Цены снижены! Бесплатная доставка контурной маркировки по всей России

Что такое угол поворота в физике – Угол поворота, угол произвольной величины, поворот вокруг точки на заданный угол

Содержание

угол поворота — это… Что такое угол поворота?

3.5 угол поворота (steering angle): Общий угол полного отклонения, измеряемый между передними и задними колесами при их перемещении относительно одной или более вертикальной оси из положения обычного прямолинейного движения в положение поворота.

Примечания

1 Угол поворота для многоосных машин определяют между колесами первого переднего и последнего заднего мостов

2 Для рулевого управления с поворотными кулаками и трапецией характерно, что угол поворота колес, расположенных с внутренней стороны поворота, превышает угол поворота колес, расположенных с внешней стороны поворота, следовательно, при использовании такого рулевого управления должно быть также указано место измерения угла поворота.

Для определения угла поворота, полученного в случае комбинированного применения кинематических схем, включая систему управления с поворотными кулаками и трапецией, также необходимо указать место измерения угла поворота.

3.5 угол поворота

(steering angle): Общий угол полного отклонения, измеряемый между передними и задними колесами при их перемещении относительно одной или более вертикальных осей из положения обычного прямолинейного движения в положение поворота.

Примечания

1. Угол поворота для многоосных машин определяют между колесами первого переднего и последнего заднего мостов.

2. Для системы рулевого управления Аккерманн (с поворотными кулаками, рычагами и трапецией) характерно, что угол поворота колес, расположенных с внутренней стороны поворота, превышает угол поворота колес, расположенных с внешней стороны поворота. Следовательно, при использовании такого рулевого управления должно быть также указано место измерения угла поворота.

Для определения угла поворота, полученного в случае комбинированного применения кинематических схем, включая систему Аккерманн, также необходимо указать место измерения угла поворота.

4.14. Угол поворота — общий угол отклонения, измеряемый между передними и задними колесами при их перемещении относительно одной или более вертикальных осей из положения обычного прямолинейного движения в положение поворота.

4.14.1. Угол поворота для многоосных машин определяют между колесами первого переднего и последнего заднего мостов.

4.14.2. Для ручного управления с поворотными кулаками и трапецией характерно, что угол поворота колес, расположенных с внутренней стороны поворота, превышает угол поворота колес, расположенных с внешней стороны поворота. Следовательно, для этой системы должно быть также указано место измерения угла поворота.

4.14.3. Угол поворота, полученный в случае комбинированного применения кинематических схем, включая систему управления с поворотными кулаками и трапецией, определяют по п. 4.14, при этом должно быть указано место измерения в соответствии с требованиями п. 4.14.2.

2.4.3 угол поворота: Угол между проекцией продольной оси транспортного средства и линией пересечения плоскости колеса, которая представляет собой центральную плоскость шины, перпендикулярную к оси вращения колеса, и поверхности дороги.

6.19 угол поворота: Угловое перемещение запирающего или регулирующего элемента, исчисленное от закрытого положения затвора.

6.19 угол поворота

Величина углового перемещения запирающего или регулирующего элемента, исчисленная от закрытого положения затвора.

Смотри также родственные термины:

2.3.8 угол поворота ( e): Угол, указывающий расположение светоотражающего материала при помощи соответствующего обозначения с учетом поворота вокруг исходной оси.

6.20 угол поворота номинальный

Величина полного угла поворота без учета допусков.

6.22 угол поворота относительный

Отношение значения текущего угла поворота к номинальному углу поворота.

192 угол поворота рабочего оборудования a

Максимальный угол поворота рабочего оборудования от одного крайнего положения до другого

Угол поворота сварного шва b

Угол, который образует поперечная ось шва со своим нулевым положением (см. черт. 3).

6.21 угол поворота текущий

Угол поворота в промежутке от закрытого до полностью открытого положения затвора.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

normative_reference_dictionary.academic.ru

Кинематика вращательного движения

Лекция

Кинематика вращательного движения

План

  1. Тангенциальное и нормальное ускорение

  2. Радиус кривизны траектории

  3. Угловая скорость, вектор угла поворота, угловое ускорение

  4. Связь линейной и угловой скорости

  5. Связь линейных и угловых характеристик

1. Тангенциальное и нормальное ускорение

Две составляющие ускорения: тангенциальное ускорение и нормальное ускорение.

Тангенциальное ускорение направлено по касательной к траектории

Нормальное ускорение направлено по нормали к траектории

Тангенциальное ускорение характеризует изменение скорости по величине. Если скорость по величине не изменяется, то тангенциальная составляющая равна нулю, а нормальная составляющая ускорения равна полному ускорению.

Нормальное ускорение характеризует изменение скорости по направлению. Если направление скорости не изменяется, движение происходит по прямолинейной траектории.

В общем случае полное ускорение:

Итак, нормальная составляющая вектора ускорения

Чтобы выяснить свойства нормального ускорения, надо установить, чем определяется , т.е быстрота изменения со временем направления касательной к траектории. Она тем больше (), чем больше искривлена траектория и чем быстрее перемещается частица по траектории.

2. Радиус кривизны траектории

Радиус кривизны – это радиус окружности, которая сливается в данном месте с кривой на бесконечно малом её участке.

3. Угловая скорость, вектор угла поворота, угловое ускорение.

Любой поворот полностью определяется указанием оси вращения и угла поворота Δφ относительно этой оси. Если поворот осуществляется на малый угол Δφ << 2π, то можно ввести понятие вектор угла поворота.

Вектор направлен вдоль оси вращения, т.е. перпендикулярно плоскости, в которой происходит вращение.

Ориентация этого вектора определяется правилом буравчика.

Абсолютное значение вектора равно углу поворота Δφ.

Для того, чтобы величин была вектором, она должна не только направление и абсолютное значение, но и удовлетворять правилу сложения векторов. Это можно показать, что при векторном сложении двух углов поворота правило параллелограмма не выполняется. Оно будет справедливо лишь для малого

Δφ << 2π

— неполный вектор.

Угловой скоростью называется вектор , направление которого: определяет ориентацию плоскости вращения и по правилу буравчика направление вращения.

Модуль вектора равен производной от угла поворота по времени:

Угловая скорость, в отличие от угла поворота, является полным вектором.

Вектор может изменяться как за счёт изменения скорости вращения тела вокруг оси (по величине), так и за счёт поворота оси вращения в пространстве (по направлению).

Пусть за

Изменение вектора угловой скорости со временем характеризуется величиной угловое ускорение:

Ускоренное

Замедленное

Модуль углового ускорения измеряется в

Угловое ускорение также как и угловая скорость – псевдовектор.

— псевдовектора, т.к. направление вектора поворота связывается с направлением вращения тела.

4. Связь линейной и угловой скорости

Пусть за малый Δt тело повернулось на Δφ. Пусть точки за

Модуль линейной скорости

Связь векторов линейной и угловой скоростей: положение точки определяется радиусом-вектором , вектор из рисунка определяется как векторное произведение и .

Изменение радиуса-вектора со временем только по направлению называется прецессией.

5. Связь линейных и угловых характеристик

studfile.net

7.2. Вращательное движение. Угловая скорость, угловое ускорение

Движение твердого тела, при котором все его точки перемещаются по окружности, центры которой расположены на перпендикулярной этим окружностям неподвижной прямой, называется вращательным. Неподвижная прямая, на которой лежат центры круговых траекторий то­чек тела, называется его осью вращения. Для образования оси вра­щения достаточно закрепить какие-либо две точки тела. В качестве примеров вращательного движения тел можно привести движение две­рей или створок окон при их открывании или закрывании.

Представим себе тело в виде цилиндра, ось AB которого лежит в подшипниках (рис. 7.3).

Рис. 7.3. К анализу вращательного движения твердого тела

Движением одной какой-либо точки однозначно определить вращательное движение тела нельзя.

Для установления закона вращательного движения тела, по кото­рому можно определять его положение в данный момент, проведем через ось вращения тела связанную только с нею неподвижную полуплоскость НП, а внутри тела отметим подвижную полуплоскость, ко­торая вращается около оси вместе с телом, теперь угол φ, образуемый в каждый данный момент времени полуплоскостями НП и ПП, точно определяет положение тела в пространстве (см. рис. 7.3). Угол φ называется углом поворота и выражается в радианах. Чтобы определять положение тела в пространстве в любой момент времени, необходимо знать зависимость между углом поворота φ и временем t, т. е. знать закон вращательного движения тела:

Быстрота изменения угла поворота во времени характеризуется величиной, которая называется угловой скоростью.

Представим, что в некоторый момент времени t положение вращающегося тела определяется углом поворота φ, а в момент t + Δt – углом поворота φ + Δ φ. Следовательно, за время Δt тело повернулось на угол Δ φ, и величина

называется средней угловой скоростью.

Единицей угловой скорости является 1 рад/с. Характеристикой быстроты изменения угловой скорости служит угловое ускорение, обозначаемое . Среднее ускорение ;

.

Единица углового ускорения 1 рад/с2.

Условимся угол поворота, отсчитываемый против хода часовой стрелки, считать положительным, а отсчитываемый по ходу часовой стрелки – отрицательным.

б

а

Рис. 7.4. К определению вида вращательного движения

Векторы и – это скользящие векторы, которые направлены по оси вращения, чтобы, глядя из конца вектора (или ), видеть вращение, происходящее против часовой стрелки.

Если векторы и направлены в одну сторону (рис. 7.4, а), то вращательное движение тела ускоренное – угловая скорость возрастает. Если векторы и направлены в противоположные стороны, то вращение тела замедленное – угловая скорость уменьшается (рис. 7.4, б).

7.3. Частные случаи вращательного движения

1. Равномерное вращательное движение. Если угловое ускорение и, следовательно, угловая скорость

, (7.1)

то вращательное движение называется равномерным. Из выражения (7.1) после разделения переменных получим

Если при изменении времени от 0 до t угол поворота изменялся от φ0 (начальный угол поворота) до φ, то, интегрируя уравнение в этих пределах:

получаем уравнение равномерного вращательного движения

,

которое в окончательном виде записывается так:

.

Если , то

.

Таким образом, при равномерном вращательном движении угловая скорость

или при .

2. Равнопеременное вращательное движение. Если угловое ускорение

(7.2)

то вращательное движение называется равнопеременным. Производя разделение переменных в выражении (7.2):

и приняв, что при изменении времени от 0 до t угловая скорость изменилась от (начальная угловая скорость) до , проинтегрируем уравнение в этих пределах:

или ,

т. е. получим уравнение

(7.3)

выражающее значение угловой скорости в любой момент времени.

Закон равнопеременного вращательного движения или, с учетом уравнения (7.3):

Полагая, что в течение времени от 0 до t угол поворота изменялся от до, проинтегрируем уравнение в этих пределах:

или

Уравнение равнопеременного вращательного движения в оконча­тельном виде

(7.4)

Первую вспомогательную формулу получим, исключив из формул (7.3) и (7.4) время:

(7.5)

Исключив из тех же формул угловое ускорение , получим вторую вспомогательную формулу:

(7.6)

где – средняя угловая скорость при равнопере­менном вращательном движении.

Когда и , формулы (7.3)–(7.6) приобретают более простой вид:

В процессе конструирования угловое перемещение выражают не в радианах, а просто в оборотах.

Угловая скорость, выражаемая количеством оборотов в минуту, называется частотой вращения и обозначается n. Установим зависимость между –1) и n (мин–1). Так как , то при n (мин–1) за t = 1 мин = 60 с угол поворота . Следовательно:

.

При переходе от угловой скорости –1) к частоте вращения n (мин–1) имеем

studfile.net

2.1. Угол поворота твердого тела

При вращательном движении, в отличие от поступательного, скорости разных точек тела неодинаковы. Поэтому скорость какой-либо точки вращающегося тела не может служить характеристикойдвижения всего тела.

Пусть т. О — центр вращения тела, а — неподвижная (или мгновенная) ось вращения (рис.2.2).

Положение произвольной т. М тела будем задавать с помощью радиус-вектора , проведенного из центра О. Из рисунка видно, что:

,

где— радиус-вектор, проведенный в точку дуги окружности, по которой движется т. М. За малое время вектор поворачивается в плоскости перпендикулярной , на малыйугол . На такой же угол поворачивается за время радиус-вектор любой другой точки тела, т.к в противном случае расстояние между этими точками должны были измениться. Таким образом, угол поворота характеризует перемещение всего вращающегося тела за малый промежуток времени. Удобно ввести вектор элементарного (малого) поворота тела, численно равный и направленный вдоль мгновенной оси так, чтобы из его конца поворот тела был виден происходящим против часовой стрелки.

physics-lectures.ru

УГОЛ ПОВОРОТА — это… Что такое УГОЛ ПОВОРОТА?


УГОЛ ПОВОРОТА
УГОЛ ПОВОРОТА

внешний угол между направлениями прямых участков жел.-дор. пути при поворотах трассы. У. п. равен центральному углу, вершина к-рого находится в центре круговой кривой, а стороны проходят через тангенсы.

Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941.

.

  • УГОЛ НАБЕГАНИЯ (колеса на рельс)
  • УГОЛОК ЖЕСТКОСТИ

Смотреть что такое «УГОЛ ПОВОРОТА» в других словарях:

  • угол поворота — твёрдого тела; угол поворота Угол между двумя последовательными положениями полуплоскости, неизменно связанной с телом и проходящей через его ось вращения …   Политехнический терминологический толковый словарь

  • угол поворота — Угловое перемещение запирающего или регулирующего элемента, исчисленное от закрытого положения затвора. [ГОСТ Р 52720 2007] Тематики арматура трубопроводная …   Справочник технического переводчика

  • угол поворота — 3.5 угол поворота (steering angle): Общий угол полного отклонения, измеряемый между передними и задними колесами при их перемещении относительно одной или более вертикальной оси из положения обычного прямолинейного движения в положение поворота.… …   Словарь-справочник терминов нормативно-технической документации

  • угол поворота ( e) — 2.3.8 угол поворота ( e): Угол, указывающий расположение светоотражающего материала при помощи соответствующего обозначения с учетом поворота вокруг исходной оси. Источник …   Словарь-справочник терминов нормативно-технической документации

  • угол поворота — posūkio kampas statusas T sritis automatika atitikmenys: angl. angle of rotation; turning angle vok. Drehwinkel, m rus. угол поворота, m pranc. angle de rotation, m …   Automatikos terminų žodynas

  • угол поворота — posūkio kampas statusas T sritis fizika atitikmenys: angl. turn angle; turning angle vok. Drehwinkel, m rus. угол поворота, m pranc. angle de rotation, m …   Fizikos terminų žodynas

  • угол поворота — angle of rotation Угол, на который поворачивается любая линия, жестко связанная со звеном и перпендикулярная оси вращения. Шифр IFToMM: 2.2.28 Раздел: СТРУКТУРА МЕХАНИЗМОВ …   Теория механизмов и машин

  • угол поворота растра — Угол, на который необходимо поворачивать проекционный или контактный растры, а также в издательских системах при растрировании изображений для разных красок (как цветных, так и черно белых оригиналов), чтобы при синтезе изображения на оттиске, с… …   Справочник технического переводчика

  • угол поворота твердого тела — угол поворота Угол между двум и последовательными положениями полуплоскости, неизменно связанной с телом и проходящей через его ось вращения. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно… …   Справочник технического переводчика

  • угол поворота растра — Угол, на который необходимо поворачивать проекционный или контактный растр, а также в издательских системах – при растрировании изображений для разных красок (как цветных, так и черно белых оригиналов), чтобы при синтезе изображения на оттиске с… …   Краткий толковый словарь по полиграфии

dic.academic.ru

Угловая скорость при вращении тела вокруг неподвижной точки

Угловой скоростью называют векторную величину, характеризующую быстроту вращения твердого тела, определяемую как приращение угла поворота тела за промежуток времени.

Рассмотрим бесконечно малый промежуток времени Δt  0, за который твердое тело совершает поворот на бесконечно малый угол  Δα вокруг мгновенной оси Ω (рисунок 3.2). 

Рис. 3.2 

Предел, к которому стремится отношение  Δα / Δt, называется угловой скоростью твердого тела в рассматриваемый момент времени

Угловая скорость является векторной величиной. Вектор угловой скорости ω может быть приложен к любой точке мгновенной оси и направлен в каждый момент времени по мгновенной оси Ω, так, чтобы, смотря навстречу этому вектору, видеть вращение тела происходящим против движения часовой стрелки.

Угловое ускорение при вращении тела

Угловым ускорением называют степень изменения угловой скорости.

За вектор углового ускорения ε при вращении тела вокруг неподвижной точки принимают вектор, который характеризует изменение угловой скорости ω в данный момент как по числовой величине, так и по направлению. Такой характеристикой является производная по времени от вектора угловой скорости ω. Таким образом, угловое ускорение определяется так:

     

Рис. 3.3

В общем случае угловое ускорение не направлено по мгновенной оси, а, как производная по времени от вектора ω, параллельно касательной к годографу этого вектора. Условимся угловое ускорениеε изображать в любой точке прямой, параллельной этой касательной годографа угловой скорости u, но проходящей через неподвижную точку тела (рисунок 3.3). Прямая, по которой направлен вектор углового ускорения, называется осью углового ускорения и обозначается E.

7

2 Кинематика твердого тела

     В кинематике твердого тела определяются: закон движения и кинематические характеристики тела, а также кинематические характеристики точек тела.

   В данном методическом пособии рассмотрены следующие виды движения твердого тела:

    — поступательное;

    — вращательное;

    — плоскопараллельное.

2.1 Поступательное движение

     Поступательное движение – это движение, при котором любая прямая, связанная с телом, перемещается параллельно самой себе.

     На рисунках 2.1,а и 2.1,б приведены примеры поступательного движения: движение прямоугольника в плоскости чертежа, движение каждой кабины колеса обозрения.

а                                  б

Рисунок 2.1

 

Рисунок 2.2

    Исходя из определения поступательного движения, движение твердого тела может быть задано в векторном виде формулой (рисунок 2.2):   

                                                  rM=rA  AM.

   В этой формуле AM   вектор постоянный по величине и направлению, поэтому производная от него равна нулю. Для скорости и ускорения произвольной точки M  получим:

    То есть скорости и ускорения точек твердого тела при  поступательном движении равны и одинаково направлены, а траектории при наложении совпадают. 

    Для определения кинематических характеристик точек тела достаточно знать закон движения одной из них.

8

 Движение твердого тела, при котором две его точки О и О‘ остаются неподвижными, называется вращательным движением вокруг неподвижной оси, а неподвижную прямую ОО‘ называют осью вращения.         Пусть абсолютно твердое тело вращается вокруг неподвижной оси ОО‘ (рис. 2.12).

Рис. 2.12

       Проследим за некоторой точкой М этого твердого тела. За время  dt  точка М совершает элементарное перемещение  dr.         При том же самом угле поворота  dφ, другая точка, отстоящая от оси на большее или меньшее расстояние, совершает другое перемещение. Следовательно, ни само перемещение некоторой точки твердого тела, ни первая производная , ни вторая производнаяне могут служить характеристикой движения всего твердого тела.        За это же время dt радиус-вектор , проведенный из точки0‘ в точку М, повернется на угол  dφ. На такой же угол повернется радиус-вектор любой другой точки (т.к. тело абсолютно твердое, в противном случае расстояние между точками должно измениться).         Угол поворота  dφ  характеризует перемещение всего тела за время dt.         Удобно ввести – вектор элементарного поворота тела, численно равныйdφ  и направленный вдоль оси вращения ОО‘ так, чтобы, глядя вдоль вектора, мы видели вращение по часовой стрелке (направление вектора и направление вращения связаны «правилом буравчика»).        Элементарные повороты удовлетворяют обычному правилу сложения векторов:

       Угловой скоростью называется вектор , численно равный первой производной от угла поворота по времени и направленный вдоль оси вращения в направлении(ивсегда направлены в одну сторону).

 

.

 (2.4.1)

 

       Если  ω – const, то имеет место равномерное вращение тела вокруг неподвижной оси.  Пусть  v  – линейная скорость точки М. За промежуток времени dt точка М проходит путь dr = vdt. В то же время  dr = Rdφ  (dφ — центральный угол). Тогда, можно получить связь линейной скорости и угловой:

 

.

 (2.4.2)

 

       В векторной форме .        Вектор ортогонален к векторамии направлен в ту же сторону, что и векторное произведение.        Наряду с угловой скоростью вращения используют понятия периода и частоты вращения.         Период Т – промежуток времени, в течение которого тело совершает полный оборот (т.е. поворот на угол φ = 2π).         Частота ν – число оборотов тела за 1 секунду.         При вращении с угловой скоростью ω имеем:

,         ,.

       Введем вектор углового ускорения для характеристики неравномерного вращения тела:

 

.

 (2.4.3)

 

       Вектор направлен в ту же сторону, что ипри ускоренном вращении, анаправлен в противоположную сторону при замедленном вращении(рис. 2.13).

Рис. 2.13

       Как и любая точка твердого тела, точка М имеет нормальную и тангенциальную составляющие ускорения. Выразим нормальное и тангенциальное ускорение точки М через угловую скорость и угловое ускорение:

 

 

aτ = Rε;

 (2.4.4)

 

 

 (2.4 5)

 

       Обратите внимание. Все кинематические параметры, характеризующие вращательное движение (угловое ускорение, угловая скорость и угол поворота), направлены вдоль оси вращения.         Формулы простейших случаев вращения тела вокруг неподвижной оси:

     равномерное вращение ε = 0;       ω = const;       φ = φ0 ± ωt,

     равнопеременное вращение .

9

 Плоскопараллельным (плоским) движением (ППД) твердого тела называется такое движение, при котором все точки тела перемещаются в плоскостях параллельных некоторой неподвижной плоскости (рисунок 2.11). 

    При таком движении точки, лежащие в разных плоскостях на одном отрезке, перпендикулярном неподвижной плоскости (например M1M2 ) совершают одинаковые движения.

                                    

Рисунок 2.11

Рисунок 2.12

    Отрезок M1M2  движется поступательно. Поэтому изучение плоскопараллельного движения сводится к изучению движения плоской фигуры в какой-то плоскости.

    На рисунке 2.12 показано перемещение пластинки в плоской системе отсчета xOy  из одного положения в другое. Такое перемещение можно осуществить двигая пластину поступательно с траекторией точки A  с последующим поворотом на угол φ  вокруг точки A1. Это же перемещение можно выполнить иначе. 

    Например, перемещая пластинку поступательно с траекторией точки B , с последующим поворотом вокруг B1  на угол φ. Траектории точек A  и B различны, а угол поворота в обоих случаях  одинаков. 

     Положение пластинки вполне определяется положением скрепленного с ней отрезка (например AB), закон движения которого можно задать в виде:

                                 xA=xA(t),  yA=yA(t),  φ=φ(t).

    Точка A  в этом случае называется полюсом. Если принять за полюс точку B , то получим уравнения:

                                xB=xB(t),  yB=yB(t),  φ=φ(t)

    За полюс выбирается точка, закон движения которой известен.

10

ИНЕРЦИАЛЬНАЯ система ОТСЧЕТА — система отсчета, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчета, движущаяся относительно инерциальной системы отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета. Все инерциальные системы отсчета равноправны, т. е. во всех таких системах законы физики одинаковы.

Преобразования Галилея. Рассмотрим две системы отсчета движущиеся друг относительно друга и с постоянной скоростью v0.Одну из этих систем обозначим буквой K. Будем считать неподвижной. Тогда вторая система K будет двигаться прямолинейно и равномерно. Выберем координатные оси x,y,z системы K и x’,y’,z’ системы K’ так что оси x и x’ совпадали, а оси y и y’ , z и z’, были параллельны друг другу. Найдем связь между координатами x,y,z некоторой точки P в системе K и координатами x’,y’,z’ той же точки в системе K’. Если начать отсчёт времени с того момента, когда начало координат системы, совпадали, то x=x’+v0, кроме того, очевидно, что y=y’, z=z’. Добавим к этим соотношениям принятое в классической механике предположение, что время в обеих системах течёт одинаковым образом, то есть t=t’. Получим совокупность четырёх уравнений : x=x’+v0t;y=y’;z=z’;t=t’, названных преобразованиями Галилея

Инвариантами преобразования Галилея являются длина тел и промежуток времени между событиями. Именно поэтому понятия длины и промежутка времени играют такую большую роль в классической физике. [4]

Дифференциал dr является инвариантом преобразований Лоренца, т.е. интервалом времени, не зависящим от ситуации — подвижной или неподвижной является исходная система отсчета. Ньютона о существовании некоего универсального, абсолютного времени. [13]

скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно движущейся системы и скорости самой движущейся системы относительно неподвижной

 

В классической механике справедлив механический принцип относительности: законы динамики одинаковы во всех инерциальных системах отсчета.

Рассмотрим две системы отсчета: инерциальную систему К (с координатами x, y, z), условно будем считать неподвижной, и систему К’ (с координатами x’, y’, z’), движущуюся относительно К равномерно и прямолинейно со скоростью υ0 (υ0=const)

Координата точки А по отношению к системе К: х = х’ + 00′, за промежуток времени t от начала отсчета будет:

(3.19)

Уравнения (3.19) носят название преобразования координат и времени Галилея. Отсчет времени начат с момента, когда начало координат обеих систем совпадают. Продифференцировав по времени t, получим выражение правила сложения скоростей в классической механике: υ=υ’+υ0 (3.20)

Ускорения в обеих системах отсчета одинаковы, а это означает, что поведение тел в обеих системах одинаково: a=a’ (3.21), т.е. из соотношения (3.21) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т.е. являются инвариантными по отношению к преобразованиям Галилея. Механический принцип относительности можно сформулировать еще следующим образом: никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.

11.

studfile.net

Вращательное движение тела. Закон вращательного движения :: SYL.ru

В этой статье описывается важный раздел физики — «Кинематика и динамика вращательного движения».

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела — это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r.

вращательное движение

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад — это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

динамика вращательного движения

Угловая скорость материальной точки или тела — это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T — физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c-1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε, характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

вращательное движение твердого тела

Если тело вращается, ускоряясь, то есть dω/dt > 0, вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено — dω/dt < 0, то векторы ε и ω противоположно направлены.

Замечание. Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

поступательно вращательное движение

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ2/r = ω2r2/r.

Итак, в скалярном виде

a = ω2r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой mi на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (Li) направлен перпендикулярно плоскости, проведенной через ri и υi, и образует с ними правую тройку векторов (то есть при движении с конца вектора riк υi правый винт покажет направление вектора Li).

вращательное движение тела

В скалярной форме

L = miυirisin(υi,ri).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υi,ri) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = miυiri.

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

Mi = riFisin(ri, Fi).

Считая, что risinα = li, Mi = liFi.

Величина li, равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы Fi.

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

Li = miυiri.

Если вместо линейной скорости подставить ее выражение через угловую:

υi = ωri,

то выражение для момента импульса примет вид

Li = miri2ω.

Величина Ii = miri2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

Li = Iiω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

Тогда

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I0 + ma2,

где I0 — начальный момент инерции тела; m — масса тела; a — расстояние между осями.

закон вращательного движения

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

www.syl.ru

alexxlab / 02.03.2019 / Разное

Добавить комментарий

Почта не будет опубликована / Обязательны для заполнения *