ли покупать

Новые дизельные автомобили – это тот вид приобретения, который будет приносить только радость. Заправляя автомобиль качественным топливом и делая ТО согласно нормативным предписаниям, вы 100% не пожалеете о покупке.

Но стоит учитывать тот факт, что дизельные авто на порядок дороже своих бензиновых аналогов. Вы сможете компенсировать эту разницу и в последующем экономить только тогда, когда будете преодолевать большой километраж. Переплачивать с целью проезжать в год до 10 тыс. км. попросту не целесообразно.

Ситуация с б/у автомобилями немного иная. Несмотря на то, что дизельные двигатели отличаются большим запасом прочности, со временем сложная топливная аппаратура требует к себе повышенного внимания. Цены на запчасти к дизельному двигателю возрастом свыше 10 лет действительно удручающие.

Стоимость ТНВД на бюджетный автомобиль Б класса возрастом 15 лет может повергнуть в шок некоторых автолюбителей. К выбору авто с пробегом свыше 150 тыс. нужно относиться очень серьезно. Перед покупкой лучше сделать комплексную диагностику в специализированном сервисе. Так как низкое качество отечественного дизтоплива очень пагубно сказывается на ресурсе дизельного двигателя.

В этом случаи решить, какому двигателю лучше отдать предпочтение, поможет репутация производителя. К примеру, модель Mercedes-Benz OM602 по праву считается одним из самых надёжных дизельных двигателей в мире. Покупка автомобиля с подобным силовым агрегатом станет выгодным вложением на долгие годы. Многие производители имеют подобные «удачные» модели силовых установок.

Мифы и заблуждения

Несмотря на распространенность автомобилей с дизельным двигателем, в народе до сих пор существуют предрассудки и непонимание. «Тарахтит, зимой не греет, а в большой мороз не заведёшь, летом не едет, а если что-то поломается, так ещё поискать нужно мастера, который за космические деньги отремонтирует всё», – примерно такие слова можно услышать иногда от «опытных» автолюбителей. Всё это отголоски прошлого!

  1. Благодаря современным технологиям, только рокот холостого хода позволяет отличить дизельные двигатели от бензиновых. В движении, когда шум дороги нарастает, разница не ощутима.
  2. Для улучшения запуска и прогрева в холодное время года в современных автомобилях используются различные вспомогательные системы. Ввиду нарастающей популярности, количество сервисов, специализированных на обслуживании дизельного двигателя, постоянно увеличивается.
  3. Бытует мнение, что ДВС работающий на дизеле сложно форсировать. Это верно, если мы говорим о модификациях цилиндропоршневой группы. В то же время чип тюнинг дизельного двигателя – это хороший способ повысить его мощностные характеристики без ухудшения ресурсности.

Стоит помнить о том, что принцип работы дизельного двигателя всецело направлен на достижения экономичности и надёжности. Не стоит требовать от таких ДВС заоблачных динамических показателей.

Симптомы и причины неисправностей

  • Плохой запуск дизельного двигателя на холодную, и после длительного простоя – означает плохо работающие свечи накала, воздух в системе, обратный клапан стравливает давление топлива, плохая компрессия, разряженный аккумулятор;
  • повышенная шумность, увеличенный расход и чёрный дым из выхлопной трубы – означает засорение или износ распылителей и форсунок, неправильные углы опережения впрыска, грязный фильтр очистки воздуха;
  • пропала мощность дизельного двигателя – означает отсутствие компрессии, выход из строя турбины, засорение топливного и воздушного фильтров, некорректные углы опережения впрыска, загрязненный клапан ЕГР;
  • серый или белый дым из выхлопной, повышенный расход масла – означает трещину ГБЦ или пробитую прокладку ГБЦ (уходит охлаждающая жидкость, а в масле появляется эмульсия), неисправность турбонагнетателя.

Правильная эксплуатация

Неправильная эксплуатация может погубить даже самый надежный мотор.

Продлить ресурс дизельного двигателя, и получать удовольствие от владения автомобилем вам поможет выполнение несложных правил:

  • дизельные двигатели с турбонаддувом очень требовательны к качеству масла и топлива. Заливайте только то масло, которое соответствует требованиям, установленным для вашего ДВС. Заправляйтесь только на проверенных АЗС;
  • проводите ТО предпускового подогрева в соответствии с заявленными производителем нормами. В этом случае у вас не возникнет проблем с запуском дизельного двигателя в холодное время года. Эксплуатация агрегата с неправильно работающей форсункой впоследствии может привести к дорогостоящему ремонту ДВС;
  • после активных поездок турбина нуждается в охлаждении. Не глушите мотор сразу же. Дайте ему поработать некоторое время на холостых оборотах;
  • избегайте запуска «с толкача». Такой способ оживления мотора может причинить большой вред кривошипно-шатунному механизму вашего ДВС.

Оба типа двигателей имеют не только плюсы, но и минусы. Главная цель автомобиля – соответствовать вашим требованиям, неважно, установлен в нем бензиновый или дизельный двигатель. Что лучше подойдёт вам, зависит только от индивидуальных предпочтений.

Современные инновационные технологии и прогрессивный маркетинг позволяют людям выбирать из автомобилей, которые они могут себе позволить. Нам всё меньше приходится идти на компромисс и жертвовать отдельными параметрами. Особенно эта тенденция заметна в процессе эволюции дизельных автомобилей.

Доброго времени суток. Думаю многим будет интересна данная тема. Преимущества и недостатки…Всё ниже.
В 1890 году Рудольф Дизель развил теорию «экономичного термического двигателя», который благодаря сильному сжатию в цилиндрах значительно улучшает свою эффективность. Он получил патент на свой двигатель 23 февраля 1893. Первый функционирующий образец был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан.
Интересно то, что Дизель в своей книге вместо привычной нам с Вами солярки, в роли идеального топлива описывал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли как топлива — в первую очередь из-за высоких абразивных свойств.

Но теорию дизельного двигателя рассматривал и Экройд Стюарт. Он не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, т. е. он не обратил внимания на самое большое преимущество — топливную эффективность. Возможно, это и было причиной того, что в настоящее время используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», т. к. теория Рудольфа Дизеля стала основой для создания современных двигателей с воспламенением от сжатия. В дальнейшем около 20-30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива не позволяли применять дизели в высоко-оборотистых агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.
В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным дальнейшее увеличение скорости вращения. Востребованный в таком виде высокооборотный дизель стал пользоваться все большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу двигателей с электрическим зажиганием (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях, В 50 — 60-е годы дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо, на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

Принципы работы:
Четырёхтактный цикл.
При первом такте (такт впуска, поршень идет вниз) свежая порция воздуха втягивается в цилиндр через открытый впускной клапан.
При втором такте (такт сжатия, поршень идет вверх) впускной и выпускной клапаны закрытывоздух сжимается в объёме примерно в 17 раз (от 14:1 до 24:1), т. е. объём становится меньше в 17 раз по сравнению с общим объёмом цилиндра, и воздух становится очень горячим.
Непосредственно перед началом третьего такта (такт рабочего хода, поршень идет вниз) топливо впрыскивается в камеру сгорания через распылитель форсун. При впрыске топливо распыляется на мелкие частицы, которые равномерно перемешиваются со сжатым воздухом для создания самовоспламеняющейся смеси. Энергия высвобождается при сгорании, когда поршень начинает свое движение в такте рабочего хода.
Выпускной клапан открывается, когда начинается четвёртый такт (такт выпуска, поршень идет вверх), и выхлопные газы проходят через выпускной клапан.

Двухтактный цикл.
Поршень находится в нижней мёртвой точке и цилиндр наполнен воздухом. Во время хода поршня вверх воздух сжимается; вблизи верхней мёртвой точки происходит впрыск топлива, которое самовоспламеняется. Затем происходит рабочий ход — продукты сгорания расширяются и передают энергию поршню, который движется вниз. Вблизи нижней мёртвой точки происходит продувка — продукты сгорания замещаются свежим воздухом. Цикл завершается.
Для осуществления продувки в нижней части цилиндра устраиваются продувочные окна. Когда поршень находится внизу, окна открыты. Когда поршень поднимается, он перекрывает окна.

Поскольку в двухтактном цикле рабочие ходы происходят вдвое чаще, то можно ожидать двукратного повышения мощности по сравнению с четырёхтактным циклом. На практике же это не удаётся реализовать, и двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6 — 1,7 раз.
В настоящее время двухтактные дизели широко применяются только на больших морских судах с непосредственным (безредукторным) приводом гребного винта. При невозможности повышения частоты вращения двухтактный цикл оказывается выгодным; такие тихоходные дизели имеют мощность до 100.000 л.с.

Плюсы и минусы.
Бензиновый двигатель является довольно неэффективным и способен преобразовывать всего лишь около 20-30 % энергии топлива в полезную работу. Стандартный дизельный двигатель, однако, обычно имеет коэффициент полезного действия в 30-40 %, дизели с турбонаддувом и промежуточным охлаждением свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт, достигая эффективности 54,4 %). Дизельный двигатель из-за использования впрыска высокого давления не предъявляет требований к летучести топлива, что позволяет использовать в нём низкосортные тяжелые масла.
Дизельный двигатель не может развивать высокие обороты — смесь не успевает догореть в цилиндрах. Это приводит к снижению удельной мощности двигателя на 1 л объёма, а значит, и к снижению удельной мощности на 1 кг массы двигателя.
Дизельный двигатель не имеет дроссельной заслонки, регулирование мощности осуществляется регулированием количества впрыскиваемого топлива. Это приводит к отсутствию снижения давления в цилиндрах на низких оборотах. Потому дизель выдаёт высокий крутящий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями.
Явными недостатками дизельных двигателей являются необходимость использования стартера большой мощности, помутнение и застывание летнего дизельного топлива при низких температурах, сложность в ремонте топливной аппаратуры, так как насосы высокого давления являются устройствами, изготовленными с высокой точностью. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Такие загрязнения очень быстро выводят топливную аппаратуру из строя. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным крутящим моментом в своём рабочем диапазоне. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов («катализатор» в просторечии), работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой «Common-rail» системы. В данном типе дизелей впрыск топлива осуществляется электрически управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров сложности и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар, то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра». «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим очистки «сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и так называемого «интеркулера» — то есть устройства, охлаждающего сжатый турбонагнетателем воздух. Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

Ну и на последок самое интересное. МИФЫ о дизельных двигателях.

Дизельный двигатель слишком медленный.
Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом двигателя. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

Дизельный двигатель слишком громкий.
Правильно настроенный дизель лишь немного «громче» бензинового, что заметно лишь на холостых оборотах. В рабочих режимах разницы практически нет. Громко работающий двигатель свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле старые дизели с механическим впрыском действительно отличаются весьма жесткой работой. Только с появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счет разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

Дизельный двигатель гораздо экономичнее.
Времена, когда дизельное топливо стоило в три раза дешевле бензина, давно прошли. Сейчас разница составляет лишь порядка 10-30 % по цене топлива. Несмотря на то, что удельная теплота сгорания дизельного топлива (42,7 МДж/кг) меньше чем у бензина (44-47 МДж/кг), основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше. Срок службы дизельного двигателя действительно гораздо больше бензинового и может достигать 400-600 тысяч километров.[источник не указан 211 дней] Запчасти для дизельных двигателей также несколько дороже, как и стоимость ремонта. Несмотря на все вышеперечисленные причины, затраты на эксплуатацию дизельного двигателя при правильной эксплуатации будут не намного меньше, чем у бензинового.[источник не указан 211 дней]

Дизельный двигатель плохо заводится в мороз.
При правильной эксплуатации и подготовке к зиме проблем с двигателем не возникнет. Например дизельный двигатель VW-Audi 1,9 TDI (77 кВт/105 л.с.) оснащён системой быстрого запуска: нагрев свечей накаливания до 1000 градусов осуществляется за 2 с. Система позволяет заводить двигатель в любых климатических условиях без предпускового разогрева.

Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешевого газа.
Первыми примерами работы дизельных двигателей на более дешевом топливе — газе порадовали ещё в 2005 году итальянские тюнинговые фирмы, которые использовали в качестве топлива метан. В настоящее время успешно зарекомендовали себя варианты применения газодизелей на пропане, а также — кардинальные решения по переоборудованию дизеля в газовый двигатель, который имеет преимущество перед аналогичным мотором, переоборудованным из бензинового, за счет изначально более высокой степени сжатия.

А что вы скажете про дизельный двигатель?)

Бензиновый двигатель работает как дизельный

Любой автомобильный двигатель по определенным причинам может начать работать грубо и шумно, троить, после запуска «на холодную» функционировать неустойчиво. Не менее частой проблемой становится появление подозрительных шумов и стуков уже после прогрева и выхода мотора на рабочую температуру. Если бензиновый двигатель шумно работает, тогда многие автомобилисты сравнивают работу такого двигателя с характерным звуком дизельного агрегата.

Дело в том, что дизель всегда работает грубее бензинового ДВС, создавая своеобразные и хорошо различимые стуки. Это объясняется иным принципом воспламенения смеси в цилиндрах, которое происходит от сжатия, а не от свечи зажигания.

Рекомендуем также прочитать статью о том, почему дизельный двигатель может троить при холодном пуске и после выхода на рабочую температуру. Из этой статьи вы узнаете об основных неисправностях, которые вызывают шумную и неустойчивую работу силового агрегата.

Неисправности той или иной системы двигателя можно с большой долей вероятия локализовать по поведению мотора в разных режимах эксплуатации, определить на слух и т.п. Также можно визуально оценить цвет выхлопных газов, что косвенно укажет на проблему. Если бензиновый двигатель «стучит» как дизель, неровно работает или троит, тогда причины могут заключаться в следующем:

Содержание статьи

Стуки в результате детонации

Чтобы определить проблему и ответить на вопрос, почему бензиновый двигатель начал стучать как дизельный мотор, необходимо сразу начать с проверки качества топлива и уровня моторного масла. Бензиновый мотор может работать как дизель по причине заправки горючим с низким октановым числом, которое не подходит для данного типа двигателя. Повышенный шум во время работы мотора на низкооктановом бензине частично проявится при холодном запуске, а также сильно заметен при дальнейшей езде.

Причина стука — детонация в цилиндрах. Стоит отметить, что на приглушенный «дизельный» звук детонация похожа отдаленно. Современные бензиновые агрегаты оборудованы решениями для противодействия детонации, но возможности внесения корректив находятся в узких рамках. ЭБУ способен только незначительно сдвигать УОЗ (угол опережения зажигания).

Появление детонационных стуков можно отчетливо услышать в тот момент, когда двигатель находится под нагрузкой во время разгона автомобиля. Стуки звонкие, напоминают высокочастотные удары металла об металл. Также к появлению детонации может привести неисправность датчика детонации, езда на повышенной передаче в автомобилях с МКПП при низких оборотах коленчатого вала, плотный нагар на клапанах и в камерах сгорания. К появлению детонации приводит также неверная настройка (слишком позднее зажигание) на автомобилях, где УОЗ выставляется самостоятельно. Рабочая смесь догорает на такте выпуска, заставляя мотор работать ударно и грубо.

Детонацию в обычных условиях слышно тогда, когда авто с механической коробкой поднимается вверх по уклону, но водитель не переключается на пониженную передачу, пытаясь поддерживать заданную скорость путем нажатия до максимума педали газа. Автомобиль движется, но дальше не разгоняется, двигатель не набирает обороты. Получается, ДВС на повышенной передаче под нагрузкой «не тянет». В таких условиях звонкий стук детонации проявляется наиболее отчетливо.

Правильная манера езды, своевременное обслуживание агрегата и езда на подходящем топливе позволят избавиться от детонационных стуков. Если в топливный бак случайно залито горючее с низким октановым числом, тогда простейшим решением будет немедленно разбавить имеющийся бензин более подходящим. Вторым способом станет добавка специальной присадки из группы октан-корректоров, что позволяет повысить октановое число и детонационную стойкость топлива.

Проблемы с цилиндропоршневой группой

В том случае, если мотор неожиданно и отчетливо застучал, слышны удары, хлопки, трение и хруст, тогда эксплуатировать автомобиль строго запрещено. Необходимо безотлагательно определить причину стуков. В ряде случаев будет предпочтительнее отказаться от решения ехать в автосервис своим ходом и доставить ТС на буксире или эвакуаторе.

Низкий стук в нижней части картера двигателя, который усиливается в момент нагрузки на ДВС и при поднятии частоты оборотов коленвала, может указывать на то, что стучат коренные подшипники. При появлении такого звука работы двигателя мотор необходимо сразу заглушить. Коренные подшипники могут стучать по причине критически низкого давления масла в системе смазки. Дополнительно загорается и не гаснет аварийная лампа на панели приборов. Ехать своим ходом с таким стуком нельзя.

Не меньшую опасность таит звонкий, отчетливый металлический звук, который идет из средней части ДВС (в области прокладки БЦ). Так могут стучать подшипники шатунов. Наиболее отчетливо звук прослушивается под нагрузкой. Выявить неисправность в одном из цилиндров можно путем поочередного отключения свечей зажигания. Отключение в неисправном цилиндре приведет к тому, что ритмичный и звонкий звук исчезнет. С такой поломкой езда запрещена.

Еще одной причиной, по которой бензиновый двигатель шумит как дизель, может быть высокий звенящий звук стучащих поршневых пальцев. Этот стук немного похож по тону на детонацию, но отчетливо прослушивается на всех режимах работы двигателя, усиливается под нагрузкой. Аналогично определяется методом отключения свечи зажигания. Доехать до сервиса с таким стуком можно самостоятельно, предварительно проверив уровень масла. Необходимо двигаться плавно, избегать повышения оборотов и минимизировать нагрузки на двигатель.

Если мотор с большим пробегом, тогда могут стучать изношенные поршни в цилиндрах «на холодную». Звук равномерный, напоминает приглушенные стуки, немного похожие на звук работы дизельного мотора. Интенсивность будет уменьшаться по мере прогрева двигателя после холодного запуска. С выходом на рабочую температуру, а также в процессе езды под нагрузкой «дизельный» стук пропадает. Автомобиль можно эксплуатировать в умеренном режиме, но с ремонтом ДВС затягивать не стоит.

Посторонние звуки по причине неисправностей ГРМ

Неполадки ГРМ также могут заставить бензиновый мотор работать как дизель. Наиболее часто механизм газораспределения начинает явно шуметь по двум причинам:

Стук клапанов четко различим на общем фоне, имеет «металлический» звонкий призвук. Локализуется такой звук в области ГБЦ, над зоной расположения клапанов.  Отчетливо слышен стук на низких и средних оборотах коленчатого вала. Ездить долго со стучащими клапанами не рекомендуется, но добраться до СТО своим ходом вполне возможно.

Что касается гидрокомпенсаторов, то их стук хорошо различим «на холодную» и напоминает по звуку работу хорошо прогретого дизельного мотора. Гидрокомпенсаторы могут немного стучать на полностью исправном бензиновом двигателе в первые минуты после запуска, наслаиваясь таким образом на характерный «стрекочущий» звук работающих форсунок инжекторного ДВС. С наступлением даже незначительного прогрева похожий на работу дизельного мотора звук должен стать менее интенсивным, а на рабочих температурах полностью исчезнуть.

Если этого не происходит, тогда причина может быть в неподходящем моторном масле, проблемах с давлением масла в системе смазки бензинового ДВС и т.д. Выход только одного гидрокомпенсатора из строя проявится отчетливым металлическим стуком «на горячую» в области клапанной крышки. Звук может быть как постоянным, так и возникающим периодически. Чаще всего гидрокомпенсатор стучит одинаково ровно по интенсивности звука, ритмичность будет меняться аналогично изменению частоты вращения коленчатого вала.

Подводим итоги

Следует помнить, что появление любых подозрительных звуков при работе ДВС на различных режимах работы агрегата является серьезным основанием для немедленного прекращения дальнейшей эксплуатации ТС. Даже непродолжительная езда на стучащем бензиновом или дизельном двигателе иногда может привести к полному уничтожению мотора без возможности его дальнейшего восстановления.

Выше перечислены наиболее распространенные причины того, почему бензиновый двигатель работает как дизельный. В списке других возможных причин шумной работы бензинового ДВС стоит отметить неисправности системы охлаждения, особенно когда мотор не может выйти на рабочую температуру. В этом случае тепловые зазоры не достигают оптимальных показателей, что и приводит к повышенному уровню шума. Также проблема может заключаться в неисправностях ЭБУ двигателя или электрических цепей, привода ГРМ, навесного оборудования и т.д.

Читайте также

Устройство и принцип работы дизельного двигателя + Видео

Если в нескольких словах описать принцип работы дизельного двигателя, то можно сказать, что зависит он во многом от давления, создаваемого в камере сгорания. Отличий от бензиновых моторов не очень много: имеется и блок, и ГБЦ, и форсунки, которые чем-то схожи с теми, которые используются в инжекторной системе впрыска. Единственное существенное отличие – топливо-воздушная смесь воспламеняется не от искры, которая проскакивает между электродами свечи, а от колоссального сжатия воздуха, которое нагревает и воспламеняет дизтопливо. Так как в цилиндрах очень высокое давление, то клапаны должны выдерживать большие нагрузки. Применяют дизельные моторы в большинстве своем на грузовиках, но нередко можно встретить и легковушки, работающие на дизтопливе.

Как работает двигатель на дизтопливе

Воспламенение топлива в дизельном двигателе

В основе дизельного мотора лежит компрессионное воспламенение топлива. Причем солярка, попадая в камеру сгорания, соединяется с нагретым воздухом. Вот и отличие в образовании смеси от бензинового двигателя – солярка и воздух в камеры сгорания поступают независимо, смешиваются непосредственно перед воспламенением. Сначала поступает некоторое количество воздуха. Когда он сжимается, начинается его нагревание (примерно до 800 градусов). Топливо поступает в цилиндр под давлением от 10 до 30 МПа. После этого оно воспламеняется. При работе возникает немало шума, а уровень вибраций достаточно высокий. По такому простому признаку легче всего отличить автомобиль с дизельным мотором. Кстати, в его конструкции свечи все-таки есть, вот только назначение у них совершенно иное. Они не воспламеняют смесь, а прогревают камеры сгорания, чтобы зимой проще было завести двигатель. Они так и называются – свечи накаливания.

Существуют как двух-, так и четырехтактные дизельные двигатели. Последние применяются на большинстве автомобилей и работают в таком режиме:

  1. Такт впуска.
  2. Происходит сжатие воздуха и впрыскивание топлива.
  3. Взрыв горючей смеси, поршень перемещается вниз, совершая рабочий ход.
  4. Производится выпуск отработанных газов, начало первого такта.

Свечи накала дизельного двигателя

До некоторых пор дизтопливо имело низкую стоимость, поэтому экономия для владельцев дизельных машин была существенная. Но вот капитальный ремонт, например, обходится намного дороже, в отличие от бензинового мотора. Да и устройство дизельного двигателя для большей части автомобилистов малознакомо.

Какие типы дизельных моторов существуют

Если провести разделение по конструкции, то можно выделить всего три вида:

  1. Двигатели, имеющие разделенную камеру сгорания. Суть проста – топливо-воздушная смесь поступает не сразу в камеру сгорания. Первоначально она попадает в отдельный отсек, называемый вихревой камерой. Эта камера расположена в ГБЦ. Между камерой сгорания и этим отсеком располагается небольшой канал. Именно в вихревой камере воздух способен сжаться до большого давления. Следовательно, его нагрев окажется сильнее и воспламенение топлива улучшается. В этом же отсеке происходит первоначальное воспламенение топлива. Затем процесс плавно переходит уже в основную камеру сгорания.
  2. С камерой сгорания, не разделенной на отсеки. Такие моторы имеют максимальный уровень шума, зато топлива потребляют меньше. В поршне имеются небольшие углубления, в которые попадает топливная смесь. Воспламеняется она непосредственно над поршнем, после чего сила взрыва толкает его вниз.
  3. Предкамерные ДВС имеют в своей конструкции вставную форкамеру. От нее к основной камере сгорания идет несколько тонких каналов. Большая часть характеристик дизельного двигателя такого типа (уровень шума, ресурс, токсичность, расход топлива, создаваемые вибрации, мощность) зависят от числа каналов, их толщины и формы.

Форсунки дизельного двигателя

Основные узлы топливной системы

Можно сказать, что топливная система – это основа дизельного мотора. Она подает под заранее установленным давлением топливо в камеру сгорания. Причем необходимо строго определенное количество солярки и воздуха. Основные элементы системы:

  1. ТНВД (топливный насос высокого давления).
  2. Топливный фильтр.
  3. Форсунки.

Рассмотрим устройство топливной системы дизельного двигателя более подробно.

Топливный насос высокого давления

На автомобилях, которые сегодня можно встретить на дорогах, в основном, установлены насосы следующих типов:

  1. Распределительные.
  2. Плунжерные (рядные).

Функция насоса заключается в том, чтобы забрать из бака топливо и передать его к форсункам. Причем зависит его работа от многих параметров, среди которых давление воздуха в турбине, количество оборотов коленчатого вала и прочего. Главное отличие от насосов, устанавливаемых на простые бензиновые автомобили заключается в том, что насосу дизельного двигателя необходимо создать гораздо большее давление топлива, чтобы оно все-таки могло быть впрыснуто непосредственно в камеру сгорания, в которой и так уже находится воздух под высоким давлением.

Топливный насос высокого давления дизельного двигателя

Топливный фильтр

Для каждого мотора предусмотрен свой, незаменимый, тип фильтра. Как видно из названия, необходим он для очистки солярки, поступающей из бака. Им будут задержаны любые, даже самые мелкие, частицы. Также он удаляет из системы излишки воздуха и влаги.

Топливные форсунки

Насос высокого давления имеет прочную связь с форсунками. Именно от этих двух элементов зависит, своевременно ли поступит топливо в камеру сгорания (а оно должно быть распылено в момент нахождения поршня в верхней мертвой точке). В конструкции современного дизельного двигателя используют следующие типы форсунок:

  1. Многодырчатые.
  2. Имеющие шрифтовый распределитель.

Распределитель форсунок отвечает за форму факела, чтобы топливо равномерно поступало в камеру сгорания и его воспламенение происходило наиболее эффективно.

Предпусковой подогрев и турбина

Турбина дизельного двигателя

Система холодного пуска необходима для прогрева непосредственно перед запуском двигателя. Как уже упоминалось, в камере сгорания находятся свечи, которые работают по типу паяльника – в них расположена спираль, под действием электрического тока она нагревается до девятисот градусов. Весь воздух, поступающий в камеру сгорания, тоже нагревается. Такая система срабатывает непосредственно перед началом запуска и отключается через четверть минуты после того, как двигатель завелся. В процессе работы она не участвует. Благодаря этой системе в сильные морозы проще завести двигатель (если только солярка в баке и топливопроводе не приобретет желеобразный вид).

А вот система турбонаддува может значительно увеличить мощность, производимую двигателем. За счет нее происходит нагнетание большого количества воздуха. В результате этого процесс сгорания топлива значительно улучшается. Чтобы воздух поступал под давлением при любом режиме работы, устанавливается специальный турбонагнетатель. Рассмотрим в общих чертах устройство турбины дизельного двигателя. Турбина — представляет из себя две крыльчатки, расположенная на валу из стали. Причем одна из крыльчаток находится в выпускном коллекторе и раскручивается выпускными газами. При этом вал начинает передавать вращательное движение второй крыльчатке, находящейся уже во впускном коллекторе. С ее помощью создается дополнительное давление воздуха во впускном тракте. Система турбонаддува заключена в чугунный корпус. Как и все агрегаты двигателя корпус подвержен износу. Обороты крыльчатки очень высокие, именно по этой причине и происходит разрушение. Корпус турбины имеет форму улитки, поэтому в ней происходит сложное движение газового потока, приводящего в движение весь механизм наддува. При изготовлении турбины крайне важны точное литье и подгонка всех деталей.

Вместо заключения

Споры о недостатках и преимуществах дизельных двигателей звучат с момента их появления. Нельзя однозначно сказать, что именно дизельный мотор является правильным выбором. Выбрать или нет автомобиль с дизельным мотором — решение по-прежнему каждый принимает сам. Поэтому необходимо знать, как работает дизельный двигатель при различных нагрузках и в определенном климате.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Как работает дизельный двигатель?

1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.

3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета около 6700 человек были трудоустроены в течение одного года после даты выпуска, в общей сложности 84%. В эту ставку не входят выпускники, недоступные для работы по причине продолжения образования, военной службы, состояния здоровья, заключения, смерти или статуса иностранного студента.В ставку включены выпускники, прошедшие специализированные программы повышения квалификации и занятые на должностях. которые были получены до или во время обучения по ИМП, где основные должностные обязанности после окончания учебы соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, в качестве специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклам и морским техникам.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.ИМП образовательное учреждение и не может гарантировать работу или заработную плату.

7) Для завершения некоторых программ может потребоваться более одного года.

10) Финансовая помощь, стипендии и гранты доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.

11) См. Подробные сведения о программе для получения информации о требованиях и условиях, которые могут применяться.

12) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2016-2026), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество годовых Вакансии по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и специалисты по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.

14) Программы поощрения и соответствие критериям для сотрудников остаются на усмотрении работодателя и доступны в определенных местах. Могут применяться особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.

15) Оплачиваемые производителем программы повышения квалификации проводятся UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI. Программы доступны в некоторых регионах.

16) Не все программы аккредитованы ASE Education Foundation.

20) Льготы VA могут быть доступны не на всех территориях университетского городка.

21) GI Bill® является зарегистрированным товарным знаком U.S. Департамент по делам ветеранов (VA). Дополнительная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.

22) Грант «Приветствие за служение» доступен для всех правомочных ветеранов во всех местах на территории кампуса. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня.Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

25) Расчетная годовая средняя заработная плата техников и механиков в области автомобильного сервиса в Службе занятости и заработной платы Бюро статистики труда США, май 2020 года. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.Достижения выпускников UTI могут быть разными. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату. Заработная плата начального уровня может быть ниже. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, инспектор по смогу и менеджер по запасным частям.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников автомобильного сервиса и механиков в Содружестве. Массачусетса (49-3023) составляет от 30 308 до 53 146 долларов (данные Массачусетса по труду и развитию рабочей силы, данные за май 2019 г., просмотренные 2 июня 2021 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2021 года, составляет 20 долларов.59. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,55 и 11,27 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2020 г. и механики, просмотрено 2 июня 2021 г.)

26) Расчетная годовая средняя зарплата сварщиков, резчиков, паяльщиков и брейзеров в Службе занятости и заработной платы Бюро статистики труда США, май 2020 г.UTI является образовательным учреждением и не может гарантировать работу или заработную плату. ИМП достижения выпускников могут быть разными. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату. Начальный уровень зарплаты могут быть ниже. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например сертифицированный инспектор и контроль качества.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве сварщиков, резчиков, паяльщиков и брейзеров в штате Массачусетс (51-4121) составляет от 34 399 до 48 009 долларов США (данные по Массачусетсу, данные за май 2019 г., просмотренные 2 июня 2021 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о заработной плате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованная в мае 2021 года, составляет 20 долларов.28. Бюро статистики труда не публикует заработную плату начального уровня. данные. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,97 и 14,24 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2020 г. Сварщики, резаки, паяльщики, и Brazers, просмотрено 2 июня 2021 г.)

27) Не включает время, необходимое для прохождения 18-недельной квалификационной программы предварительных требований плюс дополнительные 12 или 24 недели обучения для конкретного производителя, в зависимости от производителя.

28) Расчетная годовая средняя заработная плата специалистов по ремонту автомобилей и связанных с ними ремонтных работ в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2020 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату. Выпускников ИТИ достижения могут отличаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату. Заработная плата начального уровня может быть ниже.Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например оценщик, оценщик и инспектор. Информация о заработной плате для Содружества Массачусетса: средний годовой диапазон заработной платы начального уровня для лиц, занятых в качестве ремонтников автомобилей и связанных с ними ремонтных работ (49-3021) в Содружестве Массачусетс составляет от 30 765 до 34 075 долларов (данные по Массачусетсу, данные за май 2019 г., просмотренные 2 июня 2021 г., https: // lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о зарплате в Северной Каролине: согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованная в мае 2021 года, составляет 23,40 доллара США. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 17,94 и 13,99 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2020 г.)Автомобильный кузов и сопутствующие товары Ремонтники, осмотрено 2 июня 2021 г.)

29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в Службе занятости и заработной платы Бюро статистики труда США, май 2020 г. UTI является образовательным учреждением и не может гарантировать занятость или зарплата. Достижения выпускников UTI могут быть разными. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработная плата.Заработная плата начального уровня может быть ниже. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве дизельных техников. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и Специалисты по дизельным двигателям (49-3031) в Содружестве Массачусетса составляет от 34 323 до 70 713 долларов (Массачусетский труд и развитие рабочей силы, данные за май 2019 г., просмотренные 2 июня 2021 г., https: // lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата квалифицированных дизельных техников составляет около 50%. в Северной Каролине, опубликованная в мае 2021 года, стоит 23,20 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 19,41 и 16,18 долларов соответственно. (Бюро труда Статистика, Министерство труда, занятости и заработной платы США, май 2020 г.Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотрено 2 июня 2021 г.)

30) Расчетная средняя годовая зарплата механиков мотоциклов в Службе занятости и заработной платы Бюро статистики труда США, май 2020 г. MMI является образовательным учреждением и не может гарантировать работу или заработную плату. Достижения выпускников ММИ может различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.Заработная плата начального уровня может быть ниже. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетс: Средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 30 157 долларов (штат Массачусетс) Рабочая сила и развитие трудовых ресурсов, данные за май 2019 г., просмотр 2 июня 2021 г., https: // lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных специалистов по мотоциклетным технологиям в Северной Каролине, опубликованная в мае 2021 года, составляет 15,94 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 12,31 и 10,56 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2020 г.)Мотоциклетная механика, просмотрено 2 июня 2021 г.)

31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2020 г. MMI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату. Достижения выпускников ММИ могут быть разными. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.Заработная плата начального уровня может быть ниже. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, такие как обслуживание оборудования, инспектор и помощник по запасным частям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружество Массачусетса стоит от 30 740 до 41 331 долларов США (Массачусетский труд и развитие рабочей силы, данные за май 2019 г., просмотренные 2 июня 2021 г., https: // lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в размере 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2021 года, составляет 18,61 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,18 и 12,87 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2020 г.)Моторная механика и Специалисты по обслуживанию, просмотр 2 июня 2021 г.)

33) Курсы различаются в зависимости от кампуса. За подробностями обращайтесь к представителю программы в кампусе, в котором вы заинтересованы.

34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в Службе занятости и заработной платы Бюро статистики труда США, май 2020 года. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату. Достижения выпускников UTI могут быть разными.Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату. Заработная плата начального уровня может быть ниже. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по механической обработке с ЧПУ. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, оператор ЧПУ, ученик машиниста и инспектор обработанных деталей.Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металлообработки и Пластик (51-4011) в Содружестве Массачусетса стоит 37 638 долларов (данные Массачусетса по труду и развитию рабочей силы, данные за май 2019 г., просмотренные 2 июня 2021 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2021 года, составляет 20 долларов.24. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,56 и 13,97 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2020 г. Операторы инструментов, просмотр 2 июня 2021 г.)

37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.

38) Бюро статистики труда США прогнозирует, что к 2030 году общая численность занятых в стране по каждой из следующих профессий составит: техников и механиков автомобильного сервиса — 705 900 человек; Сварщики, резаки, паяльщики и паяльщики — 452 400 человек; Автобус и грузовик Специалисты по механике и дизельным двигателям — 296 800 человек; Ремонтники кузовов автомобилей и сопутствующие товары — 161 800; и операторы инструментов с ЧПУ, 154 500.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2020 г. и прогноз на 2030 г., Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Обновлено 18 ноября 2021 г.

39) Повышение квалификации доступно выпускникам только в том случае, если курс еще доступен и есть места. Студенты несут ответственность за любые другие расходы, такие как оплата лабораторных работ, связанных с курсом.

41) Для специалистов по обслуживанию автомобилей и механиков U.S. Бюро статистики труда прогнозирует в среднем 69 000 вакансий в год в период с 2020 по 2030 год. В число вакансий входят вакансии, связанные с чистыми изменениями занятости и чистыми замещениями. См. Таблицу 1.10 Профессиональные увольнения и вакансии, прогнозируемые на 2020–2030 годы, Бюро статистики труда США, www.bls.gov, просмотр 18 ноября 2021 г. UTI — образовательное учреждение и не может гарантировать работу или зарплату. Обновлено 18 ноября 2021 г.

42) Для сварщиков, резаков, паяльщиков и паяльщиков U.По прогнозам Бюро статистики труда, в период с 2020 по 2030 год в среднем будет открываться 49 200 рабочих мест. В число вакансий входят вакансии, связанные с чистым изменением занятости и чистым замещением. См. Таблицу 1.10 Профессиональные увольнения и вакансии, прогнозируемые на 2020–2030 годы, Бюро статистики труда США, www.bls.gov, просмотр 18 ноября 2021 г. UTI — образовательное учреждение и не может гарантировать работу или зарплату. Обновлено 18 ноября 2021 г.

43) Для механиков автобусов и грузовиков и специалистов по дизельным двигателям U.По прогнозам Бюро статистики труда, в период с 2020 по 2030 год в среднем будет открываться 28 100 вакансий в год. В число вакансий входят вакансии, связанные с чистыми изменениями занятости и чистыми замещениями. См. Таблицу 1.10. Разделения и вакансии по профессиям, прогнозируемые на 2020–30 годы, Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. учреждение и не может гарантировать работу или заработную плату. Обновлено 18 ноября 2021 г.

44) Для кузовных и связанных с ним ремонтников:По прогнозам Бюро статистики труда, в период с 2020 по 2030 год в среднем будет открываться 15 200 рабочих мест. В число вакансий входят вакансии, связанные с чистым изменением занятости и чистым замещением. См. Таблицу 1.10. Разделение и вакансии по профессиям, прогноз на 2020–30 годы, Бюро статистики труда США, www.bls.gov, просмотр 18 ноября 2021 г. UTI — образовательное учреждение и не может гарантировать работу или зарплату. Обновлено 18 ноября 2021 г.

45) Для операторов инструментов с ЧПУ: U.По прогнозам Бюро статистики труда, в период с 2020 по 2030 год в среднем будет открываться 16 500 рабочих мест. В число вакансий входят вакансии, связанные с чистым изменением занятости и чистым замещением. Видеть Таблица 1.10 Профильные увольнения и вакансии, прогнозируемые на 2020–30 годы, Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. учреждение и не может гарантировать работу или заработную плату. Обновлено 18 ноября 2021 г.

46) Студенты должны иметь средний балл не ниже 3,5 и посещаемость 95%.

47) Бюро статистики труда США прогнозирует, что общая численность занятых в стране для специалистов по обслуживанию автомобилей и механиков к 2030 году составит 705 900 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2020 и прогнозируемые 2030, Бюро статистики труда США, www.bls. gov, просмотр 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Обновлено 18 ноября 2021 г.

48) По прогнозам Бюро статистики труда США, общая численность занятых в стране механиков автобусов и грузовиков и специалистов по дизельным двигателям к 2030 году составит 296 800 человек.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2020 г. и прогноз на 2030 г., Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Обновлено 18 ноября 2021 г.

49) Бюро статистики труда США прогнозирует, что общая занятость в сфере автомобильного кузова и связанных с ним ремонтов составит 161800 человек к 2030 г. См. Таблицу 1.2. Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Обновлено в ноябре 18, 2021.

50) Бюро статистики труда США прогнозирует, что общая занятость сварщиков, резчиков, паяльщиков и паяльщиков в стране к 2030 году составит 452 400 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2020 год и прогноз к 2030 году. Бюро статистики труда США, www.bls.gov, дата просмотра 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.Обновлено в ноябре 18, 2021.

51) Бюро статистики труда США прогнозирует, что общая численность занятых в стране операторов компьютерных инструментов с числовым программным управлением к 2030 году составит 154 500 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2020 и прогнозируемые 2030, Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Обновлено 18 ноября 2021 года.

52) Бюро статистики труда США прогнозирует, что в период с 2020 по 2030 год среднегодовое количество вакансий по стране в каждой из следующих профессий будет: Техники и механики автомобильного сервиса — 69 000; Механика автобусов и грузовиков и дизельный двигатель Специалисты — 28 100 человек; и сварщики, резаки, паяльщики и паяльщики, 49 200.Вакансии включают вакансии, связанные с чистым изменением занятости и чистым замещением. См. Таблицу 1.10 Разделения и вакансии по профессиям, прогноз на 2020–2030 годы, Бюро США. of Labor Statistics, www.bls.gov, дата просмотра 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату. Утверждено 18 ноября 2021 г.

Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета высшего образования штата Иллинойс.

Как работает дизельный двигатель?

На первый взгляд бензиновые и дизельные двигатели невероятно похожи. Оба берут топливо, производят небольшие взрывы и двигают машины. Хотя оба двигателя имеют схожую конструкцию и выполняют одни и те же базовые функции, между ними есть несколько ключевых различий.

Сохраняя простоту

В дизельном двигателе очень простой и прямой подход к внутреннему сгоранию. Его конструкция предусматривает сжатие воздуха в 2-1 / 2 раза сильнее, чем в бензиновом двигателе.Сжатие вызывает тепло. Таким образом, когда топливо подается через систему впрыска топлива под высоким давлением к сжатому воздуху, тепло, которое может достигать 1000 градусов по Фаренгейту благодаря свечам накаливания, заставляет топливно-воздушную смесь взорваться сама по себе. Бензиновому двигателю для этого нужны свечи зажигания (по одной на каждый цилиндр).

Дизельное тепло равно эффективности

Вы когда-нибудь задумывались, почему дизельный двигатель экономит топливо лучше, чем бензиновый? Все это сжатие и тепло заставляют топливо сгорать более полно, а это означает, что с каждой каплей выделяется больше энергии.И вы, наверное, слышали, что на холостом ходу сжигаете больше бензина, не так ли? В дизельном двигателе, чем меньше энергии вы пытаетесь выработать, тем меньше ему требуется топлива.

Дизельное топливо имеет значение

Дизельное топливо отличается от бензина. Во-первых, он менее очищен, а во-вторых, он имеет более высокую плотность энергии, чем бензин, что означает больше энергии на молекулу. Совместите это с эффективностью двигателя, и вы увидите, как галлон дизельного топлива может продвинуть вас дальше по дороге, чем галлон бензина.

Итак, какую машину следует покупать?

По всем преимуществам дизелей с точки зрения экономии топлива, технического обслуживания (отсутствие свечей зажигания означает отсутствие доработок) и долговечности (дизельные двигатели не только жестче, но и их компоненты не так сильно контактируют друг с другом, как те, что в бензиновых двигателях), есть недостатки.

Дизельный двигатель Недостатки

Во-первых, это начальная стоимость. Такая прочная конструкция имеет свою цену, так как легковые и грузовые автомобили с дизельным двигателем обычно примерно на 20 процентов больше, чем аналогичные модели с бензиновым двигателем.

Далее идет стоимость самого дизельного топлива. Как правило, это дороже, чем обычный газ. Со временем это может увеличиться, особенно если вы много путешествуете.

Наконец, дизельная промышленность сокращается. Некоторые производители, отвечая на постоянно ужесточающиеся требования к выбросам в Европе и других странах, отказываются от этого. Если вы не покупаете полноразмерный, а чаще всего большегрузный грузовик, дизельных транспортных средств становится все меньше.

Итог

Вам необходимо точно определить, какой автомобиль подходит именно вам.Получение данных о закупочной цене и расходах на топливо, а также о том, насколько они компенсируются экономией топлива и общим сроком службы, даст вам лучшее представление о том, перевешивает ли дизель автомобиль, использующий бензин.

Ознакомьтесь со всеми деталями топливной и выхлопной систем, доступными на NAPA Online, или доверьтесь одному из наших 17 000 пунктов обслуживания NAPA AutoCare для текущего обслуживания и ремонта. Чтобы узнать больше о плюсах и минусах дизельного топлива, поговорите со знающим экспертом в местном магазине NAPA AUTO PARTS.

Фото любезно предоставлено Wikimedia Commons.

Дизельный двигатель — Energy Education

Рис. 1 Схема рядного четырехцилиндрового двигателя. Поршни серого цвета, коленчатый вал зеленого цвета, блок прозрачный [1]

Дизельный двигатель — это тип теплового двигателя внутреннего сгорания, работающего на дизельном топливе. Эти двигатели работают с небольшими электрическими генераторами, называемыми дизельными генераторами, часто в отдаленных районах, а также с двигателями легковых и грузовых автомобилей (как больших, так и малых).

Процессы

Зажигание топлива

В дизельных двигателях топливо воспламеняется за счет сжатия. Температура молекул газа повышается, когда объем уменьшается из-за закона идеального газа (если газ не охлаждается одновременно). На это полагаются дизельные двигатели. Поршень сжимает воздух в цилиндре (см. Рис. 1), в результате чего он становится очень горячим. Затем дизельное топливо распыляется в форсунках, и горячий воздух распыляется туманом. Горячий воздух немедленно воспламеняет топливо, обеспечивая воспламенение. [2]

Это зажигание заставляет дизельное топливо гореть кислородом из атмосферы, который превращает химическую энергию в повышенную температуру, что позволяет газу выталкиваться обратно на поршень, см. Рис. 1.

В холодном состоянии в дизельных двигателях используется нагретый кусок металла, называемый свечой накаливания, для зажигания дизельного топлива. [3]

Запуск

Запуск дизельного двигателя сложнее, чем запуск бензинового, из-за того, как дизельные двигатели воспламеняют свое топливо.Дизельный стартер должен быть достаточно мощным, чтобы сжимать газ внутри цилиндров, воспламеняя дизельную смесь с воздухом. Это требует более высокого потребления мощности, чем традиционный двигатель с искровым зажиганием, поэтому дизельные двигатели имеют более прочные батареи.

Детали дизельного двигателя

Блок

Блок — это основа двигателя. Это большой металлический блок, обычно из алюминия или стали, с прорезанными в нем отверстиями для цилиндров.

Цилиндры

Цилиндры двигателя — это то место, где выполняется работа.Топливо впрыскивается в цилиндры, где оно воспламеняется за счет сжатия дизельного топлива и воздуха вместе, что приводит к взрыву. Этот взрыв перемещает поршни, выполняя работу, позволяя транспортному средству двигаться вперед.

Поршни

Поршни — это устройства, которые скользят вверх и вниз внутри цилиндров. Их работа заключается в том, чтобы входить и выходить, соединенные с коленчатым валом, чтобы сжимать воздух, впрыскиваемый в камеру, — это вызывает нагрев воздуха. Объем воздуха, поступающего в камеру, сжимается примерно в 14-25 раз по сравнению с первоначальным объемом. [4]

Распредвал

основная статья

Распределительный вал — это устройство, которое управляет синхронизацией двигателя. Работа распределительного вала — регулировать, когда топливо впускается в двигатель, а когда выпускается выхлоп. Эта, казалось бы, простая работа может сильно повлиять на производительность двигателя.

Форсунки

Топливная форсунка предназначена для распыления топлива. Это означает превращение жидкого топлива в туман, что резко увеличивает площадь его поверхности.Это позволяет топливу сгорать быстрее, давая больший импульс поршню. Топливные форсунки являются улучшением по сравнению с карбюраторами, поскольку они требуют меньшего обслуживания и лучше распыляют топливо. Впрыск топлива позволяет повысить эффективность двигателя, что может привести к увеличению мощности и увеличению расхода топлива.

Коленчатый вал

основная статья

Коленчатый вал является наиболее важной частью двигателя, потому что он соединяет части вместе и позволяет двигателю создавать мощность.Его цель — превратить линейное (вверх и вниз) движение поршней во вращательное движение. Один конец коленчатого вала прикреплен к распределительному валу с помощью зубчатого ремня. Другой конец подключен к маховику, который регулирует мощность, выходящую из двигателя, что-то вроде устройства защиты от перенапряжения для вашего компьютера.

Стартер

Это одно из самых больших отличий дизельного двигателя от бензинового. Поскольку дизельные двигатели воспламеняют свое топливо за счет сжатия, стартер должен иметь возможность вызывать это сжатие, чтобы двигатель начал двигаться.Это означает, что аккумулятор на автомобиле с дизельным двигателем должен быть более мощным, чем аккумулятор на автомобиле с бензиновым двигателем.

Для дальнейшего чтения

Список литературы

Как работает дизельный двигатель?

Двигатели внутреннего сгорания (ВС) — наиболее распространенные в нашей повседневной жизни подержанные автомобили. Это самые эффективные и высокопроизводительные двигатели. Двигатели IC бывают нескольких типов, и дизельный двигатель является одним из них.

Дизельный двигатель — это двигатель сжатия, в котором процесс смешивания топлива и воздуха осуществляется в карбюраторе двигателя.В этом двигателе процесс сжатия происходит за счет сильного сжатия воздуха. В этой статье мы собираемся подробно обсудить различные аспекты дизельного двигателя.

Что такое дизельный двигатель?

Двигатель , в котором дизельное топливо воспламеняется из-за высокого сжатия воздуха в камере сгорания, известен как дизельный двигатель . Дизельный двигатель также известен как двигатель с воспламенением от сжатия, потому что в этом двигателе воспламенение происходит из-за сильного сжатия воздуха.В этом двигателе для зажигания не используется свеча зажигания. В 1893 , Rudolph Diesel изобрел первый дизельный двигатель .

.

Дизельный двигатель имеет более высокий КПД, чем другие двигатели внутреннего сгорания (т. Е. Бензиновые двигатели). Это связано с тем, что он имеет самый высокий собственный коэффициент сжигания и расширения бедной смеси, в результате чего тепло рассеивается избыточным воздухом.

Эти двигатели бывают двух типов: 4-тактные и 2-тактные дизельные двигатели.Эти типы дизельных двигателей использовались вместо стационарных паровых двигателей для повышения производительности.

В 1910 году эти двигатели были исчерпаны на кораблях и подводных лодках. Через некоторое время они стали использоваться в таких приложениях, как электростанции, сельскохозяйственное оборудование, тяжелая аппаратура, грузовики и локомотивы.

В 1970-х годах дизельные двигатели чаще всего использовались в более крупных внедорожниках и дорожных транспортных средствах.

Низкооборотный двигатель CI (используемый в приложениях, где общий вес кораблей и других двигателей относительно невелик) может достигать эффективного КПД до 55%.

История дизельного двигателя

Рудольф Дизель изобрел 1 дизельный двигатель st в 1878 году. Он был студентом Политехникума в Мюнхене. Дизельный двигатель назван в честь Рудольфа Дизеля. Проработав много лет, Дизель опубликовал свои идеи о дизельном двигателе в 1893 году в эссе «Теория и конструкция рационального теплового двигателя ».

Дизельный двигатель производства Langen & Wolf по лицензии 1898 г.

Рудольф Дизель, когда он изобрел дизельный двигатель, компрессорная зажигалка использовалась как действенный и действенный способ сжечь двигатель.

Дизель использовал масла, такие как растительные масла, чтобы изобрести свой первый двигатель, поскольку в то время у него не было формулы для дизельной инфраструктуры. Очень высокая степень сжатия использовалась для создания высокого давления и высокой температуры, необходимых для автоматического сгорания. Это была главная особенность двигателя с воспламенением от сжатия.

Также требовался способ впрыска топлива непосредственно в камеру сгорания. Со временем инфраструктура нефтяного загрязнения превратилась в топливо, такое как бензин (для поддержки бензиновых двигателей), нефть и мазут (котельная) и дизельное топливо.

Дизельный цикл

Дизельный цикл завершает рабочий такт за два или четыре хода поршня. Объяснение работы цикла дизельного двигателя дано ниже с помощью диаграмм T-S и P-V:

1) Процесс всасывания (0-1)

  • Для всасывания воздуха поршень перемещается из ВМТ в НМТ (ход вниз). По мере движения вниз свежий воздух начинает поступать из атмосферы в цилиндр сжатия или камеру сгорания.
  • Во время этого процесса выпускной клапан остается закрытым, а всасывающий клапан открывается.

2) Изэнтропическое сжатие (1-2)

  • После всасывания всасывающий клапан закрывается, и поршень перемещается вверх (из НМТ в ВМТ).
  • Во время движения поршня вверх он сжимает воздух внутри цилиндра.
  • В процессе сжатия температура воздуха увеличивается с T 1 до T 2 , объем уменьшается с V 1 до V 2 , а давление повышается с P 1 до P 2 .
  • Однако в течение всего этого процесса энтальпия не изменяется (S 1 = S 2 ).
  • Этот процесс известен как изэнтропический, потому что нет изменения энтальпии.
  • При изэнтропическом сжатии воздух сжимается до такой высокой температуры и давления, что топливно-воздушная смесь воспламеняется сама по себе, и ей не нужен дополнительный внешний источник тепла или свеча зажигания.

3) Добавление тепла при постоянном давлении (2-3)

  • Когда сильно сжатый воздух достигает точки 2 (как показано на диаграммах PV и TS), топливная форсунка впрыскивает дизельное топливо в цилиндр, который смешивается со сжатым воздухом.
  • Когда дизельное топливо соприкасается со сжатым воздухом, топливовоздушная смесь воспламеняется из-за сильного сжатия воздуха. Этот процесс воспламенения увеличивает нагрев сжатой топливовоздушной смеси.
  • Во время этого процесса поршень становится постоянным, и давление также остается постоянным (P 2 = P 3 ). Однако энтальпия увеличивается с S 2 до S 3 , температура увеличивается с T 2 до T 3 , а также увеличивается объем с V 2 до V 3 .

4) Изэнтропическое расширение (3-4)

  • В этом процессе смесь расширяется в цилиндр.
  • Из-за расширения тепло воспламеняющейся топливовоздушной смеси воздействует на поршень и заставляет его двигаться вниз, что приводит к вращению коленчатого вала. Это вращение коленчатого вала приводит в движение автомобиль.
  • В течение всего этого процесса давление смеси падает с P 3 до P 4 , объем увеличивается с V 3 до V 4 , а температура также снижается с T 3 до T 4 .Однако энтропия не меняется S 3 = S 4 .

5) Отвод тепла постоянного объема (4-1)

  • После процесса расширения поршень движется вниз, чтобы отвести отработанное тепло из цилиндра.
  • В этом процессе энтропия падает с S 4 до S 1 , температура до T 1 , а давление далее падает до P 1 . Однако громкость остается неизменной (т.е. V4 = V1).
  • После отвода всего отработанного тепла поршень снова засасывает воздух, и весь процесс повторяется.

Принцип работы дизельного двигателя

Дизельный двигатель работает иначе, чем бензиновый двигатель или двигатель SI. Дизельный двигатель работает на базе дизельного цикла . Цикл дизельного двигателя состоит из четырех процессов:

  1. Всасывание
  2. Компрессия
  3. Расширение и
  4. Выхлоп

1) Ход всасывания
  • Поршень движется вниз внутри камеры сгорания на ранней стадии и создает разрежение внутри цилиндра.
  • Из-за создания вакуума между цилиндром снаружи и внутри возникает перепад давления.
  • Из-за разницы давлений впускной клапан открывается, выпускной клапан закрывается, и воздух перемещается из атмосферы в камеру сгорания.
2) Ход сжатия
  • После такта всасывания впускной и выпускной клапаны закрываются, и поршень начинает двигаться вверх (из НМТ в ВМТ) для сжатия воздуха.В этом процессе сжатия воздуха давление и температура воздуха увеличиваются, но объем уменьшается.
  • В конце такта сжатия поршень в течение некоторого времени начинает двигаться с постоянной скоростью, и в камеру сгорания впрыскивается топливо, которое смешивается со сжатым воздухом.
  • Из-за высокого сжатия воздуха топливно-воздушная смесь воспламеняется, и внутреннее тепло смеси увеличивается. Во время этого процесса подвода тепла давление топливовоздушной смеси остается постоянным (как показано на приведенной выше фотоэлектрической диаграмме цикла дизельного двигателя).
3) Рабочий ход
  • Из-за воспламенения топливовоздушной смеси тепло выделяется топливовоздушной смесью.
  • Выделяемое тепло выполняет вок на поршне и толкает его вниз.
  • Когда поршень движется вниз, сгоревшая смесь расширяется в камеру сгорания. Это движение поршня вниз вращает коленчатый вал и перемещает автомобиль.
4) Ход выхлопа
  • После рабочего хода поршень достигает НМТ, открывает выпускной клапан и выталкивает отработавшие газы из камеры.
  • После такта выпуска поршень снова движется вверх и повторяет весь цикл.

Читайте также: Рабочий бензиновый двигатель

Компоненты дизельного двигателя

Двигатель с воспламенением от сжатия (CI) или дизельный двигатель имеет следующие основные компоненты:

  1. Топливная система
  2. Система охлаждения
  3. Фильтры топливные
  4. Топливная система
  5. Дополнительный охладитель
  6. Форсунка
  7. Турбокомпрессор
  8. Коленчатый вал
1) Топливная система

Топливная система имеет сепаратор, инжектор, подъемный насос, топливный насос высокого давления и многие другие трубки подачи топлива.В этой системе также есть фильтры, используемые для фильтрации топлива и очистки его от пыли и других загрязнений.

2) Топливный сепаратор

Эта часть дизельного двигателя используется для остановки подачи некачественного топлива из-за отказа двигателя.

3) Топливные фильтры

Фильтры играют жизненно важную роль в безопасности двигателя. Они фильтруют топливо и удаляют из него пыль и другие загрязнения. Таким образом, он также продлевает срок службы двигателя.

4) Топливная форсунка

Форсунка играет важную роль в процессе сгорания топлива.Он работает таким образом, что впрыскивает топливо в камеру сгорания, когда сжатый воздух входит в камеру и смешивает топливо со сжатым воздухом.

5) Турбокомпрессор

Турбокомпрессор позволяет двигателю всасывать больше воздуха в камеру сгорания и увеличивает мощность двигателя.

6) Дополнительный охладитель

Используется для понижения температуры всасываемого воздуха.

7) Система смазки

Система смазки имеет следующие основные цели:

  1. Удаляет посторонние предметы из двигателей.
  2. Установите соединение между поршневым кольцом и цилиндром.
  3. Уменьшает износ и предотвращает заедание трущихся поверхностей.
  4. Отводит тепло от поршней и других компонентов.
  5. Уменьшает мощность, необходимую для отключения сопротивления трения.

В системе масляной смазки различные части дизельного двигателя смазываются под высоким давлением. Это масло для смазки деталей двигателя хранится в масляном картере. Масляный насос перекачивает масло и передает его в фильтр.

После прохождения фильтра масло попадает в основную галерею. Масло главной галереи используется для смазки коренных подшипников.

После смазки подшипников некоторое количество масла возвращается в поддон, некоторое количество масла используется для смазки стенки цилиндра, а оставшееся масло попадает в шатунную шейку. Масло смазывает поршневое кольцо, протекая от шейки кривошипа к поршневому пальцу через отверстие в шатуне.

8) Система охлаждения

Система охлаждения в двигателе выполняет множество функций.Наибольшее назначение системы охлаждения:

  • Он поддерживает идеальную температуру для максимальной эффективности двигателя в любых ситуациях.
  • Эта система сохраняет смазывающие свойства масла.
  • Он предотвращает чрезмерное нагревание и предотвращает повреждение деталей двигателя, таких как клапаны, поршни, головка цилиндра и цилиндр.

Система охлаждения выполняет два вида охлаждения:

  • Водяное охлаждение
  • Воздушное охлаждение

Цилиндр двигателя окружен водяной рубашкой.В этой рубашке есть вода, которая поглощает тепло от цилиндра.

Метод водяного охлаждения бывает трех типов:

  • Метод принудительной циркуляции
  • Термосифонный метод
  • Непрямым или прямым методом

КПД дизельного двигателя

Дизельный двигатель имеет высокий КПД благодаря высокой степени сжатия. Отсутствие дроссельной заслонки означает очень малую потерю воздухообмена, которая потребляет меньше топлива, особенно при средних и малых нагрузках.По этим причинам дизельные двигатели очень экономичны.

По словам Рудольфа Дизеля, фактическая производительность дизельного двигателя должна составлять от 43,2% до 50,4% и более.

Фактический КПД дизельного двигателя новейших легковых автомобилей может достигать 43%, в то время как двигатели тяжелых дизельных автобусов и грузовиков достигают максимальной эффективности до 45%. Но в ездовом цикле средняя эффективность меньше максимальной.

Максимальный КПД дизельного двигателя составляет не более 55%, чего может достичь большой двухтактный судовой дизельный двигатель.

Теоретический КПД дизельного двигателя

Такт сжатия и рабочий ход дизельного двигателя обратимые адиабатические. Следовательно, эффективность дизельного цикла можно измерить по процессам постоянного объема и постоянного давления.

Приведенная ниже формула может рассчитать КПД дизельного цикла:

Как мы уже обсуждали,

Работа выполнена = Тепло добавлено в систему — Тепло отклонено системой

КПД:

Степень сжатия (r) приведена ниже:

Коэффициент отсечения приведен ниже:

Степень расширения указана ниже;

После расчета всех параметров, давайте теперь рассчитаем процесс нагрева при постоянном давлении (1-2),

Так, в случае адиабатического сжатия (4-1)

В случае адиабатического расширения (2-3)

Помещая значение T1 в уравнения (v) и (iv),

Теперь подставив значения T3, T2 и T1 в приведенное выше уравнение (iii),

Типы дизельных двигателей

Дизельный двигатель имеет два основных типа:

  1. 4-тактный дизельный двигатель
  2. 2-х тактный дизельный двигатель

1) 2-тактный дизельный двигатель

Двухтактный дизельный двигатель — это тип двигателя с воспламенением от сжатия, который завершает энергетический цикл всего за два хода поршня.Воспламеняет топливо из-за высокой степени сжатия топлива.

Преимущества и недостатки двухтактного дизельного двигателя: —

Преимущества Недостатки
Имеют небольшой вес. Двухтактный дизельный двигатель имеет нестабильный холостой ход.
Имеют невысокую стоимость. Эти двигатели сильно загрязняют окружающую среду.
Эти двигатели могут работать в любом положении. Они обладают повышенным шумом.
Эти двигатели IC легко запускаются. Они обладают высокой вибрацией.
У них простой механизм. У них есть проблемы с очисткой.
Они требуют низких затрат на обслуживание. Низкий объемный и тепловой КПД.

Подробнее: Двигатель рабочий двухтактный

2) 4-тактный дизельный двигатель

Завершает энергетический цикл после двух оборотов коленчатого вала или четырех тактов поршня.Вы можете найти эти двигатели в тяжелых транспортных средствах, таких как автобусы, туристические автобусы, тракторы, автомобили и т. Д.

Преимущества и недостатки 4-тактного дизельного двигателя: —

Преимущества Недостатки
Обладает высокой степенью сжатия. Этот дизельный двигатель имеет высокую стоимость.
Он имеет более высокую топливную экономичность по сравнению с двухтактным двигателем. Они имеют сложную конструкцию.
Они вызывают меньше загрязнения. Они менее мощные, чем двухтактный двигатель.
Обладают повышенной прочностью. У этих двигателей есть другие детали.
Они обладают высокой топливной экономичностью. Они имеют большой вес.

Подробнее: Двигатель четырехтактный рабочий

Разница между дизельным двигателем и бензиновым двигателем
Дизельный двигатель Бензиновый двигатель
Дизельный двигатель работает по дизельному циклу. Бензиновый двигатель работает по циклу Отто.
Он эффективнее. Менее эффективен.
Они используются в тяжелых автомобилях, таких как автобусы, тракторы, автомобили и т. Д. Чаще всего они используются в небольших транспортных средствах, таких как фургоны, велосипеды и т. Д.
Они очень дороги. У них невысокая стоимость.
В дизельном двигателе используется очень дорогое дизельное топливо. В бензиновом двигателе используется более дешевый бензин.
Обладает высокой степенью сжатия. Имеет относительно низкую степень сжатия.
Они требуют высоких затрат на обслуживание и первоначальных затрат. Эти двигатели имеют низкие эксплуатационные расходы и первоначальные затраты.
Дизельное топливо труднее воспламеняется. Бензин легко воспламеняется.
Издает высокий уровень шума при работе. Он производит меньше шума.
Дизельный двигатель отличается низким расходом топлива. Бензиновый двигатель потребляет больше топлива.

Преимущества и недостатки дизельного двигателя

Достоинства и недостатки дизельных двигателей приведены ниже:

Преимущества дизельного двигателя
  • Основным преимуществом использования двигателя с воспламенением от сжатия является прямой впрыск топлива в камеру сгорания.Для сгорания не требуется свеча зажигания. Кроме того, газ не нужен для управления питанием двигателя с воспламенением от сжатия.
  • Дизельный двигатель имеет более высокий КПД, чем двигатель SI.
  • Обладает высокой скоростью.
  • Для улучшения крутящего момента используется дымоуловитель. Если действует только уменьшение ПО и защита, то можно уменьшить мощность перекачивания и откачки, а также увеличить пропускную способность входного канала. HC и CO также могут быть уменьшены.
  • Дизельный двигатель или двигатель с воспламенением от сжатия также потребляет меньше топлива по сравнению с двигателем SI.
  • Этот тип двигателя потребляет мало топлива.
  • Эти двигатели требуют меньшего обслуживания по сравнению с бензиновыми двигателями.
  • Двигателю
  • CI не нужна свеча зажигания для воспламенения топлива.

Недостатки дизельных двигателей
  • Этим двигателям требуется высокая степень сжатия для создания условий, необходимых для автоматического зажигания
  • Дизельный двигатель имеет более высокую вероятность выхода из строя по сравнению с бензиновым двигателем.
  • Если этот двигатель не будет управлять должным образом, он может необратимо повредить его компоненты в условиях сильного пожара.
  • Высокая степень сжатия влияет на его производительность.
  • Эти двигатели требуют высоких затрат на техническое обслуживание.
  • Автомобили с дизельными двигателями дороже.
  • Дизельное топливо имеет высокую стоимость по сравнению с бензиновым топливом.
  • Они дороги по сравнению с двигателями с искровым зажиганием.

Применения дизельного двигателя
  1. Двигатель с воспламенением от сжатия используется в тяжелом промышленном оборудовании.
  2. Двигатели
  3. IC используются для питания различных компрессоров, насосов и больших двигателей.
  4. Эти двигатели внутреннего сгорания используются в гидроэлектростанциях.
  5. Они используются с турбинами для выработки электроэнергии.
  6. Они используют для питания кораблей.
  7. Высокоскоростные двигатели используются в автомобилях, автобусах, яхтах, грузовиках, тракторах и различных легковых автомобилях.
  8. Они также используются для питания поездов.

Раздел часто задаваемых вопросов

Что лучше: дизельный двигатель или бензиновый?

Дизельный двигатель лучше бензинового, поскольку он выделяет меньше CO2 по сравнению с бензиновым двигателем.Дизельные двигатели более эффективны, чем бензиновые, но имеют высокую стоимость.

Дизельные двигатели обладают высокой способностью перемещать тяжелые грузы, поскольку они развивают больший крутящий момент, чем бензиновые двигатели. Поэтому дизельные двигатели чаще всего используются в большегрузных автомобилях.

Какие проблемы с дизельными двигателями?

  1. Дизельные двигатели запускаются с трудом.
  2. У них высокая стоимость.
  3. Heavyweight
  4. В дизельном двигателе используется дизельное топливо, которое намного гуще, чем бензин.Из-за этого дизельное топливо имеет высокую вероятность загрязнения.

Дизельный двигатель на каком цикле работает?

Дизельный двигатель работает по дизельному циклу.

Какие типы дизельных двигателей?

Дизельный двигатель бывает двух основных типов:

  1. 4-тактный двигатель
  2. 2-тактный двигатель

Есть ли у дизельных двигателей свечи зажигания?

У дизельного двигателя нет свечи зажигания.Причина в том, что в этом двигателе воспламенение происходит из-за сильного сжатия воздуха.

Кто изобрел дизельный двигатель?

Рудольф Дизель открыл дизельный двигатель в 1890-х годах.

Что будет, если залить бензин в дизельный двигатель?

Дизельное топливо разработано таким образом, что для его зажигания не требуются какие-либо внешние источники тепла (например, свеча зажигания), в то время как бензиновое топливо не может воспламениться без свечи зажигания. Следовательно, если вы заправите свой дизельный двигатель газом, он не воспламенится, и двигатель не запустится.

Заключение:

В этой статье подробно описывается работа дизельного двигателя и его частей. Эти двигатели наиболее широко используются во всем мире. Причина их популярности в том, что это самые эффективные двигатели. Эти двигатели используются в различных тяжелых транспортных средствах, а также в тяжелом промышленном оборудовании.

Двигатель CI потребляет меньше топлива по сравнению с бензиновым двигателем. Итак, дизельный двигатель имеет большую мощность и скорость, чем двигатель SI.Но эти двигатели имеют большую стоимость по сравнению с бензиновыми двигателями.

Знаете ли вы:
  1. Различные типы двигателей
  2. Что такое двигатель внутреннего сгорания (ДВС)?
  3. Как работает бензиновый двигатель?

Дизельный двигатель Факты для детей

Информацию о топливе, используемом для дизельных двигателей, см. В разделе Дизельное топливо.

Название diesel дано двигателю, изобретенному немцем по имени Рудольф Дизель в конце 19 века.Это один из наиболее часто используемых двигателей внутреннего сгорания.

Большинство других двигателей нуждаются в системе, называемой системой зажигания, в которой используется электрическая искра, чтобы сжигать смесь топлива и воздуха и производить мощность. В других типах систем зажигания используется сжатый воздух из внешнего источника, такого как воздушный компрессор. А дизеля нет. Он сжигает дизельное топливо (похожее на топочный мазут) за счет очень сильного сжатия или сжатия смеси. Небольшое количество топлива впрыскивается или нагнетается в цилиндры двигателя в нужный момент.Поскольку газы нагреваются, когда они сжимаются, сжатие смеси воздуха и топлива приводит к взрыву смеси внутри цилиндра.

Дизельные двигатели очень хорошо расходуют топливо, которое они сжигают. Они также создают большой крутящий момент (произносится «торк») или крутящую силу. Двигатель с большим крутящим моментом сможет вращать вал, даже если это будет очень трудно. Это делает дизельный двигатель хорошим выбором для тяжелой техники, такой как грузовики, поезда и строительная техника. В очень больших грузовиках на дорогах установлены дизельные двигатели.То же самое и с локомотивами, если они не электрические или старые паровые.

Иногда даже крутящего момента дизельного двигателя не хватает для работы таких больших машин. Для увеличения мощности к большим дизелям часто прикрепляют устройство, называемое турбонагнетателем. Турбокомпрессор — это разновидность турбины, которая используется для очень быстрого перемещения большого количества воздуха. Реактивные двигатели также содержат турбину. В дизеле давление выхлопных газов раскручивает турбокомпрессор на очень высокой скорости. Затем свежий воздух возвращается в двигатель.Поскольку двигатель работает за счет перекачивания воздуха, чем больше воздуха вы можете пропустить через него, тем большую мощность он выдает. Вот тут и помогает турбокомпрессор. Дизельный двигатель с турбонаддувом называется турбодизелем . Свистящий звук, который иногда слышен возле одного из этих двигателей, вызван турбокомпрессором, или для краткости «турбо».

Дизельный двигатель может также работать на рапсовом масле, приготовленном из старого кулинарного масла. Этот вид топлива называется биодизелем. При работе дизельного двигателя на биодизельном топливе выхлопные газы пахнут пищей.Растительное масло в качестве топлива — не новая идея. Двигатель, который Рудольф Дизель использовал для демонстрации своей новой идеи, работал на рапсовом масле.

Изображения для детей

  • Дизельный двигатель производства Langen & Wolf по лицензии 1898 года.

  • Второй прототип Дизеля. Это модификация первого экспериментального двигателя. 17 февраля 1894 года этот двигатель впервые заработал своим ходом. Эффективный КПД 16,6% Расход топлива 519 г · кВт − 1 · ч − 1

  • Тубопоршневой дизельный двигатель MAN DM постройки 1906 года.Серия MAN DM считается одним из первых коммерчески успешных дизельных двигателей.

  • Поршень дизельного двигателя MAN M-System с камерой сгорания (4 VD 14,5 / 12-1 SRW)

  • Mercedes-Benz OM 352, один из первых дизельных двигателей Mercedes-Benz с прямым впрыском. Он был представлен в 1963 году, но массовое производство началось только летом 1964 года.

  • BMW E28 524td, первый серийный легковой автомобиль с ТНВД с электронным управлением

  • Audi R10 TDI, 2006 Победитель «24 часа Ле-Мана».

  • Модель дизельного двигателя, правая

  • Типичный дизельный двигатель начала 20 века с системой впрыска воздуха и мощностью 59 кВт.

  • Камера непрямого впрыска Ricardo Comet

  • Стационарный 12-цилиндровый турбодизель, соединенный с генераторной установкой для вспомогательной энергии

  • 5-цилиндровый 2-тактный тихоходный судовой дизельный двигатель MAN B&W 5S50MC.Этот двигатель находится на борту химовоза грузоподъемностью 29 000 тонн.

  • Дизельный двигатель M-System MAN 630 — это бензиновый двигатель (разработанный для работы на бензине НАТО F 46 / F 50), но он также работает на реактивном топливе (НАТО F 40 / F 44), керосине (НАТО F 58 ) и дизельное моторное топливо (NATO F 54 / F 75)

  • Один из восьмицилиндровых двигателей 3200 I.H.P. Harland and Wolff — дизельные двигатели Burmeister & Wain, установленные на теплоходе Glenapp .Это был самый мощный дизельный двигатель (1920 г.), установленный на корабле. Обратите внимание на человека, стоящего внизу справа, для сравнения размеров.

  • Дизельный двигатель с воздушным охлаждением автомобиля Порше 218 1959 года

  • Три дизель-генераторных установки English Electric 7SRL устанавливаются на электростанции Саатени, Занзибар, 1955 г.

Пять мифов о дизельных двигателях

Миф №1: Дизель грязный.

«У всех нас есть образ грузовиков, извергающих грязный черный дым», — сказал Чиатти.Этот дым представляет собой твердые частицы выхлопных газов дизельного двигателя: сажу и небольшие количества других химикатов, производимых двигателем.

Но требования EPA по выбросам значительно ужесточились, и теперь дизельные двигатели должны соответствовать тем же критериям, что и бензиновые двигатели. Они делают это, добавляя дизельный сажевый фильтр (DPF), который удаляет видимый дым. «DPF очень эффективны», — сказал Чиатти. «Они удаляют 95 с лишним процентов дыма».

Дым, захваченный керамической матрицей, накапливается до тех пор, пока компьютер автомобиля не определит, что пора его очистить. Этот процесс называется «циклом регенерации».”

Во время работы в камеры сгорания двигателя добавляется небольшое количество дополнительного топлива; образующееся тепло и кислород активируют катализатор в сажевом фильтре, чтобы сжечь накопившуюся сажу. Это снижает расход топлива.

«Согласно правилам 2007–2010 гг. Видимого дыма практически нет», — сказал Чиатти. «Если вы покупаете дизельный автомобиль 2007 года выпуска или позже, он не грязнее, чем автомобиль с бензиновым двигателем».

Миф № 2: Дизельные двигатели не заводятся зимой.

«Современные технологии холодного пуска очень эффективны, — сказал Чиатти. «Современные дизельные двигатели запускаются в холодную погоду с минимальными усилиями».

Проблема в том, что дизельное топливо загустевает при низких температурах. При температуре ниже 40 ° F некоторые углеводороды в дизельном топливе становятся гелеобразными. «Поскольку двигатель зависит от аэрозольного топлива, вам не нужно липкое топливо», — пояснил Чиатти.

Часто это устраняется с помощью свечей накаливания, которые нагреваются аккумулятором и помогают подогреть топливо, чтобы оно могло испаряться.

Низкие температуры не являются проблемой для бензиновых двигателей, потому что бензин гораздо более воспламеняем, чем дизельное топливо. Даже при комнатной температуре и давлении бензин частично является паром. «Бросьте спичку в лужу с бензином, и спичка никогда не коснется поверхности жидкости; он воспламенит слой пара над бассейном », — сказал Чиатти. «Вот почему с бензином нужно обращаться с особой осторожностью вблизи любого источника возгорания. Дизель не такой летучий; если бросить спичку в лужу с дизельным топливом, она погаснет.”

Свечи накаливания и другие средства эффективно испаряют дизельное топливо, чтобы подготовить его к сгоранию.

Миф № 3: Автомобили с дизельным двигателем не работают.

Поскольку дизельные двигатели по-прежнему наиболее распространены в грузовиках, многие люди предполагают, что автомобили с дизельным двигателем будут вести себя так же, как грузовик: медленные и вялые. «Но имейте в виду, что этот грузовик, вероятно, будет перевозить около 50 тонн», — сказал Чиатти. «Фактически, в некоторой степени некоторые люди, которые водят дизельные двигатели, обнаруживают, что они работают лучше, чем бензиновые двигатели.”

Это потому, что дизельные двигатели получают максимальную мощность при низких оборотах двигателя в минуту (об / мин), то есть на скоростях ниже 65 миль в час, где происходит большая часть движения. Бензиновые двигатели, напротив, достигают максимальной мощности за счет очень высокой и быстрой работы двигателя; бензиновый автомобиль достигает максимальной мощности только тогда, когда педаль акселератора опущена в пол, а двигатель работает со скоростью 5000 об / мин.

«Характеристики дизельного автомобиля намного лучше, чем предполагаемая мощность в лошадиных силах, потому что вы получаете всю эту мощность на скоростях, на которых вы фактически ведете автомобиль», — сказал Чиатти.«У вас больше тягового усилия и больше ускорения на этих скоростях».

Миф №4: Вы не можете найти дизельное топливо на заправке.

Пикапы и автомобили с дизельным двигателем достаточно популярны, чтобы заинтересовать рынок; на большинстве соседних бензоколонок теперь есть автомобильные дизельные насосы.

«Сам ездил на дизельном автомобиле 10 лет. Я могу сосчитать по пальцам, сколько раз мне приходилось искать помпу », — сказал Чиатти.

Миф № 5: Дизельное топливо дороже бензина.

Хотя цены на дизельное топливо в Чикаго, как правило, выше, чем на бензин, в большинстве регионов страны цены на дизельное топливо и бензин сопоставимы. Сегодня в Иллинойсе налог на дизельное топливо выше, чем на бензин.

«Дизельное топливо не дороже бензина в производстве», — пояснил Чиатти. «Его цена обычно связана с местной налоговой структурой».

Бонус: одна вещь, которую вы можете не знать о дизельном топливе!

Дизельные двигатели на самом деле лучше работают на больших высотах, чем бензиновые.

Почему? Бензиновые двигатели работают с очень специфическим соотношением топлива и воздуха. На больших высотах воздух тоньше — буквально: на кубический фут меньше молекул воздуха. Таким образом, в горах бензиновые двигатели должны добавлять меньше топлива, чтобы поддерживать идеальное передаточное число, что влияет на производительность.

«Но дизельный двигатель работает на обедненном топливе; Вам не нужно поддерживать идеальное соотношение, — сказал Чиатти. Дизельные двигатели имеют турбонагнетатели — насосы, приводимые в действие выхлопными газами. Они добавляют больше воздуха в камеру сгорания, и больше воздуха означает, что можно добавить больше топлива.На высоте он может втянуть больше воздуха и топлива и, следовательно, получить больше мощности, чем бензиновые двигатели. Турбокомпрессоры не потребляют лишнюю энергию; они отводят термодинамически «свободную» энергию, которая в случае неиспользования теряется в виде выхлопных газов.

«Управляйте дизелем на высоте, и вы увидите, как другие машины борются с трудностями, пока вы проноситесь мимо», — сказал Чиатти. «Эффект очень заметен».

7 фактов о дизельном топливе, которых вы могли не знать

1. Дизельные двигатели более эффективны, чем бензиновые.

КПД газового двигателя составляет всего около 20%. Это означает, что только 20% топлива фактически приводит в движение автомобиль, а остальное теряется на трение, шум или функции двигателя, или уходит в виде тепла в выхлопных газах. Но дизельные двигатели могут достигать КПД 40% и выше. Вот почему они так популярны для перемещения тяжелых транспортных средств, таких как грузовики, где дополнительное топливо действительно начинает дорожать.

2. Если бросить зажженную спичку в лужу с дизельным топливом, она погаснет.

Это потому, что дизельное топливо гораздо менее воспламеняемо, чем бензин.В автомобиле для зажигания дизельного топлива требуется сильное давление или устойчивое пламя. С другой стороны, если вы бросите спичку в лужу с бензином, она даже не коснется поверхности — она ​​воспламенит пары над поверхностью. (Пожалуйста, не делайте этого дома!)

3. Сейчас мы производим биодизеля примерно в 100 раз больше, чем 10 лет назад.

В 2002 году Соединенные Штаты произвели около 10 миллионов галлонов биодизеля. В 2012 году это число составляло 969 миллионов.

4. На большой высоте дизельные двигатели получают большую мощность, чем бензиновые.

Бензиновые двигатели работают с очень специфическим соотношением топлива и воздуха. На больших высотах воздух тоньше — буквально: на кубический фут меньше молекул воздуха. Это означает, что в горах бензиновые двигатели должны добавлять меньше топлива, чтобы поддерживать идеальное передаточное число, что влияет на производительность. Дизельные двигатели имеют турбонагнетатели, которые нагнетают больше воздуха в камеры сгорания на больших высотах, что помогает им работать лучше.

5. Дизель не такой уж грязный.

The U.S. EPA теперь требует, чтобы дизельные двигатели соответствовали тем же критериям загрязнения, что и бензиновые двигатели. Автопроизводители добавили устройство, называемое сажевым фильтром, которое удаляет видимый дым. «Если вы покупаете автомобиль с дизельным двигателем 2007 года выпуска или позже, он не грязнее, чем автомобиль с бензиновым двигателем», — говорит инженер-механик из Аргонна Стив Чиатти.

6. Дизельные двигатели демонстрируют максимальную производительность при скорости ниже 65 миль в час.

Они получают пиковую мощность при низких оборотах двигателя в минуту (об / мин), обычно на скоростях ниже 65 миль в час.Бензиновые двигатели, напротив, выходят на пиковую мощность, работая быстро и на высоких оборотах и ​​при 5000 об / мин (то есть с педалью до упора).

7. Дизель — интересный вариант для экологов.

Поскольку они производят меньше углекислого газа, работают более эффективно, увеличивают расход топлива на галлон и очищают свои выбросы, автомобили с дизельным двигателем являются альтернативой для тех, кто хочет уменьшить свой углеродный след. Поскольку технология уже хорошо развита, они, как правило, также относительно дешевы.

Что, если бы вы могли объединить лучшее, что есть в бензиновых и дизельных двигателях? Именно этим занимается аргоннский инженер Стив Чиатти.

.

alexxlab / 06.01.1982 / Разное

Добавить комментарий

Почта не будет опубликована / Обязательны для заполнения *