Цены снижены! Бесплатная доставка контурной маркировки по всей России

Частота вращения в физике: Частота вращения (обращения)

Содержание

HydroMuseum – Частота вращения

Частота вращения

Частота вращения—физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени. Стандартные обозначения в формулах — υ, f, ω или F. Единицей частоты в Международной системе единиц (СИ) в общем случае является Герц (Гц, Hz). Величина, обратная частоте, называется периодом.

Периодический сигнал характеризуется мгновенной частотой, являющейся скоростью изменения фазы, но тот же сигнал можно представить в виде суммы гармонических спектральных составляющих, имеющих свои частоты. Свойства мгновенной частоты и частоты спектральной составляющей различны, подробнее об этом можно прочитать, например, в книге Финка «Сигналы, помехи, ошибки».

В теоретической физике, а также в некоторых прикладных электрорадиотехнических расчётах удобно использовать дополнительную величину — циклическую (круговую, радиальную, угловую) частоту (обозначается ω). Циклическая частота связана с частотой колебаний соотношением ω=2πf. В математическом смысле циклическая частота — это первая производная полной фазы колебаний по времени. Единица циклической частоты — радиан в секунду (рад/с, rad/s) .

В механике при рассмотрении вращательного движения аналогом циклической частоты служит угловая скорость.

Частота дискретных событий (частота импульсов) — физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий секунда в минус первой степени (с−1, s−1), однако на практике для выражения частоты импульсов обычно используют герц.

Частота вращения — это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения — секунда в минус первой степени (с−1, s−1), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

  • Ширина полосы частот — fmax fmin
  • Частотный интервал — log(fmax/fmin)
  • Девиация частоты —Δf/2
  • Период — 1/f
  • Длина волны — υ/f
  • Угловая скорость (скорость вращения) — / dt; FBP

Метрологические аспекты

Измерения

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра.

Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность), синтезаторы частот, генераторы сигналов и др.

Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

Эталоны

Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 — находится во ВНИИФТРИ

Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 — находится в СНИИМ (Новосибирск)

Частота вращения — это… Что такое Частота вращения?


Частота вращения

Угловая скорость (синяя стрелка) в полторы единицы по часовой стрелке

Угловая скорость (синяя стрелка) в одну единицу против часовой стрелки

Углова́я ско́рость — векторная величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:

\omega_z=\frac{d\phi}{dt},

а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в системах СИ и СГС) — радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, — физически безразмерен, поэтому физическая размерность угловой скорости — просто [1/секунда]). В технике также используются обороты в секунду, намного реже — градусы в секунду, грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту — это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли, просто «вручную» подсчитывая число оборотов за единицу времени.

Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью \vec \omega определяется формулой:

 \vec v = [\ \vec \omega, \vec r\ ],

где \vec r

 — радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) r от оси вращения можно считать так: v = rω. Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.

  • В случае плоского вращения, то есть когда все векторы скоростей точек тела лежат (всегда) в одной плоскости («плоскости вращения»), угловая скорость тела всегда перпендикулярна этой плоскости, и по сути — если плоскость вращения заведомо известна — может быть заменена скаляром — проекцией на ось, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается, однако в общем случае угловая скорость может менять со временем направление в трехмерном пространстве, и такая упрощенная картина не работает.
  • Производная угловой скорости по времени есть угловое ускорение.
  • Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю).
  • Угловая скорость (рассматриваемая как свободный вектор) одинакова во всех инерциальных системах отсчета, однако в разных инерциальных системах отсчета может различаться ось или центр вращения одного и того же конкретного тела в один и тот же момент времени (то есть будет различной «точка приложения» угловой скорости).
  • В случае движения одной единственной точки в трехмерном пространстве можно написать выражение для угловой скорости этой точки относительно выбранного начала координат:
 \vec\omega = \frac{\vec r \times \vec v}{(\vec r,\vec r )}
, где \vec r — радиус-вектор точки (из начала координат), \vec v — скорость этой точки. \vec r \times \vec v — векторное произведение, (\vec r,\vec r ) — скалярное произведение векторов. Однако эта формула не определяет угловую скорость однозначно (в случае единственной точки можно подобрать и другие векторы \vec \omega
, подходящие по определению, по другому — произвольно — выбрав направление оси вращения), а для общего случая (когда тело включает более одной материальной точки) — эта формула не верна для угловой скорости всего тела (так как дает разные \vec \omega для каждой точки, а при вращении абсолютно твёрдого тела по определению угловая скорость его вращения — единственный вектор). При всём при этом, в двумерном случае (случае плоского вращения) эта формула вполне достаточна, однозначна и корректна, так как в этом частном случае направление оси вращения заведомо однозначно определено.
  • При измерении угловой скорости в оборотах в секунду (об/с), модуль угловой скорости равномерного вращательного движения совпадает с
    частотой вращения
    f, измеренной в герцах (Гц) (то есть в таких единицах ~~\omega = {f}).
  • В случае использования обычной физической единицы угловой скорости — радианов в секунду — модуль угловой скорости связан с частотой вращения так: ~~\omega = {2\pi f}.
  • Наконец, при использовании градусов в секунду связь с частотой вращения будет: ~~\omega = {360 f}.

См. также

Wikimedia Foundation. 2010.

  • Частота сети
  • Частота сердечных сокращений

Смотреть что такое «Частота вращения» в других словарях:

  • частота вращения ВК — частота вращения ветроколеса Угол, проходимый лопастью ВК за единицу времени, измеренный в оборотах в единицу времени или в радианах. [ГОСТ Р 51237 98] Тематики ветроэнергетика Синонимы частота вращения ветроколеса EN rotation speed …   Справочник технического переводчика

  • частота вращения — частота вращения …   Справочник технического переводчика

  • Частота вращения — 3.113 Частота вращения число оборотов в единицу времени. Источник: ГОСТ Р МЭК 1029 2 4 96: Машины переносные электрические. Частные тр …   Словарь-справочник терминов нормативно-технической документации

  • частота вращения — sukimosi dažnis statusas T sritis automatika atitikmenys: angl. rotating speed; rotation frequency; rotational speed vok. Drehgeschwindigkeit, f; Rotationsgeschwindigkeit, f rus. скорость вращения, f; частота вращения, f pranc. fréquence de… …   Automatikos terminų žodynas

  • частота вращения — sūkių dažnis statusas T sritis Standartizacija ir metrologija apibrėžtis Kūno sukimosi apie tam tikrą ašį dažnis, išreiškiamas sūkių skaičiumi per vienetinį laiko tarpą. atitikmenys: angl. rotating frequency; rotating speed; rotation frequency;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Частота вращения w — 69. Частота вращения w Угловая скорость вращения поворотной части крана в установившемся режиме движения. Определяется при наибольшем вылете с рабочим грузом при установке крана на горизонтальной площадке и скорости ветра не более 3 м/с на высоте …   Словарь-справочник терминов нормативно-технической документации

  • частота вращения — sukimosi dažnis statusas T sritis fizika atitikmenys: angl. rotation frequency vok. Rotationsfrequenz, f; Umlauffrequenz, f rus. частота вращения, f pranc. fréquence de rotation, f …   Fizikos terminų žodynas

  • ЧАСТОТА ВРАЩЕНИЯ — величина, равная отношению числа оборотов, совершённых телом, ко времени вращения. Обозначается обычно п. Единица Ч. в. (в СИ) с 1. Внесистемные единицы об/мин и об/с …   Большой энциклопедический политехнический словарь

  • частота вращения — rotation frequency Число оборотов вращающегося звена в единицу времени. Шифр IFToMM: Раздел: СТРУКТУРА МЕХАНИЗМОВ …   Теория механизмов и машин

  • частота вращения ротора (вала) ГТД в режиме сопровождения — частота вращения режима сопровождения Частота вращения ротора ГТД при запуске в момент отключения пускового устройства. [ГОСТ 23851 79] Тематики двигатели летательных аппаратов Синонимы частота вращения режима сопровождения …   Справочник технического переводчика

Единица измерения частоты, теория и онлайн калькуляторы

Прежде чем перейти к единицам измерения частоты, скажем о том, что следует выделить: частоту периодических процессов (колебаний, излучений и т.д.), частоту дискретных событий (импульсов и т.д. ) и частоту вращения.

Герц — единица измерения частоты периодического процесса в системе СИ

Определение

Частота периодических процессов ($\nu$) — это физическая величина, которая равна количеству циклов, которые происходят в единицу времени. Это определение говорит о том, что:

\[\nu =\frac{1}{T}\left(1\right),\]

где $T$ — период процесса.

Из выражения (1) очевидно, что единицей измерения частоты служит обратная секунда:

\[\left[\nu \right]=с^{-1}.\]

В Международной системе единиц (СИ) эта единица измерения имеет специальное название, ее называют герцем (Гц) с 1960 г (начала существования системы). Герц — единица измерения частоты периодического процесса, при которой за время в одну секунду протекает один цикл процесса.

Единица измерения частоты периодического процесса называется в честь немецкого ученого Г. Герца, который много и успешно занимался электродинамикой.

Герц, как единица измерения частоты может использоваться со стандартными приставками системы СИ для обозначения десятичных кратных и дольных единиц. Например, гГц (гектогерц): $1г\ Гц=100\ Гц$; мкГц (микрогерц): $1мкГц={10}^{-6}Гц.$ Биения здорового человеческого сердца в спокойном состоянии происходят с частотой 1Гц.

Иногда частоту периодических колебаний обозначают буквой $f$.

Часто в расчётах используют циклическую частоту (угловую частоту, радиальную частоту, круговая частота) ($\omega $), которая равна:

\[\omega =2\pi {\mathbf \nu }\left(2\right).\]

Угловая частота измеряется в радианах, деленных на секунду:

\[\left[\omega \right]=\frac{рад}{с}.\]

В системах СИ и СГС единицы измерения круговой частоты одинаковы.

Секунда в минус первой степени — единица измерения частоты дискретных событий

Частота дискретных колебаний ($n$) — это физическая величина, которая равна количеству действий (событий) в единицу времени. Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:

\[n=\frac{1}{\tau }\left(3\right).\]

Из определения (3) следует, что обратная секунда (секунда в минус первой степени) — единица измерения частоты дискретных событий:

\[\left[n\right]=\frac{1}{с}.\]

Секунда в минус первой степени равна частоте дискретных событий, если за время, равное одной секунде происходит одно событие.

Секунда в минус первой степени — единица измерения частоты вращения

Частота вращения ($n$) — это величина, равная количеству полных оборотов в единицу времени. Если $\tau $ — время, затрачиваемое на один полный оборот, то:

\[n=\frac{1}{\tau }\left(4\right).\]

Секунда в минус первой степени —

Частота вращения Википедия

Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

ω = ∂ φ / ∂ t . {\displaystyle \omega =\partial \varphi /\partial t.}

Другое распространённое обозначение ω = φ ˙ . {\displaystyle \omega ={\dot {\varphi }}.}

Угловая частота связана с частотой ν соотношением[1]

ω = 2 π ν . {\displaystyle \omega ={2\pi \nu }.}

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

ω = 360 ∘ ν . {\displaystyle \omega ={360^{\circ }\nu }.}

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ω L C = 1 / L C , {\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота ν L C = 1 / ( 2 π L C ) . {\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).}

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также[ | ]

Формула частоты в физике

Определение

Частота — это физический параметр, которые используют для характеристики периодических процессов. Частота равна количеству повторений или свершения событий в единицу времени.

Чаще всего в физике частоту обозначают буквой $\nu ,$ иногда встречаются другие обозначения частоты, например $f$ или $F$.

Частота (наряду со временем) является самой точно измеряемой величиной.

Формула частоты колебаний

При помощи частоты характеризуют колебания. В этом случае частота является физической величиной обратной периоду колебаний $(T).$

\[\nu =\frac{1}{T}\left(1\right).\]

Частота, в этом случае — это число полных колебаний ($N$), совершающихся за единицу времени:

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $\Delta t$ — время за которое происходят $N$ колебаний.

Единицей измерения частоты в Международной системе единиц (СИ) служат в герцы или обратные секунды:

\[\left[\nu \right]=с^{-1}=Гц.\]

Герц — это единица измерения частоты периодического процесса, при которой за время равное одной секунде происходит один цикл процесса. Единица измерения частоты периодического процесса получила свое наименование в честь немецкого ученого Г. Герца.

Частота биений, которые возникают при сложении двух колебаний, происходящих по одной прямой с разными, но близкими по величине частотами (${\nu }_1\ и\ {\nu }_2$) равна:

\[{\nu =\nu }_1-\ {\nu }_2\left(3\right).\]

Еще одно величиной характеризующей колебательный процесс является циклическая частота (${\omega }_0$), связанная с частотой как:

\[{\omega }_0=2\pi \nu \left(4\right).\]

Циклическая частота измеряется в радианах, деленных на секунду:

\[\left[{\omega }_0\right]=\frac{рад}{с}.\]

Частота колебаний тела, имеющего массу$\ m,$ подвешенного на пружине с коэффициентом упругости $k$ равна:

\[\nu =\frac{1}{2\pi \sqrt{{m}/{k}}}\left(5\right).\]

Формула (4) верна для упругих, малых колебаний. Кроме того масса пружины должна быть малой по сравнению с массой тела, прикрепленного к этой пружине.

Для математического маятника частоту колебаний вычисляют как: длина нити:

\[\nu =\frac{1}{2\pi \sqrt{{l}/{g}}}\left(6\right),\]

где $g$ — ускорение свободного падения; $\ l$ — длина нити (длина подвеса) маятника.

Физический маятник совершает колебания с частотой:

\[\nu =\frac{1}{2\pi \sqrt{{J}/{mgd}}}\left(7\right),\]

где $J$ — момент инерции тела, совершающего колебания относительно оси; $d$ — расстояние от центра масс маятника до оси колебаний.

Формулы (4) — (6) приближенные. Чем меньше амплитуда колебаний, тем точнее значение частоты колебаний, вычисляемых с их помощью.

Формулы для вычисления частоты дискретных событий, частота вращения

дискретных колебаний ($n$) — называют физическую величину, равную числу действий (событий) в единицу времени. Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:

\[n=\frac{1}{\tau }\left(8\right).\]

Единицей измерени

Единицы измерения скорости при вращательном движении — Студопедия

Единицы измерения скорости при поступательном движении

Единицы, часто применяемые в судовой электротехнике

При поступательном движении скорость движущихся масс называется «линейная скорость», обозначается латинской буквой «υ» и измеряется в «м/с» ( метр в секунду ) или «м/мин» ( метр в минуту ).Например, скорость подъёма груза электропривода лебёдки υ = = 30 м/мин.

На практике применяют внесистемные ( не соответствующие системе СИ ) едини-

цы измерения скорости, например, километр в час ( км/ч ), узел = 1852 м /ч ( 1852 м – дли-

на морской мили ) и др.

При измерении скорости вращающихся масс применяют два наименования скоро-

сти:

1. «частота вращения», обозначается латинской буквой «n» и измеряется в

«об/мин» ( оборот в минуту ). Например, частота вращения двигателя n = 1500 об/мин.

Эта единица скорости – внесистемная, т.к. в ней используется внесистемная едини

ца времени, а именно – минута ( в системе СИ время измеряется в секундах ).

Тем не менее эта единица до сих пор широко применяется на практике. Например, в паспортных данных электродвигателей скорость вала указывается именно в об/ мин.

2. «угловая скорость», обозначается латинской буквой «ω» и измеряется в

«рад/с» ( радиан в секунду ) или, что одно и то же, с( секунда в минус первой степени ).

Например, угловая скорость электродвигателя ω = 157 с.

Напомним, что радиан – вторая, кроме знакомого нам пространственного градуса

( º ), единица измерения углового расстояния, равная 360º / 2π = 360 / 2*3,14 = 57º36′ ( пять


десят семь градусов и 36 минут ).

Впервые возникла в расчетах, где часто встречалось число 360º / 2π.

Эта единица скорости – системная, т.к. в ней используется системная единица вре-

мени, а именно – секунда.

На практике надо уметь быстро переходить от одной единицы скорости к другой и наоборот.

Поэтому выведем соотношение между этими двумя единицами.

Угловая скорость ( через частоту вращения ):

ω = 2 πn / 60 = n / ( 60 / 2 π ) = n / 9,55 ≈ n / 10 ( В.1 ).

Частота вращения ( через угловую скорость ):

n = 60 ω / 2 π = 60 ω / 2*3,14 = 9,55 ω ≈ 10 ω ( В.2 ).

Приведем два примера.

Пример №1.

В паспорте электродвигателя указана номинальная скорость вала n = 1500 об/мин.

Найти угловую скорость вала этого электродвигателя.

Угловая скорость вала

ω =n / 9,55 = 1500 / 9,55 = 157 ≈ 150 с.

Пример №2.

В паспорте электродвигателя указана угловая скорость вала электродвигателя

ω = 314 с.

Найти частоту вращения вала этого электродвигателя.

Частота вращения вала

n = 9,55 ω = 9,55*314 = 3000 ≈ 3140 об/ мин.

Частота вращения Википедия

Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

ω = ∂ φ / ∂ t . {\displaystyle \omega =\partial \varphi /\partial t.}

Другое распространённое обозначение ω = φ ˙ . {\displaystyle \omega ={\dot {\varphi }}.}

Угловая частота связана с частотой ν соотношением[1]

ω = 2 π ν . {\displaystyle \omega ={2\pi \nu }.}

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

ω = 360 ∘ ν . {\displaystyle \omega ={360^{\circ }\nu }.}

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ω L C = 1 / L C , {\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота ν L C = 1 / ( 2 π L C ) . {\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).}

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также

Примечания

  1. ↑ Угловая частота (неопр.). Большой энциклопедический политехнический словарь. Дата обращения 27 октября 2016.

Скорость вращения — видео по физике от Brightstorm

Скорость, с которой объект вращается или вращается, называется скоростью вращения . В отличие от линейной скорости, она определяется тем, сколько вращений объект делает за период времени. Формула для скорости вращения: Скорость вращения = обороты / время , но линейная скорость = расстояние / время .

Хорошо, давайте поговорим о скорости вращения, скорость вращения действительно состоит из двух компонентов.Одна из них — это линейная скорость, которую также называют тангенциальной скоростью, и это в основном расстояние, на котором объект движется во времени, нормально. Если он движется по круговой орбите, если мы выпустим его с этой орбиты, он продолжит движение по касательной от этой точки с определенной скоростью, нормально. Другая скорость объекта — это скорость вращения, скорость вращения — это количество оборотов за раз. Итак, давайте посмотрим на пример, вас часто спрашивают: допустим, у нас есть 2 точки на записи, и рекорд вращается с определенной скоростью, например, 33 оборота в минуту, хорошо.Что ж, если мы сравним скорость этих двух объектов, она будет очень разной, если мы говорим о тангенциальной, линейной или тангенциальной скорости в сравнении со скоростью вращения. Итак, если мы посмотрим на них обоих, они оба имеют скорость вращения 33 оборота в минуту.

Но если мы посмотрим на скорость, с которой они движутся на записи, на линейную скорость, то увидим, что линейная скорость на самом деле связана с радиальным расстоянием в зависимости от скорости вращения. Итак, если я скажу, что a равно x, а b равно 2x с точки зрения нашего радиального расстояния, расстояния с точки зрения радиуса от правого центра, мы увидим, что b будет двигаться намного быстрее, чем a.Вот почему 2 объекта могут иметь одинаковую скорость вращения, но очень разные линейные скорости.

,

Практический тест SAT Physics: Curved and Rotation Motion_cracksat.net

1. 1. Объект массой 0,5 кг, движущийся по круговой траектории радиусом 0,25 м, испытывает центростремительное ускорение постоянной величины 9 м / с 2 . Какова угловая скорость объекта?

A. 2,3 рад / с
B. 4,5 рад / с
C. 6 рад / с
D. 12 рад / с
E. Не может быть определено из предоставленной информации

2.

При попытке чтобы затянуть болт, прилагается усилие F , как показано на рисунке выше.Если расстояние от конца ключа до центра болта составляет 20 см и F = 20 Н, какова величина крутящего момента, создаваемого F ?

A. 0 Н × м
B. 1 Н × м
C. 2 Н × м
D. 4 Н × м
E. 10 Н × м

3.

На рисунке выше, что — крутящий момент вокруг точки подвеса маятника, создаваемый весом боба, учитывая, что масса находится на 40 см ниже точки подвеса, измеренная по вертикали, и м = 0.50 кг?

A. 0,49 Н × м
B. 1,15 Н × м
C. 1,7 Н × м
D. 2,0 Н × м
E. 3,4 Н × м

4.

Единообразный измеритель массы На нитке, прикрепленной к середине палки, висит 1 кг. Один блок массой м = 3 кг свисает с левого конца стержня, а другой блок неизвестной массы м — ниже отметки 80 см на измерительном стержне. Если рукоять остается неподвижной в горизонтальном положении, показанном выше, что будет м ?

А.4 кг
B. 5 кг
C. 6 кг
D. 8 кг
E. 9 кг

5. Объект движется с постоянной скоростью по круговой траектории. Что из следующего относится к истинным заявлениям о движении?

I. Скорость постоянна.

II. Ускорение постоянное.

III. Чистая сила, действующая на объект, равна нулю, поскольку его скорость постоянна.

A. II только
B. I и III только
C. II и III только
D. I и II только
E. Ничего из вышеперечисленного

6. Три тонких одинаковых стержня длиной L каждый расположены в форме перевернутой буквы U.

Масса каждого из двух стержней на плечах U-образной формы м ; третья штанга имеет массу 2 м . Насколько далеко ниже середины горизонтального стержня находится центр масс этого узла?

A.
B.
C.
D.
E.

7. Спутник в настоящее время вращается вокруг Земли по круговой орбите радиусом R ; его кинетическая энергия К 1 .Если спутник переместится и выйдет на новую круговую орбиту с радиусом 2 R , какой будет его кинетическая энергияa?

A.
B.
C. K 1
D. 2 K 1
E. 4 K 1

8. Луна Юпитера имеет почти круглую форму. орбита радиусом R и периодом обращения T . Какое из следующих выражений дает массу Юпитера?

А.
Б.
С.
D.
E.

9. Среднее расстояние от Сатурна до Солнца в 9 раз больше, чем среднее расстояние от Земли до Солнца. Как долго длится год Сатурна?

A. 18 земных лет
B. 27 земных лет
C. 81 земных лет
D. 243 земных лет
E. 729 земных лет

10. Два спутника вращаются вокруг Земли по круговым орбитам, каждый из которых движется со скоростью постоянная скорость. Радиус орбиты спутника A составляет R , а радиус орбиты спутника B составляет 3 R .Оба спутника имеют одинаковую массу. Каким образом F A , центростремительная сила на спутнике A , по сравнению с F B , центростремительная сила на спутнике B ?

A. F A = 9 F B
B. F A = 3 F B
C. F A = F B
D. F B = 3 F A
E. F B = 9 F A

,

admin / 10.06.2020 / Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о