Цены снижены! Бесплатная доставка контурной маркировки по всей России

Асинхронный двигатель устройство: Асинхронный электродвигатель: устройство и принцип работы

Содержание

Асинхронный электродвигатель: устройство и принцип работы

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу.

По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.


Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором

.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию

. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «

беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.

Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

  • Просмотров: 84455
  • Асинхронные электродвигатели: схема, принцип работы и устройство

    Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора. Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится. Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают). 

    В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.

    Устройство и принцип действия

    Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.

    Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.

    Асинхронный двигатель

    Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.

    Виды асинхронных двигателей

    Можно выделить 3 базовых типа асинхронных электродвигателей:

    • 1-фазный – с короткозамкнутым ротором
    • 3-х фазный – с короткозамкнутым ротором
    • 3-х фазный – с фазным ротором

    Схема устройства асинхронного двигателя с короткозамкнутым ротором

    То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.

    Ещё одна разновидность – асинхронный двигатель с массивным ротором. Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки). Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.

    Какой ротор лучше, фазный или короткозамкнутый?

    Преимущества короткозамкнутого:

    • Более-менее постоянная скорость вне зависимости от разных нагрузок
    • Допустимость кратковременных механических перегрузок
    • Простая конструкция, легкость пуска и автоматизации
    • Более высокие cos φ (коэффициент мощности) и КПД, чем у электродвигателей с фазным ротором

    Недостатки:

    • Трудности в регулировании скорости вращения
    • Большой пусковой ток
    • Низкий мощностной коэффициент при недогрузках

    Преимущества фазного:

    • Высокий начальный вращающий момент
    • Допустимость кратковременных механических перегрузок
    • Более-менее постоянная скорость при разных перегрузках
    • Меньший пусковой ток, чем у двигателей с короткозамкнутым ротором
    • Возможность использования автоматических пусковых устройств

    Недостатки:

    • Большие габариты
    • Коэффициент мощности и КПД ниже, чем у электродвигателей с короткозамкнутым ротором

    Какой двигатель лучше выбрать?

    Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

    • Относительно небольшая стоимость
    • Низкие эксплуатационные затраты
    • Отсутствие необходимости в преобразователях при включении в сеть (только для нагрузок, не нуждающихся в регулировании скорости)
    • Отсутствие потребности в дополнительном источнике питания – в отличие от синхронных аналогов

    Тем не менее, у асинхроников есть недостатки. А именно:

    • Малый пусковой момент
    • Высокий пусковой ток
    • Отсутствие возможности регулировки скорости при подключении к сети
    • Ограничение максимальной скорости частотой сети
    • Высокая зависимость электромагнитного момента от напряжения питающей сети
    • Низкий мощностной коэффициент – в отличие от синхронных агрегатов

    Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

    Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

    • Высокий пусковой ток
    • Слабый пусковой момент
    • Рассинхрон между механическим моментом на валу привода и механической нагрузкой (это провоцирует высокий рост силы тока и избыточные нагрузки при запуске, а также снижение КПД при пониженной нагрузке)
    • Невозможность точной регулировки скорости работы прибора

    Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:

    • степень загрузки двигателя по отношению к номинальной
    • конструкция и модель
    • степень износа
    • отклонение напряжения в сети от номинального.

    Как избежать снижения КПД?

    • Обеспечение стабильного уровня загрузки – не ниже 75%
    • Увеличение мощностного коэффициента
    • Регулировать напряжение и частоту подаваемого тока

    Для этого используются:

    • Частотные преобразователи – они плавно изменяют скорость вращения двигателя путем изменения частоты питающего напряжения
    • Устройства плавного пуска – они ограничивают скорость нарастания пускового тока и его предельное значение, как одни из факторов, из-за которых падает КПД

    Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.


    Асинхронный электродвигатель. Устройство и принцип действия. – www.motors33.ru

    Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
    В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.
    Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

    Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

    На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.
    На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников.
    Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис. 1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

    Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

    Рис. 2. Асинхронный электродвигатель с короткозамкнутым ротором
    Собранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

    Рис. 3. Короткозамкнутый ротор
    а — ротор с короткозамкнутой обмоткой, б — «беличье колесо»,
    в — короткозамкнутый ротор, залитый алюминием;
    1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни,
    4 — вентиляционные лопатки
    Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.
    Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

    Рис. 4. Разрез асинхронного двигателя с фазным ротором
    1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца
    Фазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.
    Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

    Источник: Кузнецов М. И. Основы электротехники. Учебное пособие.
    Изд. 10-е, перераб. «Высшая школа», 1970.

    устройство, принцип работы, виды, способы пуска

    Способы пуска и схемы подключения

    Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

    • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
    • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
    • понижение напряжения;
    • плавный пуск;
    •  изменение частоты питающего напряжения.

    Однофазного асинхронного двигателя.

    Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

    • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
    • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
    • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

    Трехфазного асинхронного двигателя.

    Трехфазные асинхронные агрегаты могут подключаться такими способами:

    • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
    • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
    • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

    Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

    Рис. 9: прямая схема без возможности реверсирования

    Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

    Рисунок 10: схема прямого включения с реверсом

    Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

    Асинхронный двигатель с короткозамкнутым ротором: конструкция, принцип работы

    Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

    Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

    Конструкция

    В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

    Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

    Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

    Рис. 1. Строение асинхронного двигателя с КЗ Ротором

    Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

    Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

    Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

    Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

    Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

    В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

    Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

    Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

    В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

    Принцип работы

    Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

    Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

    n= (f1*60) / p, где n1 – синхронная частота,  f1 частота переменного тока, а pколичество пар полюсов.

    В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

    Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

    s = 100% * ( n/ n1) = 100% * (n— n2) / n1 , где nsчастота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

    С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

    Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

    Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

    Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

    Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

    Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

    Рис. 3. Кривая крутящего момента скольжения

    При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

    Преимущества и недостатки

    Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

    • стабильностью работы на оптимальных нагрузках;
    • высокой надёжностью в эксплуатации;
    • низкие эксплуатационные затраты;
    • долговечностью функционирования без обслуживания;
    • сравнительно высокими показателями КПД;
    • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.

    Из недостатков можно отметить:

    • высокие пусковые токи;
    • чувствительность к перепадам напряжений;
    • низкие коэффициенты скольжений;
    • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
    • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

    Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

    Основные технические характеристики

    В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

    В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

    Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

    Ток при максимальном напряжении – от 0,55 А до 5А.

    КПД от 66% до 83%.

    Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

    Технические характеристики конкретного двигателя указаны в его паспорте.

    Подключение

    Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

    Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

    Схемы включения понятны из рисунка 4.

    Рис. 4. Схемы подключения

    Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

    Рис. 5. Примеры схем подключений в однофазную сеть

    С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

    Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.

    Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели — это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.

    Устройство и принцип действия асинхронных электродвигателей

    1. Устройство трехфазных асинхронных двигателей

    Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра — намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

    Рис. 1 Магнитопровод статора

    В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

    Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

    Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

    Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой

    Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

    Рис. 4. Общий вид асинхронного двигателя серии 4А

    Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения — это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

    2. Принцип действия трехфазных асинхронных двигателей

    Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.

    Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя

    Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом — вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.

    Алиев И.И.

    В чем разница между асинхронными и синхронными двигателями?

    Загрузить статью в формате .PDF

    Растущее значение энергоэффективности побудило производителей электродвигателей продвигать различные схемы, улучшающие характеристики электродвигателей. К сожалению, терминология, связанная с моторными технологиями, может сбивать с толку, отчасти потому, что несколько терминов иногда могут использоваться взаимозаменяемо для обозначения одной и той же базовой конфигурации двигателя. Среди классических примеров этого явления — асинхронные двигатели и асинхронные двигатели.

    Все асинхронные двигатели являются асинхронными двигателями. Асинхронный характер работы асинхронного двигателя происходит из-за скольжения между скоростью вращения поля статора и несколько меньшей скоростью ротора. Более конкретное объяснение того, как возникает это проскальзывание, касается деталей внутреннего устройства двигателя.

    Большинство современных асинхронных двигателей содержат вращающийся элемент (ротор), известный как беличья клетка. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе.Твердый сердечник ротора состоит из пакетов пластин электротехнической стали. В роторе меньше пазов, чем в статоре. Количество пазов ротора также должно быть нецелым числом, кратным пазам статора, чтобы предотвратить магнитную блокировку зубцов ротора и статора при запуске двигателя.

    Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора. Смысл этой конфигурации с фазным ротором состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель сначала начинает вращаться.Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо. Когда ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически они становятся такими же, как ротор с короткозамкнутым ротором.

    Неподвижная часть обмоток двигателя называется якорем или статором. Обмотки статора подключаются к источнику переменного тока. Подача напряжения на статор вызывает прохождение тока в обмотках статора.Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

    Северный полюс статора индуцирует южный полюс ротора. Но полюс статора вращается при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила создается, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот.Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора. Поле ротора всегда на некоторую величину отстает от поля статора, поэтому он вращается со скоростью, несколько меньшей, чем у статора. Разница между ними называется скольжением.

    Размер скольжения может быть разным. Это зависит, главным образом, от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора.

    Несколько простых уравнений проясняют основные отношения.

    Когда на статор изначально подается переменный ток, ротор неподвижен. Напряжение, индуцируемое в роторе, имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцируемого в нем напряжения, f r , падает. Если f — частота напряжения статора, то скольжение, s, связывает эти два через f r = s f .Здесь s выражается в виде десятичной дроби.

    Когда ротор неподвижен, ротор и статор фактически образуют трансформатор. Таким образом, напряжение E , индуцированное в роторе, определяется уравнением трансформатора

    E = 4,44 f N м

    , где Н, = количество проводников под одним полюсом статора (обычно небольшое для двигателя с короткозамкнутым ротором) и № м = максимальный магнитный поток по Веберсу.Таким образом, напряжение E r , индуцируемое при вращении ротора, зависит от скольжения:

    E r = 4,44 s f N Ñ „ m = s E

    Описание синхронных двигателей

    Синхронный двигатель имеет особую конструкцию ротора, которая позволяет ему вращаться с одинаковой скоростью, то есть синхронно, с полем статора. Одним из примеров синхронного двигателя является шаговый двигатель, широко используемый в приложениях, связанных с управлением положением.Однако недавние достижения в схемах управления мощностью привели к появлению конструкций синхронных двигателей, оптимизированных для использования в таких ситуациях с более высокой мощностью, как вентиляторы, нагнетатели и ведущие мосты внедорожных транспортных средств.

    Существует два основных типа синхронных двигателей:

    • Самовозбуждение — использует принципы, аналогичные принципам работы асинхронных двигателей, и

    • С прямым возбуждением — обычно с постоянными магнитами, но не всегда

    Самовозбуждающийся синхронный двигатель, также называемый реактивным электродвигателем с переключаемым сопротивлением, содержит ротор, отлитый из стали, который имеет выемки или зубья, называемые выступающими полюсами.Это выемки, которые позволяют ротору блокироваться и работать с той же скоростью, что и вращающееся магнитное поле.

    Чтобы переместить ротор из одного положения в другое, схема должна последовательно переключать питание на последовательные обмотки / фазы статора аналогично тому, как это происходит в шаговом двигателе. Синхронный двигатель с прямым возбуждением можно называть разными именами. Обычные названия включают ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом.В этой конструкции используется ротор, содержащий постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

    Постоянные магниты являются основными полюсами этой конструкции и предотвращают скольжение. Микропроцессор управляет последовательным переключением питания на обмотки статора в нужное время с помощью твердотельных переключателей, сводя к минимуму пульсации крутящего момента. Принцип действия всех этих типов синхронных двигателей в основном одинаков.Электроэнергия подается на катушки, намотанные на зубья статора, что заставляет значительный магнитный поток пересекать воздушный зазор между ротором и статором. Поток течет перпендикулярно воздушному зазору. Если выступающий полюс ротора идеально совмещен с зубом статора, крутящий момент не создается. Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере, часть магнитного потока пересекает зазор под углом, не перпендикулярным поверхностям зуба. Результатом является крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

    Еще один тип синхронного двигателя называется реактивным электродвигателем с переключаемым сопротивлением (SR).

    Его ротор состоит из многослойных стальных пластин с рядом зубцов. Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них щелей. Таким образом, ротор не требует обмоток, редкоземельных материалов или магнитов.

    В отличие от асинхронных двигателей, здесь нет стержней ротора и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники.Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен тому, как скорость регулируется током якоря в традиционном щеточном двигателе постоянного тока.

    Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения скорости вращения двигателя.

    ▷ Синхронные и асинхронные двигатели — где их использовать?

    Многие люди часто путают термины «синхронные» и «асинхронные двигатели» и их применение. Именно поэтому один из новейших членов сообщества электротехники написал эту статью. Проверьте это ниже:

    Следующая информация касается общих принципов работы синхронных и асинхронных двигателей, их преимуществ, а также где они обычно используются и что можно достичь с помощью каждого из этих двигателей.

    Давайте сначала сконцентрируемся на их принципах работы…

    Синхронные и асинхронные двигатели — принципы работы

    Синхронные двигатели

    Это типичный электродвигатель переменного тока, способный развивать синхронную скорость. В этих двигателях и статор, и ротор вращаются с одинаковой скоростью, что обеспечивает синхронизацию. Основной принцип работы заключается в том, что когда двигатель подключен к сети, электричество течет в обмотки статора, создавая вращающееся электромагнитное поле.Это, в свою очередь, индуцируется на обмотках ротора, который затем начинает вращаться.

    Требуется внешний источник постоянного тока, чтобы синхронизировать направление и положение вращения ротора с направлением вращения статора. В результате такой блокировки двигатель либо должен работать синхронно, либо не вращаться совсем.

    Двигатели асинхронные

    Принцип работы асинхронных двигателей почти такой же, как и у синхронных двигателей, за исключением того, что к ним не подключен внешний возбудитель.Проще говоря, асинхронные двигатели, также известные как асинхронные двигатели, также работают по принципу электромагнитной индукции, в которых ротор не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.

    Единственная загвоздка в том, что в асинхронных двигателях нет внешнего устройства, подключенного для возбуждения ротора, и, следовательно, скорость ротора зависит от переменной магнитной индукции. Это изменяющееся электромагнитное поле заставляет ротор вращаться со скоростью, меньшей, чем скорость магнитного поля статора.Поскольку скорость ротора и скорость магнитного поля статора меняются, эти двигатели известны как асинхронные двигатели. Разница в скорости известна как «проскальзывание».

    Синхронные и асинхронные двигатели — преимущества и недостатки

    1. Синхронный двигатель работает с постоянной скоростью и заданной частотой независимо от нагрузки. Но скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    2. Синхронный двигатель может работать в широком диапазоне коэффициентов мощности, как с запаздыванием, так и с опережением, тогда как асинхронный двигатель всегда работает с запаздыванием p.f, который может быть очень низким при уменьшении нагрузок.
    3. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель может запускаться самостоятельно.
    4. На крутящий момент синхронного двигателя не влияют изменения приложенного напряжения, как на асинхронный двигатель.
    5. Для запуска синхронного двигателя требуется внешнее возбуждение постоянного тока, но асинхронный двигатель не требует внешнего возбуждения для работы.
    6. Синхронные двигатели обычно дороги и сложны по сравнению с асинхронными двигателями, которые менее дороги и удобны для пользователя.
    7. Синхронные двигатели
    8. особенно хороши для низкоскоростных приводов (ниже 300 об / мин), поскольку их коэффициент мощности всегда можно отрегулировать до 1,0, и они очень эффективны. С другой стороны, асинхронные двигатели отлично подходят для скоростей выше 600 об / мин.
    9. В отличие от асинхронных двигателей, синхронные двигатели могут работать на сверхнизких скоростях за счет использования мощных электронных преобразователей, которые генерируют очень низкие частоты. Их можно использовать для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.

    Синхронные и асинхронные двигатели — применение

    Приложения для синхронных двигателей
    1. Они обычно используются на электростанциях для достижения соответствующего коэффициента мощности. Они работают параллельно шинам и часто перегружаются извне для достижения желаемого коэффициента мощности.
    2. Они также используются в обрабатывающей промышленности, где используется большое количество асинхронных двигателей и трансформаторов для преодоления запаздывающей p.f.
    3. Используется на электростанциях для выработки электроэнергии с заданной частотой.
    4. Используется для управления напряжением путем изменения его возбуждения в линиях передачи.
    Применение асинхронных двигателей

    Более 90% двигателей, используемых в мире, являются асинхронными двигателями, и они находят широкое применение в самых разных областях. Вот некоторые из них:

    1. Центробежные вентиляторы, нагнетатели и насосы
    2. Компрессоры
    3. Конвейеры
    4. Подъемники, а также краны большой грузоподъемности
    5. Станки токарные
    6. Масляные, текстильные, бумажные комбинаты и т. Д.
    Заключение

    В заключение, синхронные двигатели используются только тогда, когда от машины требуются характеристики низкой или сверхнизкой скорости, а также при желаемых коэффициентах мощности (как отстающих, так и опережающих). Принимая во внимание, что асинхронные двигатели преимущественно используются в большинстве вращающихся или движущихся машин, таких как вентиляторы, подъемники, шлифовальные машины и т. Д.

    Что вы думаете об этой статье? Вам это помогло?

    Разница между синхронным и асинхронным двигателем (со сравнительной таблицей)

    Разница между синхронным двигателем и асинхронным двигателем объясняется с учетом таких факторов, как его тип, скольжение, потребность в дополнительном источнике питания, требования к контактным кольцам и щеткам, их стоимость, эффективность, коэффициент мощности, источник тока, скорость, самозапуск , влияние на крутящий момент из-за изменения напряжения, их рабочей скорости и различных применений как синхронного, так и асинхронного двигателя.

    Различия между синхронным и асинхронным двигателем объясняются ниже в виде таблицы.

    Асинхронный двигатель
    BASIS СИНХРОННЫЙ ДВИГАТЕЛЬ АСИНХРОННЫЙ ДВИГАТЕЛЬ
    Определение Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.
    N = NS = 120f / P
    Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.
    N
    Тип Бесщеточный двигатель, двигатель с регулируемым сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. переменного тока известен как асинхронный двигатель.
    Скольжение Без проскальзывания. Значение скольжения равно нулю. Имеют пробуксовку, поэтому величина пробуксовки не равна нулю.
    Дополнительный источник питания Требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Не требует дополнительных источников запуска.
    Контактное кольцо и щетки Требуются контактное кольцо и щетки Контактное кольцо и щетки не требуются.
    Стоимость Синхронный двигатель дороже по сравнению с асинхронным двигателем Дешевле
    КПД КПД выше, чем у асинхронного двигателя. Менее эффективный
    Коэффициент мощности Путем изменения возбуждения коэффициент мощности может быть соответственно отрегулирован как отстающий, опережающий или единичный. Асинхронный двигатель работает только с отстающим коэффициентом мощности.
    Электропитание Ток подается на ротор синхронного двигателя Ротор асинхронного двигателя не требует тока.
    Скорость Скорость двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    Самозапуск Синхронный двигатель не самозапускается Самозапускается
    Влияние на крутящий момент Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя Изменение приложенного напряжения влияет на крутящий момент асинхронного двигателя
    Рабочая скорость Они работают плавно и относительно хорошо на низкой скорости, ниже 300 об / мин. Двигатель работает со скоростью выше 600 об / мин безупречно.
    Применения Синхронные двигатели используются на электростанциях, обрабатывающей промышленности и т. Д. Они также используются в качестве регулятора напряжения. Используется в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и подъемниках. и т. д.

    Синхронный двигатель — это двигатель, который работает с синхронной скоростью, т.е. скорость ротора равна скорости статора двигателя.Отсюда следует соотношение N = N S = 120f / P, где N — скорость ротора, а Ns — синхронная скорость.

    Асинхронный двигатель — это асинхронный двигатель переменного тока. Ротор Асинхронного двигателя вращается со скоростью меньше синхронной, т.е. N S

    Разница между синхронным и асинхронным двигателем

    1. Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора. Асинхронный двигатель — это машина, ротор которой вращается со скоростью меньше синхронной.
    2. Бесщеточный двигатель, двигатель с регулируемым сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
    3. Синхронный двигатель не имеет скольжения. Значение скольжения равно нулю. Асинхронный двигатель имеет скольжение, поэтому значение скольжения не равно нулю.
    4. Синхронному двигателю требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Асинхронный двигатель не требует дополнительного источника пуска.
    5. Контактное кольцо и щетки необходимы в синхронном двигателе, тогда как асинхронный двигатель не требует контактного кольца и щеток. Только асинхронный двигатель с обмоткой требует и контактного кольца, и щеток.
    6. Синхронный двигатель дороже асинхронного двигателя.
    7. КПД синхронного двигателя больше, чем у асинхронного двигателя.
    8. Путем изменения возбуждения коэффициент мощности синхронного двигателя может быть отрегулирован соответственно как отстающий, опережающий или единичный, тогда как асинхронный двигатель работает только с отстающим коэффициентом мощности.
    9. Ток подается на ротор синхронного двигателя. Ротор асинхронного двигателя не требует тока.
    10. Скорость синхронного двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    11. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель запускается автоматически.
    12. Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя, но влияет на крутящий момент асинхронного двигателя.
    13. Синхронный двигатель работает плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин, тогда как скорость выше 600 об / мин работа асинхронного двигателя превосходна. Асинхронные двигатели используются в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и лифтах. и т. д.
    14. Синхронный двигатель используется в различных сферах применения на электростанциях, обрабатывающей промышленности и т. Д. Он также используется в качестве регулятора напряжения.

    Таким образом, синхронный двигатель отличается от асинхронного двигателя.

    Типы и удивительные применения асинхронного двигателя

    Индукционные машины являются наиболее часто используемым типом двигателей в жилых, коммерческих и промышленных помещениях. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора.

    Принси А.J | 4 июня 2020 г.

    Асинхронный двигатель — это обычно используемый электродвигатель переменного тока. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора. Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с намоткой.

    Асинхронные двигатели, используемые в различных приложениях, также называются асинхронными двигателями.Это связано с тем, что асинхронный двигатель всегда работает с меньшей скоростью, чем синхронная скорость. Скорость вращающегося магнитного поля в статоре называется синхронной скоростью.

    Индукционные машины являются наиболее часто используемым типом двигателей в жилых, коммерческих и промышленных помещениях. Эти трехфазные двигатели переменного тока обладают следующими характеристиками:

    • Простая и грубая конструкция
    • Доступное и низкое обслуживание
    • Высокая надежность и профессионализм
    • Нет необходимости в дополнительном пусковом двигателе и необходимости в синхронизации

    Два типа асинхронных двигателей

    Однофазный асинхронный двигатель

    Однофазный асинхронный двигатель не запускается самостоятельно.Основная обмотка пропускает спорадический ток, когда двигатель подключен к однофазному источнику питания. Вполне логично, что самый дешевый, самый дешевый механизм сортировки должен использоваться наиболее регулярно. В зависимости от способа запуска эти машины классифицируются по-разному. Это двигатели с экранированными полюсами, с расщепленной фазой и конденсаторные двигатели. Кроме того, конденсаторные двигатели запускаются с конденсатора, работают с конденсатором и имеют двигатели с постоянным конденсатором.

    В этих однофазных двигателях пусковая обмотка может иметь последовательный конденсатор и центробежный выключатель.Когда подается напряжение питания, ток в основной обмотке удерживает напряжение питания из-за полного сопротивления основной обмотки. И ток в пусковой обмотке опережает / отстает, напряжение питания зависит от импеданса пускового механизма. Угол между двумя обмотками равен разности фаз, достаточной для создания вращающегося магнитного поля для создания пускового момента. В момент, когда двигатель достигает от 70% до 80% синхронной скорости, центробежный переключатель на валу двигателя размыкается и отключает пусковую обмотку.

    Применение однофазных асинхронных двигателей

    Однофазные асинхронные двигатели используются в системах с малой мощностью. Эти двигатели широко используются в быту и промышленности. Некоторые из приложений упомянуты ниже:

    • Насосы
    • Компрессоры
    • Вентиляторы малые
    • Миксеры
    • Игрушки
    • Высокоскоростные пылесосы
    • Электробритвы
    • Станки сверлильные

    Трехфазный асинхронный двигатель:

    Трехфазные асинхронные двигатели, будучи самозапускающимися, не имеют пусковой обмотки, центробежного переключателя, конденсатора или другого пускового устройства.Трехфазные асинхронные двигатели переменного тока находят различное применение в коммерческих и промышленных приложениях. Два типа трехфазных асинхронных двигателей — это двигатели с короткозамкнутым ротором и с контактным кольцом. Особенности, которые делают двигатели с короткозамкнутым ротором широко применяемыми, заключаются в основном в их простой конструкции и прочной конструкции. С внешними резисторами двигатели с контактным кольцом могут иметь высокий пусковой момент.

    Трехфазные асинхронные двигатели широко используются в бытовых и промышленных приборах, поскольку они имеют прочную конструкцию, не требуют технического обслуживания, сравнительно дешевле и требуют питания только на статоре.

    Применение трехфазного асинхронного двигателя

    • Подъемники
    • Краны
    • Подъемники
    • Вытяжные вентиляторы большой мощности
    • Станки токарные приводные
    • Дробилки
    • Маслоэкстракционные заводы
    • Текстиль и др.

    Электрическое торможение асинхронных двигателей

    Электрическое торможение трехфазного двигателя

    Во многих промышленных системах двигатели останавливаются простым естественным замедлением .Время, необходимое для этого, зависит исключительно от инерции и момента сопротивления механизма, приводимого в движение двигателем. Однако часто требуется сократить время, и электрическое торможение является простым и эффективным решением.

    Электрическое торможение асинхронных двигателей — Рекомендации (фото предоставлено Крисом Шонцем через Flickr)

    По сравнению с механическими и гидравлическими тормозными системами, имеет преимущество устойчивости и не требует никаких изнашиваемых деталей.

    Варианты электрического торможения , описанные в этой статье //

    1. Торможение противотоком
      1. Двигатель с короткозамкнутым ротором
      2. Двигатель с контактным кольцом
    2. Торможение путем подачи постоянного тока
    3. Электронное торможение
    4. Торможение с перегрузкой
    5. Другие электрические тормозные системы

    1.Противоточное торможение — принцип

    Двигатель отключается от сети, пока он еще работает, а затем подключается к нему в обратном направлении. Это очень эффективная тормозная система с крутящим моментом , обычно превышающим пусковой момент, который необходимо остановить достаточно рано, чтобы предотвратить запуск двигателя в противоположном направлении.

    Несколько автоматических устройств используются для управления остановкой, как только скорость приближается к нулю:

    1. Детекторы остановки трения, детекторы центробежной остановки,
    2. Хронометрические устройства,
    3. Реле измерения частоты или напряжения ротора (двигатели с контактными кольцами) , так далее.

    1.1 Двигатель с короткозамкнутым ротором

    Перед тем, как выбрать эту систему (рис. 1), очень важно убедиться, что двигатель выдерживает противоточное торможение с требуемой от него нагрузкой. Помимо механической нагрузки, этот процесс подвергает ротор высоким тепловым нагрузкам, поскольку энергия, выделяемая при каждой операции торможения (энергия скольжения от сети и кинетическая энергия), рассеивается в сепараторе.

    Термическое напряжение при торможении в три раза больше, чем при разгоне .

    Рисунок 1 — Принцип противоточного торможения

    При торможении пики тока и крутящего момента заметно выше, чем при пуске.

    Для плавного торможения резистор часто подключается последовательно с каждой фазой статора при переключении на противоток. Это снижает крутящий момент и ток, как при пуске статора. Недостатки противоточного торможения в двигателях с короткозамкнутым ротором настолько велики, что эта система используется только для некоторых целей с маломощными двигателями .


    1.2 Электродвигатель с контактным кольцом

    Чтобы ограничить пиковый ток и крутящий момент, перед переключением статора на противоток, очень важно повторно вставить резисторы ротора, используемые для запуска , и часто добавлять дополнительную тормозную секцию (см. Рис. 2).

    Рисунок 2 — Принцип противоточного торможения в асинхронном токосъемном станке

    С правильным резистором ротора легко отрегулировать тормозной момент до требуемого значения. При переключении тока напряжение на роторе практически вдвое больше, чем при остановленном роторе, что иногда требует принятия особых мер предосторожности в отношении изоляции.

    Как и в двигателях с сепаратором , большое количество энергии выделяется в цепи ротора . Он полностью рассеивается (за вычетом нескольких потерь) в резисторах.

    Двигатель может быть остановлен автоматически одним из вышеупомянутых устройств или реле напряжения или частоты в цепи ротора. Эта система позволяет удерживать движущуюся нагрузку на умеренной скорости. Характеристика очень нестабильна (большие колебания скорости против небольших колебаний крутящего момента).

    Вернуться к вариантам электрического торможения ↑


    2. Торможение путем подачи постоянного тока

    Эта электрическая тормозная система используется в двигателях с контактным кольцом и короткозамкнутым ротором (см. Рисунок 3). По сравнению с системой противотока, цена источника выпрямленного тока компенсируется меньшим количеством резисторов . При использовании электронных регуляторов скорости и стартеров этот вариант торможения не увеличивает стоимость.

    Процесс включает изоляцию статора от сети и подачу выпрямленного тока на него .Выпрямленный ток создает постоянный магнитный поток в воздушном зазоре двигателя. Чтобы значение этого магнитного потока обеспечивало адекватное торможение, ток должен быть примерно в 1,3 раза больше номинального тока.

    Избыток тепловых потерь, вызванный этой небольшой перегрузкой по току, составляет и обычно компенсируется паузой после торможения .

    Рисунок 3 — Принцип торможения постоянным током в асинхронной машине

    Поскольку значение тока задается только сопротивлением обмотки статора, напряжение на источнике выпрямленного тока низкое.Источником обычно служат выпрямители или регуляторы скорости. Они должны выдерживать переходные скачки напряжения, создаваемые обмотками, которые только что были отключены от переменного напряжения (например, 380 В RMS).

    Движение ротора представляет собой скольжение по отношению к полю, зафиксированному в пространстве (тогда как поле вращается в противоположном направлении в противоточной системе). Двигатель ведет себя как синхронный генератор , разряжающийся в роторе .

    По сравнению с системой противотока //

    Имеются важные различия в характеристиках, полученных при подаче выпрямленного тока по сравнению с системой противотока:

    • Меньше энергии рассеивается в резисторах ротора или в клетке.Это только эквивалентно механической энергии, выделяемой движущимися массами. Единственная мощность, потребляемая от сети, предназначена для возбуждения статора,
    • Если нагрузка не является движущей нагрузкой, двигатель не запускается в обратном направлении,
    • Если нагрузка является движущей нагрузкой, система постоянно тормозит и удерживает загружать на малой скорости. Это ослабление торможения, а не торможение до полной остановки. Характеристика намного стабильнее, чем в противотоке.

    У электродвигателей с контактным кольцом характеристики скорости-момента зависят от выбора резисторов.

    В двигателях с короткозамкнутым ротором система позволяет легко регулировать тормозной момент, воздействуя на возбуждающий постоянный ток. Однако тормозной момент будет низким, когда двигатель работает на высокой скорости.

    Для предотвращения излишнего перегрева необходимо устройство для отключения тока в статоре при прекращении торможения.

    Вернуться к вариантам электрического торможения ↑


    3. Электронное торможение

    Электронное торможение достигается просто с помощью регулятора скорости , оснащенного тормозным резистором .Затем асинхронный двигатель действует как генератор, и механическая энергия рассеивается в запекающем резисторе без увеличения потерь в двигателе.

    Блок стартера двигателя выполняет четыре основные функции:

    1. Отключение нагрузки от главной цепи,
    2. Помощь в защите двигателя от короткого замыкания,
    3. Помощь в защите двигателя от тепловой перегрузки,
    4. Коммутация или управление (старт — стоп).

    Каждый пускатель двигателя может быть дополнен дополнительными функциями в зависимости от его назначения.Они могут включать:

    • Питание: регулятор скорости, устройство плавного пуска, реверсирование фаз и т. Д.,
    • Управление: вспомогательные контакты, выдержка времени, связь и т. Д.

    В зависимости от конструкции двигателя стартера, функции могут быть распределены по-разному. (см. рисунок 4) показаны возможные варианты расположения.

    Рисунок 4 — Различные функции и их комбинации для создания пускателя двигателя

    Подробнее о наиболее распространенных пусковых устройствах для двигателей низкого и среднего напряжения //

    Пускатели двигателей низкого и среднего напряжения

    Вернуться к разделу «Параметры электрического торможения» ↑


    4.Торможение за счет сверхсинхронного режима

    Здесь нагрузка двигателя приводит его на выше его синхронной скорости , заставляя его действовать как асинхронный генератор и развивать тормозной момент. За исключением некоторых потерь, энергия восстанавливается из сети. Для подъемного двигателя этот тип работы соответствует спуску груза с номинальной скоростью. Тормозной момент точно уравновешивает крутящий момент с нагрузкой и, вместо снижения скорости, запускает двигатель с постоянной скоростью.

    В двигателе с контактным кольцом все или часть резисторов ротора должны быть замкнуты накоротко, чтобы не допустить, чтобы двигатель работал намного выше его номинальной скорости, что было бы механически опасно.

    Эта система обладает идеальными характеристиками для ограничения движущей нагрузки:

    • Скорость стабильная и практически не зависит от крутящего момента,
    • Энергия восстанавливается и возвращается в сеть.

    Однако задействует только одну скорость , приблизительно равную номинальной скорости.Системы сверхсинхронного торможения также используются на многоскоростных двигателях для переключения с быстрой на медленную. Сверхсинхронное торможение легко достигается с помощью электронного регулятора скорости, который автоматически запускает систему при понижении настройки частоты.

    Вернуться к вариантам электрического торможения ↑


    5. Другие электрические тормозные системы

    Иногда можно встретить однофазное торможение. Это включает в себя питание двигателя между двумя фазами сети и подключение незанятого терминала к одному из двух других, подключенных к сети.

    Тормозной момент ограничен 1/3 максимального крутящего момента двигателя . Эта система не может тормозить полную нагрузку и должна поддерживаться противоточным торможением. Это система, которая вызывает большой дисбаланс и большие потери.

    Другая система — это торможение за счет ослабления вихревых токов. Он работает по принципу, аналогичному тому, который используется в промышленных транспортных средствах в дополнение к механическому торможению (электрические редукторы скорости). Механическая энергия рассеивается в редукторе скорости.Торможение контролируется просто обмоткой возбуждения. Однако недостатком является то, что инерция значительно увеличивается .


    Реверс //

    Трехфазные асинхронные двигатели (см. Рисунок 5) включаются в реверс простым способом: пересекает две обмотки, чтобы изменить направление вращения вращающегося поля в двигателе.

    Рисунок 5 — Принцип реверсирования асинхронного двигателя

    Двигатель обычно переключается в реверсивный режим, когда он находится в состоянии покоя. В противном случае реверсирование фаз приведет к противоточному торможению (см. Параграф о двигателе с контактным кольцом).Также можно использовать другие электрические тормозные системы, описанные выше.

    Реверс однофазного двигателя — еще одна возможность, если есть доступ ко всем обмоткам.

    Вернуться к вариантам электрического торможения ↑

    Ссылка // Руководство по решениям автоматизации — Schneider Electric

    Конструкция, работа, различия и применение

    В электрических машинах, таких как двигатели, мы часто путаемся с типами двигателей, таких как синхронный двигатель, а также асинхронный двигатель с их применением.Эти двигатели используются в различных приложениях благодаря надежности, а также прочности. Как следует из названия, название этого двигателя происходит от того факта, что ротор в двигателе работает асинхронно с вращающимся магнитным полем. Итак, в этой статье дается обзор асинхронного двигателя, конструкции, принципа работы и т. Д.

    Что такое асинхронный двигатель?

    Определение: Электродвигатель, работающий с переменным током, известен как асинхронный двигатель.Этот двигатель в основном работает на индуцированном токе внутри ротора от вращающегося магнитного поля статора. В этой конструкции двигателя движение ротора не может быть синхронизировано через движущееся поле статора. Поле вращающегося статора этого двигателя может индуцировать ток в обмотках ротора. В свою очередь, этот ток будет создавать силу, толкающую ротор в направлении статора. В этом двигателе, поскольку ротор не совпадает по фазе со статором, создается крутящий момент.


    Асинхронный двигатель

    Это наиболее распространенный тип двигателя.В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем. Основная особенность этого мотора в том, что скорость не может быть изменена. Рабочая скорость этого двигателя в основном зависит от частоты источника питания, а также от номера. полюсов.

    Конструкция асинхронного двигателя

    В данной конструкции двигателя нет магнитов.В этой конструкции двигателя фазы могут быть соединены с катушками. Так что магнитное поле может быть создано. В этом двигателе ток внутри ротора может быть активирован за счет индуцированного напряжения вращающегося поля. Как только магнитное поле проходит через ротор, на роторе индуцируется напряжение. Потому что магнитное поле ротора может быть создано за счет магнитного поля статора. Обычно магнитное поле ротора движется асинхронно по направлению к магнитному полю статора или с задержкой во времени.Таким образом, задержка между двумя магнитными полями может быть известна как «проскальзывание».

    Конструкция асинхронного двигателя

    Работа асинхронного двигателя

    Принцип работы этого двигателя почти такой же, как и у синхронного двигателя, за исключением внешнего возбудителя. Эти двигатели, также называемые асинхронными двигателями, работают по принципу электромагнитной индукции, когда ротор в этом двигателе не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока. У этих двигателей нет никаких внешних устройств для стимуляции ротора внутри двигателя.Таким образом, скорость вращения ротора в основном зависит от нестабильной магнитной индукции.

    Изменяющееся электромагнитное поле может вызвать вращение ротора с меньшей скоростью, чем магнитное поле статора. Когда скорость ротора, а также скорость магнитного поля внутри статора изменяется, эти двигатели называются асинхронными двигателями. Изменение скорости можно назвать скольжением.

    Разница между синхронным и асинхронным двигателем

    Разница между синхронным и асинхронным двигателем приведена в следующей таблице.

    Функция Синхронный двигатель

    Асинхронный двигатель

    Определение Это один из видов ротора статора и скорости вращения статора. скорость эквивалентна.

    N = NS = 120f / P

    Это один из видов машин, в которых ротор вращается с меньшей скоростью по сравнению с синхронной скоростью.

    Н меньше NS

    Тип Типы синхронного: переменное сопротивление, бесщеточный, гистерезис и переключаемое сопротивление. Асинхронный двигатель переменного тока также известен как асинхронный двигатель.
    Скольжение Значение скольжения этого двигателя равно нулю Значение скольжения этого двигателя не равно нулю
    Стоимость Это дорого Это дешевле
    КПД Высокий КПД Низкий КПД
    Скорость Скорость двигателя не зависит от неравенства нагрузки. Скорость двигателя уменьшается при увеличении нагрузки.
    Электропитание Электропитание может подаваться на ротор в двигателе Ротор в этом двигателе не нуждается в токе.
    Самозапуск Этот двигатель не самозапускается Этот двигатель самозапускается
    Влияние крутящего момента Как только приложенное напряжение изменится, это не повлияет на крутящий момент этого двигателя Как только поданное напряжение изменится, это повлияет на крутящий момент этого двигателя
    Коэффициент мощности Коэффициент мощности может быть изменен после изменения возбуждения на основе запаздывания, единицы или опережения. Работает просто с запаздывающим коэффициентом мощности.
    Применения Эти двигатели применяются в промышленности, на электростанциях и т. Д. Этот двигатель также используется в качестве регулятора напряжения Эти двигатели применяются в вентиляторах, центробежных насосах, бумажных фабриках, воздуходувках, подъемниках, компрессорах и текстильные фабрики и т. д.

    Преимущества

    Асинхронный двигатель имеет следующие преимущества.

    • Меньшие затраты
    • Простота обслуживания
    • Высокая эффективность при работе с частичной нагрузкой
    • Подходит для высоких скоростей вращения, что позволяет достигать высоких оборотов в секунду вместе с инверторами VECTOPOWER

    Применения

    Большинство двигатели, используемые в различных приложениях в мире, являются асинхронными.Приложения в основном включают следующее.

    • Центробежные насосы
    • Воздуходувки
    • Вентиляторы
    • Конвейеры
    • Компрессоры
    • Тяжелые краны
    • Лифты
    • Токарные станки
    • Бумажные фабрики
    • 902 Почему асинхронный двигатель еще называют асинхронным двигателем?

      Асинхронный двигатель зависит от индуцированного тока в роторе от вращающегося магнитного поля в статоре.

      2). Какие бывают типы асинхронных двигателей?

      Это однофазные и трехфазные двигатели

      3). В чем главная особенность асинхронного двигателя?

      Главной особенностью этого двигателя является то, что скорость не может изменяться.

      4). Каков коэффициент мощности асинхронного двигателя?

      Этот мотор работает просто на отстающей п.ф.

      Итак, это все об асинхронном двигателе. Эти двигатели часто используются в 90% приложений по всему миру из-за высокой прочности и надежности.Эти двигатели используются в различных движущихся или вращающихся машинах, таких как лифты, вентиляторы, шлифовальные машины и т. Д. Вот вопрос к вам, каковы недостатки асинхронного двигателя?

      Асинхронные двигатели переменного тока | Как работают электродвигатели переменного тока Асинхронные электродвигатели переменного тока

      | Как работают двигатели переменного тока — объясните это

      Реклама

      Криса Вудфорда. Последнее изменение: 21 апреля 2020 г.

      Вы знаете, как работают электродвигатели? Ответ, наверное, да и нет! Хотя многие из нас узнали, как базовые моторные работы, из простых научных книг и веб-страниц, таких как эта, многие из двигатели, которые мы используем каждый день — от заводских машин до электропоезда — вообще-то так не работают.Какие книги рассказывают нам о простых двигателях постоянного тока (DC), которые имеют петля из проволоки, вращающаяся между полюсами постоянного магнита; в реальной жизни, в большинстве двигателей большой мощности используется переменный ток (AC) и работают совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте посмотрим внимательнее!

      Фотография: Обычный асинхронный двигатель переменного тока со снятыми корпусом и ротором, на котором показаны медные обмотки катушек, составляющих статор (статическая, неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (подвижную часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено Министерством энергетики США / NREL.

      Как работает обычный двигатель постоянного тока?

      Иллюстрации: Электродвигатель постоянного тока основан на проволочной петле, вращающейся внутри фиксированного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют направление электрического тока каждый раз, когда провод перекручивается, что позволяет ему вращаться в одном и том же направлении.

      Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки, согнутый в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током сидит в магнитном поле.) Когда вы подключаете такой провод к батарее, через него протекает постоянный ток (DC), создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, в результате чего провод перевернуть.Обычно провод останавливался в этой точке, а затем снова переворачивался, но если мы воспользуемся хитроумным вращающимся соединением называется коммутатором, мы можем сделать обратный ток каждый раз, когда проволока переворачивается, а это значит, что проволока будет продолжать вращаться в в том же направлении, пока течет ток. Это суть простого электродвигателя постоянного тока, задуманного в 1820-е годы Майкла Фарадея и превратился в практическое изобретение о десять лет спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

      Прежде чем мы перейдем к двигателям переменного тока, давайте быстро резюмируйте, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю статическую часть двигатель (статор), а катушка с проводом, несущая электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который представляет собой постоянного магнита, пока вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянными магнитами поле статора и временное магнитное поле, создаваемое ротором, равно что заставляет мотор крутиться.

      Как работает двигатель переменного тока?

      В отличие от игрушек и фонариков, большинство домов, офисов, фабрики и другие здания не питаются от маленьких батареек: на них подается не постоянный ток, а переменный ток (AC), который меняет направление примерно 50 раз в секунду. (с частотой 50 Гц). Если вы хотите запустить двигатель от домашней электросети переменного тока, вместо батареи постоянного тока нужна другая конструкция двигателя.

      В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляя статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора находится цельная металлическая ось, проволочная петля, катушка, беличья клетка из металлических стержней и межсоединений (например, вращающиеся клетки, которым иногда удается развлечь мышей), или другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию во внутренний ротор, в двигателе переменного тока вы посылаете мощность на внешние катушки, которые составляют статор. Катушки запитываются попарно, последовательно, создает магнитное поле, вращающееся вокруг двигателя.

      Фото: Статор создает магнитное поле с помощью туго намотанных катушек из медной проволоки, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим электродвигателем. Иногда легче заменить обмотки двигателя новым проводом — это умелая работа, называемая перемоткой, что и происходит здесь. Фото Сета Скарлетта любезно предоставлено ВМС США.

      Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле производит (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него по петле. Если проводник представляет собой просто цельный кусок металла, вместо этого вокруг него циркулируют вихревые токи. В любом случае индуцированный ток производит собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает — вращающееся магнитное поле — также вращаясь.(Вы можете думать о роторе отчаянно пытается «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция — это ключ к тому, почему такой двигатель вращается, и поэтому он называется асинхронным.

      Как работает асинхронный двигатель переменного тока?

      Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

      1. Две пары катушек электромагнита, показанные здесь красным и синим цветом, поочередно запитываются источником переменного тока (не показан, но подключаются к выводам справа).Две красные катушки соединены последовательно и запитаны вместе, а две синие катушки катушки подключаются таким же образом. Поскольку это переменный ток, ток в каждой катушке не включается и не выключается внезапно (как предполагает эта анимация), а плавно повышается и падает в форме синусоидальной волны: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (не совпадают по фазе на 90 °).
      2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между ними, индуцирует электрический ток в роторе.Этот ток создает собственное магнитное поле, которое пытается противодействовать тому, что его вызвало (магнитное поле от внешних катушек). Взаимодействие между двумя полями заставляет ротор вращаться.
      3. Когда магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (теоретически) почти с одинаковой скоростью.

      Асинхронные двигатели на практике

      Что контролирует скорость двигателя переменного тока?

      В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером так называемого асинхронного двигателя переменного тока.Теоретическая скорость ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, чем он управляет) также играет роль, замедляя ротор. Чем больше нагрузка, тем больше «пробуксовка» между скоростью вращающегося магнитного поля и фактической скоростью ротора. Чтобы контролировать скорость двигателя переменного тока (чтобы он работал быстрее или медленнее), вы должны увеличивать или уменьшать частоту источника переменного тока, используя так называемый частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, питаемой от асинхронного двигателя переменного тока, вы на самом деле управляете схемой, которая изменяет частоту тока, приводящего в движение двигатель, вверх или вниз.

      Что такое «фаза» двигателя переменного тока?

      Нам не обязательно приводить в движение ротор с четырьмя катушками (двумя противоположными парами), как показано здесь. Можно построить асинхронные двигатели с любым другим расположением катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Количество отдельных электрических токов, возбуждающих питание катушек независимо, не в такте, известно как фаза двигателя, поэтому конструкция, показанная выше, представляет собой двухфазный двигатель (с двумя токами, питающими четыре катушки, которые работают не в шаге в двух парах. ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно расположенных катушек (три пары) или даже 12 катушек (три набора по четыре катушки) с одной, двумя или четырьмя катушками. включается и выключается одновременно тремя отдельными противофазными токами.

      Анимация: Трехфазный двигатель, питаемый тремя токами (обозначенными красным, зеленым и синие пары катушек), сдвиг по фазе на 120 °.

      Преимущества и недостатки асинхронных двигателей

      Преимущества

      Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ двигатели, напротив, имеют коллектор и угольные щетки, которые изнашиваются. выходят и нуждаются в замене время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

      Иллюстрации: Электродвигатели чрезвычайно эффективны, обычно преобразовывая около 85 процентов поступающей электроэнергии в полезную исходящую механическую работу. Даже в этом случае довольно много энергии теряется в виде тепла внутри обмоток, поэтому двигатели могут сильно нагреваться. Большинство двигателей переменного тока промышленной мощности имеют встроенные системы охлаждения.Внутри корпуса находится вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который приводит в движение любую машину, к которой прикреплен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса, минуя ребра вентиляции. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), причина в том, что они охлаждают двигатель.

      Недостатки

      Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, приводящего его в действие, он вращается со скоростью постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного легче контролировать, просто повышая или понижая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за их катушечной обмотки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника постоянного тока (например, солнечных батарей) без использования инвертора (устройства, которое преобразует постоянный ток в переменный). Это потому, что им нужно изменяющееся магнитное поле, чтобы вращать ротор.

      Кто изобрел асинхронный двигатель?

      Изображение: оригинальный дизайн Николы Теслы для асинхронного двигателя переменного тока. Он работает точно так же, как и на анимации выше, с двумя синими и двумя красными катушками, поочередно запитываемыми от генератора справа.Это произведение взято из оригинального патента Tesla, депонированного в Бюро по патентам и товарным знакам США, с которым вы можете ознакомиться в приведенных ниже ссылках.

      Никола Тесла (1856–1943) был физиком. и плодовитый изобретатель, чей огромный вклад в науку и технику никогда не были полностью признаны. После того, как он приехал в Соединенные Штаты в возрасте 28 лет, он начал работал на известного пионера электротехники Томаса Эдисона. Но двое мужчин поссорились катастрофически и вскоре стали непримиримыми соперниками.Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал обратное. Со своим партнером Джорджем Westinghouse, Тесла отстаивал AC, в то время как Эдисон был полон решимости управлять миром на DC и придумал всевозможные рекламные трюки, чтобы доказать, что кондиционер слишком опасен для широкого использования (изобретение электрического стула, чтобы доказать, что переменный ток может быть смертельным, и даже убил слона Топси током переменного тока, чтобы показать, насколько это было смертельно опасно и жестоко). Битва между этими двумя очень разные взгляды на электроэнергию иногда называют Войной течений.

      Несмотря на лучшие (или худшие) усилия Эдисона, Tesla победила, и теперь электричество переменного тока питает большую часть мира. Во многом именно поэтому многие электродвигатели, которые приводить в действие бытовую технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Никола Тесла сконструировал в 1880-х годах (его патент, проиллюстрированный здесь, был выдан в мае 1888 года). Итальянский физик по имени Галилео Феррарис независимо друг от друга придумал ту же идею примерно в то же время, но история обошлась с ним еще более жестоко, чем Тесла и его имя теперь почти забыты.

      Если вам понравилась эта статья …

      … вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

      Узнать больше

      На этом сайте

      На других сайтах

      Книги

      Для читателей постарше
      Для младших читателей
      • Электричество для молодых людей: забавные и легкие проекты «Сделай сам» Марка де Винка. Maker Media / O’Reilly, 2017. Отличное практическое введение в электричество, включая несколько занятий, связанных с созданием электродвигателей с нуля.Возраст 9–12 лет.
      • Эксперименты с электродвигателем Эда Соби. Enslow, 2011. Это отличное общее введение в электродвигатели с большим количеством более широкого научного и технологического контекста. Однако по очевидным практическим соображениям и соображениям безопасности он ориентирован только на проекты с двигателями постоянного тока и лучше всего подходит для детей в возрасте от 11 до 14 лет.
      • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих книг, рассказывающих об усилиях человека по использованию энергии с древних времен до наших дней.Возраст 10+.
      • Никола Тесла: разработчик электроэнергии Крисом Вудфордом в «Изобретатели и изобретения», том 5. Нью-Йорк: Маршалл Кавендиш, 2008. Краткую биографию Теслы я написал несколько лет назад. На момент написания все это было доступно в Интернете по этой ссылке в Google Книгах. Возраст 9–12 лет.

      Патенты

      Патенты

      предлагают более глубокие технические детали и собственные идеи изобретателя о своей работе. Вот очень небольшая подборка многих патентов США, касающихся асинхронных двигателей.

      • Патент США 381 968: Электромагнитный двигатель Николы Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
      • Патент США 2,959,721: Многофазные асинхронные двигатели, Томас Бартон и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 г. Асинхронный двигатель с улучшенным контролем скорости.
      • Патент США 4311932: Жидкостное охлаждение для асинхронных двигателей, Раймонд Н. Олсон, Sundstrand Corporation, 19 января 1982 г. Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
      • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом, разработанный Умешом К. Гупта, Vickers, Inc.

    alexxlab / 03.05.2021 / Разное

    Добавить комментарий

    Почта не будет опубликована / Обязательны для заполнения *