Виды рулевого управления автомобилей: Рулевое управление автомобиля: устройство, виды и требования
Рулевое управление: назначение и виды
Рулевое управление служит для обеспечения движения автомобиля в заданном водителем направлении. Рулевое управление состоит из рулевого механизма и рулевого привода.
Рулевой механизм служит для увеличения и передачи на рулевой привод усилия, прилагаемого водителем к рулевому колесу. В легковых автомобилях в основном применяются рулевые механизмы червячного и реечного типа.
К достоинствам механизма «червяк-ролик» относятся: низкая склонность к передаче ударов от дорожных неровностей, большие углы поворота колес, возможность передачи больших усилий. Недостатками являются большое количество тяг и шарнирных сочленений с вечно накапливающимися люфтами, «тяжелый» и малоинформативный руль. Минусы в итоге оказались весомее плюсов. На современных автомобилях такие устройства практически не применяют.
Самый распространенный на сегодняшний день – реечный рулевой механизм. Малая масса, компактность, невысокая цена, минимальное количество тяг и шарниров – все это обусловило широкое применение. Механизм «шестерня-рейка» идеально подходит для переднеприводной компоновки и подвески McPherson, обеспечивая большую легкость и точность рулевого управления. Однако тут есть и минусы: из-за простоты конструкции любой толчок от колес передается на руль. Да и для тяжелых машин такой механизм не совсем подходит.

Рулевой привод предназначен для передачи усилия от рулевого механизма на управляемые колеса, обеспечивая при этом их поворот на неодинаковые углы. Если оба колеса повернуты на одинаковую величину, внутреннее колесо будет скрестись по дороге (скользить боком) что будет снижать эффективность рулевого управления. Это скольжение, которое также создает дополнительный нагрев и износ колеса, может быть устранено с помощью поворота внутреннего колеса на больший угол, чем угол поворота внешнего колеса. При движении на повороте каждое из колес описывает свою окружность отличную от другой, причем внешнее (дальнее от центра поворота) колесо движется по большему радиусу, чем внутреннее. А, так как центр поворота у них общий, то соответственно внутреннее колесо необходимо повернуть на больший угол, чем внешнее. Это обеспечивается конструкцией так называемой «рулевой трапеции», которая включает в себя поворотные рычаги и рулевые тяги с шарнирами. Необходимое соотношение углов поворота колес обеспечивается подбором угла наклона рулевых рычагов относительно продольной оси автомобиля и длины рулевых рычагов и поперечной тяги.
Содержание статьи
Рулевой механизм червячного типа

Рулевой механизм червячного типа состоит из:
– рулевого колеса с валом,
– картера червячной пары,
– пары «червяк-ролик»,
– рулевой сошки.
В картере рулевого механизма в постоянном зацеплении находится пара «червяк-ролик». Червяк есть ни что иное, как нижний конец рулевого вала, а ролик, в свою очередь, находится на валу рулевой сошки. При вращении рулевого колеса ролик начинает перемещаться по винтовой нарезке червяка, что приводит к повороту вала рулевой сошки.
Червячная пара, как и любое другое зубчатое соединение, требует смазки, и поэтому в картер рулевого механизма заливается масло, марка которого указана в инструкции к автомобилю. Результатом взаимодействия пары «червяк-ролик» является преобразование вращения рулевого колеса в поворот рулевой сошки в ту или другую сторону. А далее усилие передается на рулевой привод и от него уже на управляемые (передние) колеса. В современных автомобилях применяется безопасный рулевой вал, который может складываться или ломаться при ударе водителя о рулевое колесо во время аварии во избежание серьезного повреждения грудной клетки.
Рулевой привод, применяемый с механизмом червячного типа включает в себя:
– правую и левую боковые тяги,
– среднюю тягу,
– маятниковый рычаг,
– правый и левый поворотные рычаги колес.
Каждая рулевая тяга на своих концах имеет шарниры, для того чтобы подвижные детали рулевого привода могли
свободно поворачиваться относительно друг друга и кузова в разных плоскостях.
Реечный рулевой механизм

Рулевой привод состоит из двух горизонтальных тяг и поворотных рычагов телескопических стоек передней подвески. Тяги соединяются с поворотными рычагами при помощи шаровых шарниров. Поворотные рычаги приварены к стойкам передней подвески. Тяги передают усилие на поворотные рычаги телескопических стоек подвески колес и соответственно поворачивают их вправо или влево.
Основные неисправности рулевого управления
Увеличенный люфт рулевого колеса, а также стуки могут явиться следствием ослабления крепления картера рулевого механизма, рулевой сошки или кронштейна маятникового рычага, чрезмерного износа шарниров рулевых тяг или втулок маятникового рычага, износа передающей пары («червяк-ролик» или «шестерня-рейка») или нарушения регулировки ее зацепления. Для устранения неисправности следует подтянуть все крепления, отрегулировать зацепление в передающей паре, заменить изношенные детали.
Тугое вращение рулевого колеса может быть из-за неправильной регулировки зацепления в передающей паре, отсутствия смазки в картере рулевого механизма, нарушения углов установки передних колес. Для устранения неисправности необходимо отрегулировать зацепление в передающей паре рулевого механизма, проверить уровень и при необходимости долить смазку в картер, отрегулировать углы установки передних колес в соответствии с рекомендациями завода-изготовителя.
Уход за рулевым управлением
Всем известно выражение: «Лучшее лечение это – профилактика». Поэтому каждый раз, общаясь со своим автомобилем снизу (на смотровой яме или эстакаде), одним из первых дел следует проверить элементы рулевого привода и механизма. Все защитные резинки должны быть целы, гайки зашплинтованы, рычаги в шарнирах не должны болтаться, элементы рулевого управления не должны иметь механических повреждений и деформаций. Люфты в шарнирах привода легко определяются, когда помощник покачивает рулевое колесо, а вы на ощупь, по взаимному перемещению сочлененных деталей, находите неисправный узел. К счастью времена всеобщего дефицита прошли, и есть возможность приобрести качественные детали, а не те многочисленные подделки, которые выходят из строя через неделю эксплуатации, как это было в недавнем прошлом.
Решающую роль в долговечности деталей и узлов автомобиля играют стиль вождения, состояние дорог и своевременное обслуживание. Все это влияет и на срок службы деталей рулевого управления. Когда водитель постоянно дергает руль, крутит его на месте, прыгает по ямам и устраивает гонки по бездорожью – происходит интенсивный износ всех шарнирных соединений привода и деталей рулевого механизма. Если после «жесткой» поездки ваш автомобиль при движении стало уводить в сторону, то в лучшем случае вы обойдетесь регулировкой углов установки передних колес, ну а в худшем – затраты будут более ощутимы, так как придется заменить поврежденные детали. После замены любой из деталей рулевого привода или при уводе автомобиля от прямолинейного движения необходимо отрегулировать «сход-развал» передних колес. Работы по этим регулировкам следует проводить на стенде автосервиса с использованием специального оборудования.
Рулевое управление легкового автомобиля — устройство, виды и назначение
Рулевое управление – это узел транспортного средства, который предназначен для обеспечения выполнение поворота направо и налево. Поговорим более подробно о том, каково его устройство, каких он бывает видов, как работает и от каких неисправностей чаще всего страдает.
Устройство рулевого управления автомобиля
Вот из каких составных частей состоит система рулевого управления практически любого колесного транспортного средства:
- рулевое колесо;
- колонка;
- кардан;
- рулевой механизм;
- датчик;
- усилитель;
- привод.
Рулевое колесо – это привычный всем автомобильный руль, который находится в салоне автомобиля и с помощью которого водитель выполняет поворот.
Колонка – это основание руля, на котором он закреплен. Также она обеспечивает передачу усилия с рулевого колеса на кардан.
Кардан представляет собой вал, который обеспечивает передачу усилия с руля на усилитель.
Усилитель – это устройство, предназначенное для усиления усилия, которое автомобилист прилагает для выполнения поворота, а также для облегчения управления транспортным средством.
Рулевой механизм предназначен для преобразования вертикального вращения кардана в горизонтальное усилие, которое заставляет поворачиваться колеса транспорта.
Привод представляет собой систему тяг и направляющих, которые передают усилие с рулевого механизма непосредственно на колеса, тем самым обеспечивая выполнение поворота.
Похожие статьи
Все элементы конструкции, описанные выше, располагаются в передней части рамы автомобиля.
Следует отметить, что выше описано общее устройство узла. Некоторые нюансы конструкции могут отличаться в зависимости от модели машины. Однако в целом она идентична на всех автомобилях.
Главное назначение системы – обеспечения возможности выполнения транспортным средством поворота в необходимый момент.
Рулевое управление для автомобилей
Принцип работы системы рулевого управления
Принцип работы системы выглядит следующим образом.
- Водитель, желая выполнить поворот, вращает рулевое колесо в салоне машины.
- В результате этого действия начинает вращаться колонка, а вместе с ней и кардан.
- Энергия с кардана поступает на усилитель. Здесь она усиливается с помощью гидравлики или электричества.
- Уже усиленное поворотное усилие поступает на рулевой механизм. Здесь оно преобразуется. Изначально вращение колонки и кардана происходит под углом (практически вертикально). Механизм переводит его в горизонтальную плоскость, чтобы оно могло быть передано на колеса.
- С механизма энергия поступает на привод. Это устройство преобразует ее с помощью системы тяг и направляющих таким образом, чтобы колеса изменили свое положение.
- Под действием привода колеса изменяют свое положение и транспортное средство осуществляет поворот.
В автомобилях, где отсутствует усилитель руля, схема работы системы выглядит точно так же, однако упомянутое устройство в ней участия не принимает. На этом отличия заканчиваются.
Виды усилителей рулевого управления
В зависимости от типа конструкции выделяют несколько разновидностей систем рулевого управления.
- Реечная. Является самым распространенным типом. Энергия с руля на колеса передается с помощью специальной рейки, которая расположена в поперечной плоскости по отношению к раме и кузову транспортного средства (отсюда и название). Это очень простая, но в то же время чрезвычайно эффективная конструкция, обеспечивающая хорошую передачу поворотного усилия. Имеет ряд недостатков, главный из которых – чувствительность к ударам, возникающим из-за неровностей дорожного покрытия. По этой причине плохо подходит для эксплуатации во время передвижения по пересеченной местности.
- Червячная. Как понятно из названия, этот тип системы использует червячную передачу. Она представляет собой совокупность вала с нанесенными на него канавками и зубчатой шестерни. Зубцы последней входят в канавки вала. Таким образом, при повороте вала поворачивается и шестерня. Червяная конструкция имеет целый ряд плюсов – она менее чувствительна к ударам, в отличие от реечной, самостоятельно тормозит поворот, что избавляет автомобилиста от постоянного контроля руля. Главный недостаток этой разновидности – низкий КПД.
- Винтовая. Напоминает червячную. Однако вместо вала и шестерни в данном случае используются винт и рейка с винтовой резьбой. При этом полости между деталями заполнены шариками, напоминающими подшипниковыми. В общих чертах принцип действия этой конструкции напоминает схему работы червячной передачи. Однако она имеет ряд преимуществ по сравнению с последней. Основное из них – более высокий КПД. В качестве недостатка подобной конструкции можно назвать ее относительную сложность – в случае износа одного из шариков замену ему придется подбирать точно по диаметру, а это удается не всегда с первого раза. В противном случае возникнет повышенное трение и механизм не будет нормально функционировать. Чаще всего устанавливается на большегрузные автомобили, хотя иногда встречается и на легковых.
В зависимости от наличия усиления системы делят на 4 основных разновидности.
- Без усилителя. В данном случае устройство, делающее поворотное усилие более интенсивным, отсутствует полностью.
- С гидроусилителем. В подобных системах стоит гидравлический усилитель, который работает за счет жидкости под давлением. Является самой распространенной на сегодняшний день разновидностью.
- С электроусилителем. Поворотное усилие делается более интенсивным благодаря электрическим двигателям, которые питаются от бортовой электросети транспортного средства.
- Гибридные схемы. Как правило, сочетают в себе гидравлическое и электрическое усиление.
В зависимости от наличия дополнительных систем узел делят на следующие разновидности.
- AFS (или с активным рулевым управлением). Суть системы в том, что она подразумевает наличие датчика, который передает информацию о передаточном усилии на ЭБУ. После обработки этих сведений блок управления или увеличивает, или уменьшает усилие в автоматическом режиме. В конструкции присутствует планетарный редуктор.
- С динамическим управлением. Принцип работы аналогичен AFS, но вместо планетарного редуктора в данном случае используются электрические двигатели, которые и отвечают за увеличение усилия, передаваемого на колеса.
- С адаптивным управлением. Суть системы в том, что руль не имеет плотной связи с колесами. К нему подключен датчик, связанный с ЭБУ. При повороте он отправляет на блок соответствующий сигнал, а тот, в свою очередь, заставляет поворачиваться колеса. ЭБУ при этом в автоматическом режиме на основе показаний датчиков определяет, какое усилие необходимо применить для выполнения поворота.
Особенности правостороннего и левостороннего руля
На сегодняшний день в части стран мира правостороннее движение, а в части – левостороннее. Рулевое колесо при этом располагается либо слева, либо справа. Это означает, что элементы конструкции, передающие с него усилия на колеса также расположены либо слева, либо справа.
Однако это не означает, что руль невозможно перенести на другое место. Такую процедуру выполняют во многих автосервисах. Впрочем, нужно понимать, что она достаточно сложна, так как требует:
- поиска или изготовления на заказ соответствующих деталей;
- приобретения новой приборной панели;
- перенесения всех приборов на другую сторону.
Все это делает смену положения руля дорогим удовольствием, поэтому многие водители, которые приобрели авто в стране с другим типом движения, оставляют его на прежнем месте.
Гораздо проще в этом плане дело обстоит с колесной дизельной техникой. Многие трактора, грейдеры, уборочные машины имеют гидрообъемное рулевое управление. При использовании подобной конструкции положение руля не имеет значения, поэтому его можно установить как справа, так и слева. Некоторые модели самоходных машин даже имеют гнезда для установки рулевого колеса с обеих сторон приборной панели.
Однако на легковых автомобилях гидрообъемное управление не устанавливают. Его изредка можно встретить на вездеходах и внедорожниках.
Неисправности рулевого управления
О том, что с рулевым управлением проблемы, может свидетельствовать один из следующих «симптомов»:
- увеличение люфта (то есть свободного хода) руля, из-за чего управлять машиной становится сложнее;
- сильное сопротивление рулевого колеса при вращении;
- заедание или клин руля;
- стук, другие посторонние звуки при выполнении поворота;
- вытекание масла из картера системы.
Также о проблемах может говорить уменьшенный угол поворота колес при полном повороте руля.
Чаще всего встречаются следующие неисправности.
- Появление зазоров в шарнирных креплениях тяги или нарушение зацепления червячной передачи. Такая проблема вызывает увеличенный ход руля. Диагностируется наблюдением за работой механизма во время поворота. «Лечится» неисправность заменой шарнира или корректной настройкой червячной передачи.
- Износ. Чаще всего изнашиваются втулки или ось маятникового рычага, в результате чего при повороте начинают появляться посторонние звуки (чаще всего – характерный стук). Иногда помогает затягивание оси рычага имеющейся гайкой, но в большинстве случаев требуется замена изношенных компонентов.
- Деформация рулевых тяг. Вызывает усиление сопротивления руля при выполнении поворота. Решается проблема заменой тяг на новые или их выпрямлением до исходной формы.
- Недостаток масла в картере. Также вызывает более тугой проворот руля. Обычно вызывается износом сальников, в результате чего масло начинает подтекать. Решается проблема заменой этих деталей, а также восполнением потерянного масла путем дозаправки системы.
- Обрыв привода насоса гидроусилителя. Приводит к тому, что поворот осуществляется без усиления и руль становится очень тугим. Устраняется путем замены приводного ремня.
Следует отметить, что проблемы с поворотом могут быть вызваны не рулевой системой, а некорректной балансировкой колес или недостаточным давлением воздуха в шинах.
Чтобы избежать проблем с системой рулевого управления, необходим ее периодический осмотр. Особенно это касается гидроусилителя – он является одним из самых «капризных» элементов. Если своевременно устранять мелкие неприятности, более серьезных поломок не возникнет. А значит, не возникнет и проблем при эксплуатации транспортного средства.
Вконтакте
Одноклассники
Рулевое управление автомобиля
Механизмы управления автомобиля — это механизмы, которые предназначены обеспечивать движение автомобиля в нужном направлении, и его замедление или остановку в случае необходимости. К механизмам управления относятся рулевое управление и тормозная система автомобиля.
Рулевое управление автомобиля — это совокупность механизмов, служащих, для поворота управляемых колес, обеспечивает движение автомобиля в заданном направлении. Передачу усилия поворота рулевого колеса к управляемым колесам обеспечивает рулевой привод. Для облегчения управления автомобилем применяют усилители руля, которые делают поворот руля легким и комфортным.
Устройство рулевого управления:
1 — поперечная тяга; 2 — нижний рычаг; 3 — поворотная цапфа; 4 — верхний рычаг; 5 — продольная тяга; 6 — сошка рулевого привода; 7 — рулевая передача; 8 — рулевой вал; 9 — рулевое колесо.
Принцип работы рулевого управления
Каждое управляемое колесо установлено на поворотном кулаке, соединенном с передней осью посредством шкворня, который неподвижно крепится в передней оси. При вращении водителем рулевого колеса усилие передается посредством тяг и рычагов на поворотные кулаки, которые поворачиваются на определенный угол (задает водитель), изменяя направление движения автомобиля.
Механизмы управления, устройство
Рулевое управление состоит из следующих механизмов :
1. Рулевой механизм — замедляющая передача, преобразовывающая вращение вала рулевого колеса во вращение вала сошки. Этот механизм увеличивает прикладываемое к рулевому колесу усилие водителя и облегчает его работу.
2. Рулевой привод — система тяг и рычагов, осуществляющая в совокупности с рулевым механизмом поворот автомобиля.
3. Усилитель рулевого привода (не на всех автомобилях) — применяется для уменьшения усилий, необходимых для поворота рулевого колеса.
Устройство рулевого управления
1 – Рулевое колесо; 2 – корпус подшипников вала; 3 — подшипник; 4 – вал колеса рулевого управления; 5 – карданный вал рулевого управления; 6 – тяга рулевой трапеции; 7 — наконечник; 8 — шайба; 9 – палец шарнирный; 10 – крестовина карданного вала; 11 – вилка скользящая; 12 – наконечник цилиндра; 13 – кольцо уплотнительное; 14 – гайка наконечника; 15 — цилиндр; 16 –поршень со штоком; 17 – кольцо уплотнительное; 18 – кольцо опорное; 19 — манжета; 20 – кольцо нажимное; 21 — гайка; 22 – муфта защитная; 23 – тяга рулевой трапеции; 24 — масленка; 25 – наконечник штока; 26 – кольцо стопорное; 27 — заглушка; 28 – пружина; 29 – обойма пружины; 30 – кольцо уплотнительное; 31 – вкладыш верхний; 32 – палец шаровый; 33 – вкладыш нижний; 34 — накладка; 35 – муфта защитная; 36 – рычаг поворотного кулака; 37 – корпус поворотного кулака.
Устройство рулевого привода:
1 – корпус золотника; 2 – кольцо уплотнительное; 3 – кольцо плунжеров подвижное; 4 — манжета; 5 – картер рулевого механизма; 6 — сектор; 7 – пробка заливного отверстия; 8 — червяк; 9 – боковая крышка картера; 10 — крышка; 11 – пробка сливного отверстия; 12 – втулка распорная; 13 – игольчатый подшипник; 14 – сошка рулевого управления; 15 – тяга сошки рулевого управления; 16 – вал рулевого механизма; 17 — золотник; 18 — пружина; 19 — плунжер; 20 – крышка корпуса золотника.
Бак масляный. 1 – Корпус бачка; 2 — фильтр; 3 – корпус фильтра; 4 – клапан перепускной; 5 — крышка; 6 — сапун; 7 – пробка заливной горловины; 8 — кольцо; 9 – шланг всасывающий.
Насос усилительного механизма. 1 – крышка насоса; 2 — статор; 3 — ротор; 4 — корпус; 5 – игольчатый подшипник; 6 — проставка; 7 — шкив; 8 — валик; 9 — коллектор; 10 – диск распределительный.
Принципиальная схема. 1 – трубопроводы високого давления; 2 – механизм рулевой; 3 – насос усилительного механизма; 4 – шланг сливной; 5 – бак масляный; 6 – шланг всасывающий; 7 – шланг нагнетательный; 8 – механизм усилительный; 9 – шланги.
Рулевое управление автомобиля КамАЗ
1 — корпус клапана управления гидроусилителем; 2 — радиатор; 3 — карданный вал; 4 — рулевая колонка; 5 — трубопровод низкого давления; 6 — трубопровод высокого давления; 7— бачок гидросистемы; 8— насос гидроусилителя; 9 — сошка; 10 — продольная тяга; 11 — рулевой механизм с гидроусилителем; 12 — корпус углового редуктора.
Механизм рулевого управления автомобиля КамАЗ :
1 — реактивный плунжер; 2— корпус клапана управления; 3 — ведущее зубчатое колесо; 4 — ведомое зубчатое колесо; 5, 22 и 29— стопорные кольца; 6 — втулка; 7 и 31 — упорные колы к», 8 — уплотнительное кольцо; 9 и 15 — бинты; 10 — перепускной клапан; 11 и 28 — крышки; 12 — картер; 13 — поршень-рейка; 14 — пробка; 16 и 20— гайки; 17 — желоб; 18 — шарик; 19 — сектор; 21 — стопорная шайба; 23 — корпус; 24 — упорный подшипник; 25 — плунжер; 26 — золотник; 27— регулировочный винт; 30— регулировочная шайба; 32— зубчатый сектор вала сошки.
Рулевое управление автомобиля ЗИЛ;
1 — насос гидроусилителя; 2 — бачок насоса; 3 — шланг низкого давления; 4 — шланг высокого давления; 5 колонка; 6 — контактное устройство сигнала; 7 — переключатель указателей поворота; 8 карданный шарнир; 9 — карданный вал; 10 — рулевой механизм; 11 — сошка.
Рулевое управление автомобиля МАЗ-5335:
1 — продольная рулевая тяга; 2— гидроусилитель рулевого привода; 3 — сошка; 4 — рулевой механизм; 5— карданный шарнир привода рулевого управления; 6 — рулевой вал; 7— рулевое колесо; 8 — поперечная рулевая тяга; 9— левый рычаг поперечной рулевой тяги; 10 — поворотный рычаг.
Подрубрика сайта: Рулевое управление


Первым массовым автомобилем с гидроусилителем стала модель Chrysler Imperial 1951 года, а в Советском




Гидравлический усилитель руля (ГУР) – это система, входящая в состав рулевого управления автомобиля и




Рулевая рейка – элемент рулевого управления, силовой узел, с помощью которого передние колеса автомобиля




Рулевая колонка является частью системы рулевого управления автомобиля. Ее функция в общем устройстве




Несмотря на огромную популярность и повсеместное распространение электроусилителей, гидравлический усилитель




Современный автомобиль сложно представить без усилителя рулевого управления, облегчающего водителю поворот руля.




Рулевой привод представляет собой механизм, состоящий из рычагов, тяг и шаровых шарниров и предназначенный




Рулевое управление – одна из основных систем автомобиля, которая представляет собой совокупность




В настоящее время сложно себе представить автомобиль не оснащенный усилителем рулевого управления.




Основой рулевого управления любого автомобиля является рулевой механизм. Он предназначен для преобразования


Навигация по записям
Рулевое управление: устройство, принцип работы, виды
Первые автомобили, в частности, автомобиль Карла Бенца, который считается первым в мире серийным авто, были трехколесными. Почему? Да просто конструкторы не могли придумать, как заставить оба передних колеса синхронно поворачивать в одну сторону. Поэтому переднее колесо было одно, а вместо привычной сегодня «баранки» стоял рычаг.
Но такое положение вещей не продлилось долго. Следующие «самоходные телеги» уже имели 4 колеса и худо-бедно справлялись с маневрами. Так начало развиваться рулевое управление, назначение которого не изменилось за все годы существования автомобиля.
Устройство и принцип работы типичного рулевого управления
https://www.youtube.com/watch?v=TNjrSKwj4V0
На абсолютном большинстве автомобилей рулевое управление реализовано по одинаковому принципу. Конечно, есть отличия (например, тип усилителя руля), но тип общей компоновки не меняется.
Устройство рулевого управления- Руль стоит первым в цепочке управления автомобилем. Это не только способ передать сигнал системе управления, в какую сторону и как резко поворачивать, но и способ обратной связи, а также элемент пассивной безопасности автомобиля (в рулевое колесо встраивается подушка).
- Рулевая колонка – промежуточный элемент между самим рулем и механизмом поворота. На рулевую колонку может крепиться система безопасности, замок зажигания, рычаги включения дворников и поворотников.
- Следующий на очереди – рулевой механизм, с помощью которого поворот руля (а следовательно, и рулевой колонки) преобразовывается в команду на поворот для рулевых тяг.
- После того, как рулевой механизм передал усилие на рулевую рейку, в действие приходят рулевые тяги с наконечниками и рычагами. Они соединены с поворотными кулаками передних колес и заставляют их поворачивать в нужном направлении на нужный угол.
- Чтобы с вождением автомобиля справился любой человек, применяется гидравлический или электрический усилитель руля.
Классификация рулевого управления
Принципиальных отличий между разными типами рулевого управления нет, но часто его классифицируют по типу редуктора рулевого механизма:
Тип редуктора «шестерня-рейка».
Устройство рулевого управления с редуктором типа «шестерня-рейка» 1 — руль; 2 — рулевой вал с шестерней; 3 — рейка; 4 — рулевые тяги; 5 — поворотные рычаги; 6 — колеса.Это самая распространенная разновидность рулевого редуктора, которая за годы использования показала свою надежность.
Принцип действия очень простой: на рулевом валу (который отходит от рулевой колонки) закреплена продолговатая шестерня. Рулевая рейка имеет зубчатый участок, который входит в зацепление с этой шестерней. При вращении руля шестерня вращается на месте и толкает зубчатую рейку в одну или другую сторону. Соответственно приходят в действие и рулевые тяги.
Передаточное число на рейке может быть неизменным, а может меняться ближе к краям. Получить такой эффект просто: нужно изменить наклон зубьев на рейке. Благодаря этому для поворота на большой угол не нужно «крутить баранку» до посинения, количество оборотов руля для маневра сокращается.
Тип редуктора «червяк-ролик».
Устройство рулевого управления с редуктором типа «червяк-ролик»: 1 — руль; 2 — рулевой вал с червяком; 3 — ролик с валом сошки; 4 — рулевая сошка; 5 — средняя тяга; 6 — боковые тяги; 7 — поворотные рычаги; 8 — колеса; 9 — маятниковый рычаг; 10 — шарниры рулевых тяг.Этот тип редуктора можно назвать устаревшим, поскольку его давно перестали устанавливать на автомобили. Тем не менее, он еще встречается на старых машинах.
В основе заложена червячная передача, в которой червяк закреплен на дополнительном валу рулевой колонки. При повороте руля вращается червяк и приводит в движение ролик, стоящий с ним в зацеплении.
Сдвигаясь по нарезке червяка, ролик заставляет вращаться вал, на который он установлен и к которому присоединен рычаг рулевой сошки. Вал вращается, рулевая сошка описывает полукруг, приводит в действие остальные элементы рулевого привода (среднюю тягу, маятниковый рычаг, боковую тягу, поворотные кулаки колес).
Винтовой тип редуктора.
Устройство редуктора рулевого управления винтового типаПо принципу действия он очень похож на червячный редуктор. Однако на дополнительном валу рулевой колонки установлен не червяк, а винт. Он входит в зацепление с гайкой, на наружную сторону которой нанесен зубчатый обод. Когда вращается винт, гайка поворачивается в одну или другую сторону и поворачивает рулевую сошку, а она уже направляет остальные компоненты рулевого привода.
В усовершенствованных моделях на винт ставится шариковая шайба, которая служит промежуточным элементом между ним и гайкой. При вращении винта шарики сдвигают шайбу, а она поворачивает гайку.
Когда на легковые автомобили начали массово устанавливать гидроусилитель руля (ГУР), червячный редуктор вышел из обихода – к нему ГУР не поставишь. На его место пришел реечный привод, а винтовой «перекочевал» на тяжелые автомобили.
Кроме редуктора, в рулевом механизме могут отличаться типы передачи усилия на управляемые колёса. Более простой считается конструкция с реечным редуктором: от рулевой рейки отходят две рулевые тяги, которые крепятся к поворотным кулакам колес. Для того, чтобы соединение было подвижным, но без люфтов, используются шаровые наконечники.
На редуктор с червячной или винтовой передачей подходит другой тип рулевого механизма. Его называют рулевой трапецией и состоит он из довольно сложной системы рычагов. Сложность конструкции оправдывается большей мощностью, так что рулевая трапеция с винтовым редуктором ставится на грузовые автомобили, в то время как рулевая рейка лучше подходит для легковых.
И, наконец, систему рулевого управления классифицируют по типу усилителя: ГУР, ЭГУР и ЭУР.
- ГУР – гидравлический усилитель, классический тип. Он и сегодня ставится на автомобили, но постепенно уступает дорогу более современным видам усилителя;
- ЭГУР – электрогидравлический усилитель руля. В нём электромотор выполняет вспомогательную функцию, в то время как основная работа выполняется гидравликой;
- ЭУР – электроусилитель, современный способ управлять автомобилем. Электромотор умножает усилие, которое водитель прикладывает к рулю, то есть работает без каких-либо гидравлических элементов.
Основные неисправности рулевого управления
Конструкторы делают элементы рулевого управления из надежных износостойких материалов. Однако любая деталь имеет свой ресурс и свой запас прочности, так что рано или поздно в рулевом управлении начинают появляться неисправности и дефекты. Они достаточно типичные для большинства автомобилей.
- Износ шарниров рулевых тяг. По сути, любой шарнир в рулевом управлении – слабое место, особенно это касается конструкции рулевой трапеции. Однако рулевые тяги постоянно страдают от нагрузок, ударов и агрессивного вождения, и их шарниры выходят из строя чаще всего. Как только шарнирное соединение выходит из строя, оно дает о себе знать стуком во время выполнения поворота или просто езды по неровной дороге.
- Износ рулевых наконечников. Совершенно стандартная ситуация, поскольку рулевые наконечники считаются расходниками, особенно на наших дорогах. Шаровые шарниры защищены пыльниками и смазкой, но со временем вода попадает под пыльник, шарнир изнашивается и начинает люфтить. Водитель чувствует проблему как увеличение свободного хода руля и ухудшение управляемости. При появлении таких симптомов нужно поскорей принять меры. Замена рулевых наконечников – стандартная процедура, которую выполнят на любом СТО.
- Износ подшипника рулевой колонки. Такая поломка происходит редко, но требует срочных мер по устранению. Если подшипник изнашивается, рулевой вал начинает шататься, а водитель чувствует это как «биение руля». Лучше сразу обратиться в сервис, чем ставить на своей машине интересные опыты.
- Нарушение настроек колес. Неотбалансированные колёса будут ощущаться водителем как пульсация рулевого колеса при движении. Это не только доставляет дискомфорт, но и влияет на срок службы самих колес и смежных элементов.
Основные требования к рулевому управлению
Существуют стандартные требования, которые предъявляются к системе рулевого управления. Если система этим требованиям соответствует, ее можно считать исправной.
- Угол свободного хода руля. Это тот угол поворота, который делается «вхолостую», до начала поворота колес. В норме для легковых автомобилей он должен быть не боле 10 градусов, и если свободный ход постепенно увеличивается, это говорит о необходимости регулировки или ремонта.
- Система должна правильно «рулить»! То есть, нормально держать автомобиль при езде по прямой, точно выполнять маневры, не отклоняться от заданной траектории.
- Руль должен легко поворачиваться во время выполнения маневров. Усилители для того и придумали, чтобы на дороге водитель думал о дороге, а не о том, хватит ли ему сил на следующий поворот. Если управление тугое, требует значительных усилий, проблему нужно найти и решить.
- Строго выверенное число полных оборотов руля от среднего до крайнего положения. Для выполнения поворота водитель не должен выкручивать руль до бесконечности.
- Система должна работать даже после того, как отключится усилитель руля. В дороге может случиться всё, что угодно, в том числе утечка гидравлической жидкости или отказ электродвигателя в ЭУР. При этом автомобиль должен сохранить управляемость. Да, усилий это потребует больше, но и остановка будет там, где захочет водитель.
Принципиальные отличия между «левым» и «правым» рулем
В отношении праворульных автомобилей до сих пор ведутся споры. Сторонники утверждают, что те машины, которые делались японскими или английскими инженерами «как для себя», выше по качеству, чем аналогичные модели, но выпущенные на экспорт. Сложно сказать, действительно ли это так, но факт остается фактом: есть отдельная категория автолюбителей, которые предпочитают только машины с правым рулем.
Основное отличие рулевого управления автомобилей с правым рулем – зеркальное расположение элементов. Например, размещение редуктора на рулевой рейке. И сам редуктор рассчитан на другую сторону подключения.
А можно ли переделать праворульную машину на леворульную? Купить автомобиль с правым рулем и затем перенести руль влево можно, и есть даже СТО, которые специализируются на таких услугах. Но цена такого тюнинга немаленькая, поскольку «перекраивать» придется много. Это не просто руль на другой стороне, отличается очень многое, от зеркал до головного света.
Заключение
Рулевое управление – система достаточно живучая. Если не считать регулярную замену расходников, моно проездить на своей машине долгие годы и ни разу его не ремонтировать. Однако если случается проблема или просто какие-то странные постукивания-пошатывания не дают покоя, лучше не затягивать с визитом на СТО. В системе рулевого управления все элементы взаимосвязаны, и поломка одного ведет к поломке другого. Грамотная диагностика и своевременный ремонт уберегут от проблем и лишних расходов.
Рулевое управление автомобиля | Автомобильный справочник
Рулевое управление автомобиля, это система управления направлением движения с помощью рулевого колеса. Рулевое управление представляет собой совокупность узлов и механизмов, предназначенных для синхронизации положения рулевого колеса и угла поворота управляемых колес. Вот о том, из каких узлов состоит современное рулевое управление автомобиля, мы и поговорим в этой статье.
Содержание
Классификация системы рулевого управления
Системы рулевого управления можно классифицировать следующим образом:
Мускульная система рулевого управления
Необходимые усилия рулевого управления генерируются исключительно мускульной энергией водителя. Эти системы рулевого управления в настоящее время используются в самых маленьких легковых автомобилях.
Система рулевого управления с усилителем
Усилия рулевого управления генерируются мускульной энергией водителя и вспомогательной силой, реализуемой гидравлически и в последнее время все чаще электрически. Эта система рулевого управления в настоящее время используется в легковых и грузовых автомобилях.
Система автоматизированного рулевого управления
Усилия рулевого управления генерируются исключительно не мускульной (внешней) энергией (например, в машинах).
Фрикционная система рулевого управления
Усилия рулевого управления создаются силами, воздействующими на контактное пятно шины. Примером такой системы могут служить поддерживающие мосты в грузовиках. Передача рулевых и вспомогательных сил происходит механически, гидравлически или электрически либо сочетаниями этих трех компонентов.
Требования к системе рулевого управления
Система рулевого управления преобразует создаваемые водителем вращательные движения рулевого колеса в изменение угла поворота управляемых колес автомобиля. Конструкция и схема системы призваны обеспечить удобное и безопасное рулевое управление автомобиля во всех ситуациях и на всех скоростях. Вся система рулевого управления, от рулевого колеса и до управляемых колес, должна в этих целях обладать следующими свойствами.
Передача инициируемых водителем рулящих движений на рулевом колесе без люфта особенно важна при движении по прямой. Это гарантирует безопасное, неутомительное для водителя управление автомобилем, прежде всего на средних и высоких скоростях.
Поэтому рулевой механизм должен быть очень жестким. Это необходимо для обеспечения точной управляемости и преодоления отклонения от заданного угла поворота рулевого колеса под действием изменяющихся возвратных сил, возникающих, например, при изменении бокового ускорения.
Слабое трение в рулевом механизме позволяет водителю получать через реактивные силы тактильную обратную связь, дающую информацию о коэффициенте сцепления между дорогой и шинами. Слабое трение также помогает колесам выровняться для движения по прямой. В системах рулевого управления с мускульной энергией слабое трение обеспечивает небольшие движущие силы. В системах рулевого управления с усилителем оно повышает эффективность управления.
Кинематические параметры рулевого управления и конструкция управляемой оси автомобиля должны быть такими, чтобы водитель мог чувствовать величину сцепления между шинами и дорогой.
Требования к рулевому управлению
Требованиями к функционированию системы рулевого управления являются:
Легкое, безопасное рулевое управление автомобилем. Сюда, к примеру, относится тенденция рулевого управления автоматически возвращаться в положение прямолинейного движения при отпускании руля.
Максимально возможное демпфирование колебаний, передаваемых от колес автомобиля на рулевое колесо при движении по неровным дорогам. Но этот процесс не должен приводить к потере обратной связи в рулевом управлении.
Для обеспечения чистого качения колес и, соответственно, предотвращения их избыточного износа вся рулевая кинематика должна удовлетворять условию Аккермана. Это означает, что оси управляемых колес должны пересекаться в одной точке с осью задних колес (рис. «Условие Аккермана» ).
Достаточно жесткая схема всех компонентов рулевого механизма означает, что даже малые инициируемые водителем рулевые движения преобразуются в изменение направления управляемых колес, обеспечивая безопасную и точную управляемость автомобиля.
Угол поворота рулевого колеса от упора до упора по соображениям комфорта должен быть как можно меньше при парковке и движении с небольшой скоростью. Однако на средних и высоких скоростях рулевое управление не должно быть столь чувствительным.
Требования законодательства, предъявляемые к системам рулевого управления автомобилей
Требования законодательства, предъявляемые к системам рулевого управления автомобилей, описаны в международных правилах ECE-R79. К этим требованиям, наряду с базовыми функциональными требованиями, относятся максимально допустимые управляющие силы для исправной и неисправной систем рулевого управления. Эти требования регламентируют прежде всего поведение автомобиля и рулевого управления при въезде на круг и выезде с круга. Для автомобилей всех категорий: после отпускания рулевого колеса при движении автомобиля по окружности на скорости 10 км/ч, радиус поворота автомобиля должен увеличиться или как минимум остаться тем же.
Для автомобилей категории М1 (легковые автомобили с числом посадочных мест до 8): когда автомобиль в тангенциальном направлении выезжает из круга с радиусом 50 м на скорости 50 км/ч, в системе рулевого управления не должно возникать никаких необычных вибраций. В автомобилях категорий М2, М3, N1, N2 и N3 это поведение должно демонстрироваться на скорости 40 км/ч или, если это значение не достигается, то на максимальной скорости.
Это поведение также предписывается в случае неисправности у автомобилей с гидро- или электроусилителем рулевого управления. У автомобилей категории М1 это должно быть возможно в случае отказа сервопривода рулевого управления для въезда со скоростью 10 км/ч в течение 4 секунд в круг радиусом 20 м. Управляющее усилие на рулевом колесе не должно превышать 30 даН (табл. «Нормы рабочих усилий в системе рулевого управления» ).
Типы рулевых механизмов автомобиля
Требования к системе рулевого управления дали развитие прежде всего двум фундаментальным типам рулевых механизмов. Оба типа можно использовать в системах с чисто мускульной энергией или (в сочетании с соответствующими сервосистемами) в системах с усилителем рулевого управления.
Реечный рулевой механизм
В принципе, как следует из названия, реечный рулевой механизм состоит из шестерни и зубчатой рейки (рис. «Реечный рулевой механизм» ). Передаточное отношение механизма определяется отношением числа оборотов шестерни, равного числу оборотов рулевого колеса, к перемещению рейки.
В качестве альтернативы постоянному передаточному числу рейки на рейке за счет соответствующей нарезке зубьев имеется возможность изменять это число в зависимости от длины хода. Таким образом, устойчивость при движении автомобиля по прямой можно улучшить посредством непрямого передаточного числа вокруг центра рулевого управления. В то же время, это возможно с реализацией прямого передаточного числа в диапазоне средних и больших углов поворота (например, при парковке) для уменьшения необходимого угла поворота при повороте рулевого колеса от упора до упора.
Рулевой механизм типа «винт-шариковая гайка-сектор»
Усилия, возникающие между винтом и гайкой рулевой передачи, передаются через ряд рециркулирующих шариков, снижающих трение (рис. «Рулевой механизм с шариковой гайкой» ). Гайка воздействует на вал сошки через зубчатый сектор. Этот рулевой механизм также позволяет получать переменное передаточное отношение.
Повышение эффективности рулевого управления с зубчатой рейкой означает, что рулевой механизм с шариковой гайкой практически больше не используется в легковых автомобилях.
Рулевое управление с усилителем для легковых автомобилей
Увеличение размеров и массы автомобилей и повышение требований к комфорту и безопасности в последние годы привело к тому, что рулевое управление с усилителем появилось на всех категориях легковых автомобилей, вплоть до компактных. Эти системы, за редким исключением, устанавливаются в базовой комплектации. Усилия водителя по рулению поддерживаются гидравлической или электрической сервосистемой. Эта сервосистема должна быть такой, чтобы водитель постоянно получал четкую обратную связь о сцеплении шин с дорогой, и чтобы эффективно гасились негативные воздействия, вызываемые неровностями дороги.
Системы рулевого управления с гидравлическим усилителем
Сочетание механической конструкции рулевого механизма с гидравлической сервосистемой привело к созданию реечного рулевого механизма с усилителем (рис. «Схема системы рулевого управления с усилителем» ) и рулевой механизм с шариковой гайкой с усилителем.
Распределительный клапан рулевой системы
Служит для нагнетания в силовой цилиндр гидравлической жидкости под таким давлением, которое соответствует углу поворота рулевого колеса (рис. «Принцип действия управляющего клапана рулевого управления с гидроусилителем» ). Упругий датчик крутящего момента, обычно торсион («Схема системы рулевого управления с усилителем» ) обеспечивает преобразование момента на рулевом колесе при отсутствии люфта в пропорциональное этому моменту прецизионное управляющее перемещение золотника. Перемещение золотника вызывается поворотным скольжением относительно управляющей втулки. Каналы золотника, которые выполнены в форме паза, в результате управляющего перемещения образуют отверстия соответствующего поперечного сечения для пропуска жидкости.
Распределительные клапаны обычно работают в соответствии с так называемым принципом «открытого центра», т.е. когда распределительный клапан не действует, жидкость, подаваемая насосом, перепускается обратно в бачок при нулевом давлении.
Характеристики рулевого управления с усилителем
Растущие требования к удобству и безопасности привели к появлению управляемых систем рулевого управления с усилителем. Одним из примеров является управляемая электроникой реечная система рулевого управления с усилителем (рис. «Схема управления системы рулевого управления с гидроусилителем» ). В зависимости от скорости движения автомобиля, замеряемой посредством электронного спидометра, изменяется сила, воздействующая на рулевое управление (рис. «Характеристические кривые системы рулевого управления с усилителем» ). ЭБУ анализирует скорость и определяет уровень гидравлической обратной связи и, соответственно, необходимое рабочее усилие на рулевом колесе. Этот уровень гидравлической реакции передается на распределительный клапан системы рулевого управления через электрогидравлический конвертер, который модифицирует гидравлическую реакцию относительно скорости автомобиля.
Определенные характеристики усилителя рулевого управления позволяют поворачивать рулевое колесо с минимальным усилием при стоящем автомобиле или вовремя его движения с небольшой скоростью. Степень усиления снижается с повышением скорости движения. Таким образом, при движении с высокими скоростями обеспечивается возможность управления поворотами автомобиля в оптимальном режиме.
При такой системе важно, что давление и расход гидравлической жидкости никогда не снижаются и поэтому эти параметры могут быть немедленно востребованы в критических ситуациях управления.
Рабочий цилиндр рулевой системы
Силовой цилиндр двойного действия преобразует давление гидравлической жидкости во вспомогательное усилие, воздействующее на рейку и усиливающее воздействие водителя на рулевое колесо. Этот цилиндр обычно размещается внутри картера рулевого механизма и характеризуется низким трением. Поскольку цилиндр должен иметь крайне низкое трение, то особо высокие требования предъявляются к поршню и уплотнениям штока.
Подача жидкости гидроусилителя руля
Подача жидкости осуществляется насосом (обычно приводимым от двигателя автомобиля), который соединен с бачком посредством шлангов и трубок. Насос должен быть рассчитан на нагнетание необходимого давления и объема гидравлической жидкости для выполнения парковки даже на холостых оборотах двигателя.
Для защиты от перегрузок в системе рулевого управления требуется клапан ограничения давления. Этот клапан обычно встраивается в насос. Конструкция насоса должна обеспечивать такой режим работы, чтобы рабочая температура гидравлической жидкости не поднималась выше предельного уровня, отсутствовал шум при работе насоса и не образовывалась пена в используемой жидкости.
Насос для усиления рулевого управления может также иметь привод от электродвигателя. Здесь обычно используется шестеренчатый или роторный насос. Из-за ограниченной мощности электрической системы автомобиля эти системы используются в основном в автомобилях классов А и В. Поскольку необходимость в ременном приводе от ДВС отпадает, то насос можно устанавливать произвольно, что благоприятствует модульной конструкции автомобиля. Управляющая электроника и анализ сигналов, например, скорости автомобиля и скорости руления, позволяют адаптировать частоту вращения вала насоса к текущему энергопотреблению рулевого управления и ситуации на дороге в целях экономии энергии.
Системы рулевого управления с электроусилителем
Системы рулевого управления с электромеханическим усилителем также используются в легковых автомобилях среднего и малого классов. Такие системы имеют электродвигатель, работающий от бортовой сети. Механическое соединение электродвигателя и рулевого механизма может быть реализовано в виде рулевой колонки и привода. Система состоит из следующих компонентов (рис. «Схема рулевого управления с электроусилителем» ):
- Рулевая колонка, соединяющая шестеренку рулевого механизма с рулевым колесом автомобиля;
- Шестерня, преобразующая вращательное рулевое движение в линейное перемещение зубчатой рейки;
- Зубчатая рейка, соединенная с колесами через тяги и рычаги;
- Датчики, регистрирующие информацию для вычисления необходимого дополнительного крутящего момента на шестерне;
- Серво-блок, состоящий из ЭБУ и серводвигателя (электродвигателя), генерирующего дополнительный крутящий момент на шестерне.
Когда водитель поворачивает рулевое колесо, датчик регистрирует прилагаемый крутящий момент и отправляет эту информацию в виде электрического сигнала (аналогового или цифрового) на ЭБУ. ЭБУ вычисляет дополнительный крутящий момент и на основании вычисленного значения активирует серводвигатель. В настоящее время в качестве серводвигателей используются коллекторные или бесщеточные электродвигатели постоянного тока или трехфазные асинхронные двигатели. В зависимости от необходимых характеристик рулевого управления создаваемый этими электродвигателями крутящий момент составляет 3-6 Н-м.
Направление вращения двигателя зависит от направления вращения рулевого колеса. Возвратное движение рулевого колеса также может быть усилено. Это происходит, когда водитель выходит из поворота. В этой ситуации серводвигатель создает крутящий момент, поддерживающий обратное вращение рулевого колеса в положение движения по прямой.
Серводвигатель передает этот поддерживающий крутящий момент через червячную передачу или механизм типа «винт- шариковая гайка-сектор». В зависимости от варианта рулевого управления он передается на рулевую колонку, шестерню и зубчатую рейку реечного механизма.
Управляющая электроника учитывает различные сигналы и параметры, например, скорость движения, угол поворота рулевого колеса, крутящий момент на рулевой колонке и скорость руления. С помощью других расположенных в автомобиле датчиков и благодаря объединению в сеть ЭБУ рулевого управления с другими ЭБУ, эту систему рулевого управления можно использовать для реализации вспомогательных функций, повышающих комфорт и безопасность движения.
Ориентированное на потребности управление электродвигателем позволяет достичь значительной экономии топлива, в среднем на 0,3 л /100 км по сравнению с гидроусилителем, насос которого приводится в действие от ДВС. В городском цикле экономия топлива возрастает до 0,7 л /100 км.
В случае сбоя энергоснабжения или усиления рулевого управления водитель может продолжить руление чисто механически, но с большими мускульными затратами.
Рулевое управление с наложением угла поворота рулевого колеса
В системе рулевого управления с наложением угол поворота рулевого колеса может увеличиваться или уменьшаться на определенную величину. Эта система обычно комбинирует с управляемой системой рулевого управления с электро- или гидроусилителем. Рулевое управление с наложением угла поворота рулевого колеса не обеспечивает автономной езды, но оптимально адаптирует характеристики рулевого управления к ситуации движения, обеспечивая максимальный комфорт и курсовую устойчивость. При объединении в сеть системы управления с динамическими параметрами такое рулевое управление может еще больше повысить безопасность в критических ситуациях дорожного движения посредством не зависящих от водителя регулировок рулевого управления. Такие системы рулевого управления уже производятся серийно под торговыми марками Active Steering (BMW) и Dynamic Steering (Audi).
Угловое наложение, не зависящее от задаваемого водителем угла поворота рулевого колеса, в настоящее время реализуется двумя техническими решениями.
Планетарный механизм рулевой системы
Двойной планетарный механизм с различными передаточными числами встроен в общее водило планетарной передачи в рулевом механизме (рис. «Планетарный механизм, рулевое управление с наложением» ). Это означает постоянное наличие механической связи между рулевым колесом и управляемыми колесами.
Разные передаточные числа означают, что при повороте водила планетарной передачи задается дополнительный угол поворота. Угол задается электродвигателем, вращающим червячное колесо-водило планетарной передачи.
Волновая зубчатая передача с гибким звеном
Блок наложения угла поворота (рис. «Схема рулевого управления с наложением угла поворота с волновой передачей» ) в этом случае состоит из волновой зубчатой передачи с гибким звеном и электродвигателя с полым валом (рис. «Актуатор рулевого управления с наложением угла поворота с волновой передачей» ). Очень компактная конструкция позволяет встроить этот блок в рулевую колонку без ущерба таким параметрам, как монтажное пространство и поведение при столкновении. Вал на конце с рулевым колесом положительно соединен с гибким шлицем. Поворотное движение рулевого колеса через зубчатое зацепление передается на внутреннюю шестерню (круговой шлиц) для выходного вала. Эллиптический внутренний ротор (валогенератор), размещенный в гибком шлице, приводимый электродвигателем, генерирует наложенный угол поворота через разное количество зубьев между гибким и круговым шлицами. Здесь также имеется постоянная механическая связь между рулевым колесом и управляемыми колесами через зубчатое зацепление волновой передачи.
В пассивном состоянии электродвигатель блокируется электромеханической блокировкой, обеспечивая прямой механический сквозной привод для рулящего движения.
Концепция активации рулевого управления автомобиля
ЭБУ рулевого управления с наложением угла поворота проверяет правдоподобность необходимой информации датчика и анализирует. Он вычисляет заданный угол для электродвигателя и через встроенный задающий каскад генерирует сигналы широтно-импульсной модуляции для активации электродвигателя, который представляет собой бесщеточный электродвигатель постоянного тока со встроенным датчиком положения ротора. Максимальный ток электродвигателя составляет 40 А при напряжении бортовой сети 12 В. Датчик положения ротора позволяет блоку управления регулировать электронную коммутацию и, соответственно, направление вращения ротора. Он также вычисляет и проверяет суммарный заданный дополнительный угол поворота с помощью алгоритма суммирования в программном обеспечении блока управления.
Эффективный угол поворота, сумма угла поворота рулевого колеса и наложенного угла поворота электродвигателя вычисляются блоком управления и передаются по автомобильной шине связи на соответствующие ЭБУ.
Заданное значение эффективного угла поворота
Заданное значение эффективного угла поворота, формируемое в ЭБУ рулевого управления с наложением угла поворота состоит из частичного заданного значения для комфортабельности рулевого управления и частичного заданного значения для стабилизации автомобиля. Сигналы, необходимые для вычисления этих переменных, считываются блоком управления по шине CAN.
Частичное заданное значение для комфортабельности рулевого управления представляет собой зависимое от скорости движения переменное передаточное отношение рулевого управления. Это значение вычисляется из скорости движения автомобиля и угла поворота рулевого колеса. Когда автомобиль неподвижен или движется с небольшой скоростью, к задаваемому водителем углу поворота добавляется определенный угол. Это делает передаточное отношение более чувствительным. Водитель может полностью повернуть колеса менее чем за один полный оборот рулевого колеса. Этот добавочный угол поворота непрерывно уменьшается с ростом скорости движения. Начиная со скорости порядка 80-90 км/ч из задаваемого водителем угла поворота вычитается определенный угол, и рулевое управление становится менее чувствительным. Это обеспечивает устойчивость автомобиля при движении по прямой на высокой скорости и в то же время предотвращает потерю управления над автомобилем из-за слишком резкого руления.
Для вычисления частичного заданного значения для стабилизации автомобиля — в дополнение к углу поворота и скорости движения — перемещение автомобиля измеряется с помощью датчиков угловой скорости поворота вокруг вертикальной оси и бокового ускорения. В системе рулевого управления с наложением используются датчики системы курсовой устойчивости. Как же, как и ESP, запускаемая в ЭБУ вычислительная модель рассчитывает эталонное движение автомобиля. В случае отклонения фактического движения автомобиля от эталонного активируется рулевое управление для стабилизации автомобиля. Обе системы непрерывно обмениваются информацией, чтобы эффект взаимодействия контроллеров ESP и системы рулевого управления с наложением угла поворота был оптимальным.
Концепция безопасности рулевого управления
Все используемые внутренние и внешние сигналы непрерывно контролируются блоком управления, проверяется их правдоподобность. Если сигнал датчика больше не кажется правдоподобным, то дополнительная функция рулевого управления, на базе которой работает датчик, деактивируется. Например, при отказе датчика поворота автомобиля вокруг вертикальной оси отключается измерение угла поворота автомобиля вокруг вертикальной оси системы рулевого управления с наложением угла поворота. Переменное передаточное отношение остается активным.
Если безопасная активация электродвигателя больше невозможна из-за сбоя, то система полностью выключается, и обеспечивается непосредственный сквозной привод рулевого механизма от рулевого колеса путем самоторможения шестеренчатой ступени и электромеханической блокировки. Этот переход на аварийный режим также активируется при остановке ДВС или отключении электропитания, что позволяет, к примеру, отбуксировать автомобиль.
Рулевое управление с усилителем для грузовых автомобилей
Рулевое управление полностью гидравлического типа
Гидростатические системы рулевого управления представляют собой системы рулевого управления с гидроусилителем. Рулящее усилие водителя гидравлически усиливается и исключительно гидравлически передается на управляемые колеса. Поскольку механическая связь отсутствует, то максимально допустимая скорость ограничивается региональным законодательством. В Германии она составляет 25 км/ч. В зависимости от конфигурации системы и свойств аварийного рулевого управления возможно увеличение скорости до 62 км/ч. Поэтому использование этих систем ограничивается спецтехникой.
Рулевое управление с одноконтурным гидроусилителем для грузовых автомобилей
Грузовые автомобили обычно оснащаются рулевым управлением с шариковой гайкой (рис. «Рулевой механизм с шариковой гайкой с усилителем» ). Управляющий клапан встроен в рулевой механизм и вместе с червячной передачей образует единый блок. Вращающее движение рулевого колеса передается по бесконечной цепи рециркулирующих шариков на шариковую гайку. Короткие зубья на шариковой гайке входят в зацепление с зубьями сектора. Создаваемое вращательное движение сектора через рулевой рычаг передается на рулевой привод управляемых колес.
Сервоусилие прилагается так же, как и в реечном рулевом механизме с усилителем — поворотным золотниковым клапаном. Рабочий цилиндр образуется уплотняющей поверхностью между корпусом шариковой гайки и рулевым блоком. Поскольку снаружи корпуса не требуется дополнительных трубопроводов, создается прочный и компактный рулевой блок с высокой выходной мощностью.
Двухконтурная система рулевого управления, предназначенная для большегрузных грузовых автомобилей
Двухконтурные системы рулевого управления (рис. «Двухконтурная система рулевого управления с усилителем» ) требуются тогда, когда необходимые движущие силы на рулевом колесе превышают регламентируемые Правилами ECE-R79 при отказе усилителя рулевого управления. Эти системы рулевого управления отличаются гидравлической избыточностью. Оба контура рулевого управления в этих системах функционально испытываются с помощью индикаторов расхода, и водителю сигнализируется состояние сбоя. Насосы для запитывания независимых контуров рулевого управления должны иметь разные приводы (например, от двигателя, от устройства, работа которого зависит от скорости движения автомобиля или электропривода). При отказе одного контура, к примеру, из-за сбоя в системе рулевого управления или остановки ДВС, автомобилем можно управлять с помощью рабочего резервного контура в соответствии с требованиями законодательства.
Двухконтурные системы обычно принимают форму рулевого управления с шариковой гайкой с усилителем со встроенным вторым клапаном рулевого управления. Этот второй клапан управляет дополнительно установленным рабочим цилиндром и обеспечивает дублирование существующей сервосистемы в рулевом управлении с шариковой гайкой.
В следующей статье я расскажу о тормозной системе автомобиля.
РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:
Рулевое управление
Механизмы управления автомобиля — это механизмы, которые предназначены обеспечивать движение автомобиля в нужном направлении, и его замедление или остановку в случае необходимости. К механизмам управления относятся рулевое управление и тормозная система автомобиля.
Рулевое управление автомобиля — это совокупность механизмов, служащих, для поворота управляемых колес, обеспечивает движение автомобиля в заданном направлении. Передачу усилия поворота рулевого колеса к управляемым колесам обеспечивает рулевой привод. Для облегчения управления автомобилем применяют усилители руля, которые делают поворот руля легким и комфортным.
Устройство рулевого управления:
1 — поперечная тяга; 2 — нижний рычаг; 3 — поворотная цапфа; 4 — верхний рычаг; 5 — продольная тяга; 6 — сошка рулевого привода; 7 — рулевая передача; 8 — рулевой вал; 9 — рулевое колесо.
Принцип работы рулевого управления
Каждое управляемое колесо установлено на поворотном кулаке, соединенном с передней осью посредством шкворня, который неподвижно крепится в передней оси. При вращении водителем рулевого колеса усилие передается посредством тяг и рычагов на поворотные кулаки, которые поворачиваются на определенный угол (задает водитель), изменяя направление движения автомобиля.
Механизмы управления, устройство
Рулевое управление состоит из следующих механизмов :
1. Рулевой механизм — замедляющая передача, преобразовывающая вращение вала рулевого колеса во вращение вала сошки. Этот механизм увеличивает прикладываемое к рулевому колесу усилие водителя и облегчает его работу.
2. Рулевой привод — система тяг и рычагов, осуществляющая в совокупности с рулевым механизмом поворот автомобиля.
3. Усилитель рулевого привода (не на всех автомобилях) — применяется для уменьшения усилий, необходимых для поворота рулевого колеса.
Устройство рулевого управления
1 – Рулевое колесо; 2 – корпус подшипников вала; 3 — подшипник; 4 – вал колеса рулевого управления; 5 – карданный вал рулевого управления; 6 – тяга рулевой трапеции; 7 — наконечник; 8 — шайба; 9 – палец шарнирный; 10 – крестовина карданного вала; 11 – вилка скользящая; 12 – наконечник цилиндра; 13 – кольцо уплотнительное; 14 – гайка наконечника; 15 — цилиндр; 16 –поршень со штоком; 17 – кольцо уплотнительное; 18 – кольцо опорное; 19 — манжета; 20 – кольцо нажимное; 21 — гайка; 22 – муфта защитная; 23 – тяга рулевой трапеции; 24 — масленка; 25 – наконечник штока; 26 – кольцо стопорное; 27 — заглушка; 28 – пружина; 29 – обойма пружины; 30 – кольцо уплотнительное; 31 – вкладыш верхний; 32 – палец шаровый; 33 – вкладыш нижний; 34 — накладка; 35 – муфта защитная; 36 – рычаг поворотного кулака; 37 – корпус поворотного кулака.
Устройство рулевого привода:
1 – корпус золотника; 2 – кольцо уплотнительное; 3 – кольцо плунжеров подвижное; 4 — манжета; 5 – картер рулевого механизма; 6 — сектор; 7 – пробка заливного отверстия; 8 — червяк; 9 – боковая крышка картера; 10 — крышка; 11 – пробка сливного отверстия; 12 – втулка распорная; 13 – игольчатый подшипник; 14 – сошка рулевого управления; 15 – тяга сошки рулевого управления; 16 – вал рулевого механизма; 17 — золотник; 18 — пружина; 19 — плунжер; 20 – крышка корпуса золотника.
Бак масляный. 1 – Корпус бачка; 2 — фильтр; 3 – корпус фильтра; 4 – клапан перепускной; 5 — крышка; 6 — сапун; 7 – пробка заливной горловины; 8 — кольцо; 9 – шланг всасывающий.
Насос усилительного механизма. 1 – крышка насоса; 2 — статор; 3 — ротор; 4 — корпус; 5 – игольчатый подшипник; 6 — проставка; 7 — шкив; 8 — валик; 9 — коллектор; 10 – диск распределительный.
Принципиальная схема. 1 – трубопроводы високого давления; 2 – механизм рулевой; 3 – насос усилительного механизма; 4 – шланг сливной; 5 – бак масляный; 6 – шланг всасывающий; 7 – шланг нагнетательный; 8 – механизм усилительный; 9 – шланги.
Рулевое управление автомобиля КамАЗ
1 — корпус клапана управления гидроусилителем; 2 — радиатор; 3 — карданный вал; 4 — рулевая колонка; 5 — трубопровод низкого давления; 6 — трубопровод высокого давления; 7— бачок гидросистемы; 8— насос гидроусилителя; 9 — сошка; 10 — продольная тяга; 11 — рулевой механизм с гидроусилителем; 12 — корпус углового редуктора.
Механизм рулевого управления автомобиля КамАЗ :
1 — реактивный плунжер; 2— корпус клапана управления; 3 — ведущее зубчатое колесо; 4 — ведомое зубчатое колесо; 5, 22 и 29— стопорные кольца; 6 — втулка; 7 и 31 — упорные колы к», 8 — уплотнительное кольцо; 9 и 15 — бинты; 10 — перепускной клапан; 11 и 28 — крышки; 12 — картер; 13 — поршень-рейка; 14 — пробка; 16 и 20— гайки; 17 — желоб; 18 — шарик; 19 — сектор; 21 — стопорная шайба; 23 — корпус; 24 — упорный подшипник; 25 — плунжер; 26 — золотник; 27— регулировочный винт; 30— регулировочная шайба; 32— зубчатый сектор вала сошки.
Рулевое управление автомобиля ЗИЛ;
1 — насос гидроусилителя; 2 — бачок насоса; 3 — шланг низкого давления; 4 — шланг высокого давления; 5 колонка; 6 — контактное устройство сигнала; 7 — переключатель указателей поворота; 8 карданный шарнир; 9 — карданный вал; 10 — рулевой механизм; 11 — сошка.
Рулевое управление автомобиля МАЗ-5335:
1 — продольная рулевая тяга; 2— гидроусилитель рулевого привода; 3 — сошка; 4 — рулевой механизм; 5— карданный шарнир привода рулевого управления; 6 — рулевой вал; 7— рулевое колесо; 8 — поперечная рулевая тяга; 9— левый рычаг поперечной рулевой тяги; 10 — поворотный рычаг.
Как работают системы рулевого управления автомобиля
- Дом
- Категории
- Принадлежности
- Аксессуары для интерьера
- Внешние аксессуары
- Игрушки
- Очистка и детализация
- Электроника
- Аудио
- Двигатель и производительность
- Инструменты
- Шины и диски
- Мотоциклы и велосипеды
- Уход на дому
- Кемперы на колесах
- Внедорожники
- Гарантии
- Расширенные гарантии
- Заводские гарантии
- Принадлежности
- Блог
- Инструменты
- Калькулятор размера шин
- Поиск колес и шин
- О нас
- Связаться
- Дом
- Категории
- Принадлежности
- Аксессуары для интерьера
- Внешние аксессуары
- Игрушки
- Очистка и детализация
- Электроника
- Аудио
- Двигатель и производительность
- Инструменты
- Шины и диски
- Мотоциклы и велосипеды
- Уход на дому
- Кемперы на колесах
- Принадлежности
Как работает рулевое управление

рулевое управление Система преобразует вращение рулевого колеса в поворотное движение опорных катков таким образом, что обод рулевого колеса поворачивается на длинную дистанцию, а опорные колеса — на короткую.
Система позволяет водителю использовать только свет сил управлять тяжелой машиной.Обод 15 в. (380 мм) Диаметр рулевое колесо двигается четыре оборота от полного левого упора до полного правого замка проходит около 16 футов (5 м), в то время как край дорожного колеса перемещается на расстоянии лишь немногим больше, чем 12 дюйма (300 мм). Если водитель повернул дороги колеса прямо, он или она должны нажать почти 16 раз, как трудно.
Рулевое усилие передается на колеса через систему шарнирных соединений. Они предназначены для того, чтобы колеса могли двигаться вверх и вниз вместе с подвеска без изменения угла поворота руля.
Они также гарантируют, что при прохождении поворотов внутреннее переднее колесо, которое должно двигаться по более крутой кривой, чем внешнее, становится более крутым.
Шарниры должны быть отрегулированы очень точно, и даже небольшой люфт в них делает рулевое управление опасно неаккуратным и неточным.
Обычно используются две системы рулевого управления — стеллаж и шестерня и рулевой механизм.
На больших автомобилях к любой системе может быть добавлен усилитель, чтобы еще больше снизить усилия, необходимые для ее перемещения, особенно когда автомобиль движется медленно.
Реечная система
Зубчатая рейка

В основании рулевая колонка есть маленькая шестерня ( шестерня колесо) внутри корпуса. Его зубья сцепляются с прямым рядом зубов на стойке — длинной поперечной штанге.
При повороте шестерни рейка перемещается из стороны в сторону.Концы стойки соединены с опорными колесами рулевыми тягами.
Эта система проста, с небольшим количеством движущихся частей, которые могут изнашиваться или смещаться, поэтому ее действие является точным.
А универсальный шарнир в рулевой колонке позволяет соединяться с рейкой, не наклоняя рулевое колесо в сторону.
Система рулевого управления

В основании рулевой колонки находится червячный редуктор внутри коробки.Червь резьбовой цилиндр как короткий болт. Представьте, что вы поворачиваете болт, на котором держится гайка; гайка двигалась бы вдоль болта. Таким же образом при повороте червяка перемещается все, что входит в его резьбу.
В зависимости от конструкции подвижная часть может быть сектором (например, срез шестерни), колышком или роликом, соединенным с вилкой, или большой гайкой.

Система гаек имеет закаленные шарики, проходящие внутри резьбы между червяком и гайкой. По мере движения гайки шарики скатываются в трубку, которая возвращает их в исходное положение; это называется системой с рециркуляцией шаров.
Червяк перемещает опорный рычаг, соединенный поперечной штангой с рулевой рычаг который перемещает ближайшее переднее колесо.

Центральная рулевая тяга достигает другой стороны автомобиля, где она соединяется с другим передним колесом с помощью другой рулевой тяги и рулевого рычага.Повернутый холостой рычаг удерживает дальний конец центральной поперечной рулевой тяги на уровне. Раскладки рук различаются.
Система рулевого механизма имеет много движущихся частей, поэтому она менее точна, чем реечная система, поэтому здесь больше места для износа и смещение ,
Рулевое управление с усилителем
На тяжелом автомобиле либо тяжелое рулевое управление, либо неудобно низкое зубчатое колесо — рулевому колесу требуется много оборотов от упора до упора.
Тяжелая передача может стать проблемой при парковке в ограниченном пространстве.Рулевое управление с усилителем решает эту проблему. двигатель водит насос который поставляет нефть при высоких давление к стойке или рулевому механизму.
Клапаны в рулевой рейке или коробке открываются всякий раз, когда водитель поворачивает руль, позволяя маслу попасть в цилиндр. Масло работает поршень это помогает толкать рулевое управление в нужном направлении.
Как только водитель прекращает вращать колесо, клапан закрывается и толкающее действие поршня прекращается.
Усилитель только помогает рулевому управлению — рулевое колесо по-прежнему связано с опорными колесами обычным образом.
,Реечное рулевое управление — как работает рулевое управление
Реечное рулевое управление быстро становится наиболее распространенным типом рулевого управления на легковых автомобилях, небольших грузовиках и внедорожниках. На самом деле это довольно простой механизм. Зубчатая передача с реечной передачей заключена в металлическую трубу, причем каждый конец рейки выступает из трубы. Стержень, называемый стяжкой , соединяется с каждым концом стойки.
Ведущая шестерня прикреплена к рулевому валу .При повороте руля шестерня крутится, сдвигая рейку. Тяга на каждом конце рейки соединяется с рулевым рычагом на шпинделе (см. Схему выше).
Реечная передача выполняет две функции:
- Преобразует вращательное движение рулевого колеса в линейное движение, необходимое для поворота колес.
- Обеспечивает понижающую передачу, что облегчает поворот колес.
На большинстве автомобилей требуется от трех до четырех полных оборотов рулевого колеса, чтобы колеса повернулись от упора к упору (слева направо).
Передаточное отношение — это отношение того, насколько сильно вы поворачиваете рулевое колесо, к тому, насколько сильно поворачиваются колеса. Например, если один полный оборот (360 градусов) рулевого колеса приводит к повороту колес автомобиля на 20 градусов, то передаточное число рулевого управления равно 360, разделенному на 20, или 18: 1.Более высокое передаточное число означает, что вам нужно больше повернуть рулевое колесо, чтобы колеса повернули на заданное расстояние. Однако требуется меньше усилий из-за более высокого передаточного числа.
Как правило, более легкие и спортивные автомобили имеют более низкое передаточное число рулевого управления, чем более крупные автомобили и грузовики. Более низкое передаточное число обеспечивает более быструю реакцию на рулевое управление — вам не нужно так сильно поворачивать рулевое колесо, чтобы колеса повернули на заданное расстояние — что является желательной чертой спортивных автомобилей. Эти небольшие автомобили достаточно легкие, поэтому даже при более низком передаточном числе усилие, необходимое для поворота рулевого колеса, не является чрезмерным.
На некоторых автомобилях установлено рулевое управление с переменным передаточным числом , в котором используется зубчатая рейка с зубчатым колесом, который имеет другой шаг зубьев (количество зубьев на дюйм) в центре, чем снаружи. Это заставляет автомобиль быстро реагировать при начале поворота (стойка находится ближе к центру), а также снижает усилие вблизи пределов поворота колеса.
Реечный привод
Когда зубчатая рейка находится в системе рулевого управления с усилителем, рейка имеет немного другую конструкцию.
Часть стойки содержит цилиндр с поршнем посередине. Поршень соединен со стойкой. Есть два порта для жидкости, по одному с каждой стороны поршня. Подача жидкости под более высоким давлением к одной стороне поршня заставляет поршень двигаться, который, в свою очередь, перемещает рейку, обеспечивая усиление.
Мы проверим компоненты, которые обеспечивают жидкость под высоким давлением, а также решим, с какой стороны стойки ее подавать, позже в этой статье.Сначала рассмотрим другой тип рулевого управления.
,Рулевое управление с усилителем — Как работает рулевое управление
В гидроусилителе рулевого управления есть несколько ключевых компонентов в дополнение к реечному или рециркулирующему шариковому механизму.
Насос
Гидравлический привод для рулевого управления обеспечивается пластинчато-роторным насосом (см. Диаграмму ниже). Этот насос приводится в действие двигателем автомобиля через ремень и шкив. Он содержит набор выдвижных лопаток, которые вращаются внутри овальной камеры.
Во время вращения лопаток они вытягивают гидравлическую жидкость из возвратной линии под низким давлением и выталкивают ее в выпускное отверстие под высоким давлением. Объем потока, обеспечиваемого насосом, зависит от частоты вращения двигателя автомобиля. Насос должен быть спроектирован так, чтобы обеспечивать достаточный поток при работе двигателя на холостом ходу. В результате насос перемещает гораздо больше жидкости, чем необходимо, когда двигатель работает на более высоких оборотах.
Насос имеет предохранительный клапан, чтобы давление не становилось слишком высоким, особенно на высоких оборотах двигателя, когда перекачивается такое количество жидкости.
Поворотный клапан
Система рулевого управления с гидроусилителем должна помогать водителю только тогда, когда он прикладывает силу к рулевому колесу (например, при начале поворота). Когда водитель не прилагает усилий (например, при движении по прямой), система не должна оказывать никакого содействия. Устройство, определяющее силу на рулевом колесе, называется поворотным клапаном .
Ключом к поворотному клапану является торсион .Торсион представляет собой тонкий стержень из металла, который закручивается при приложении к нему крутящего момента. Верхняя часть штанги соединена с рулевым колесом, а нижняя часть штанги соединена с шестерней или червячной передачей (которая вращает колеса), поэтому величина крутящего момента в торсионе равна величине крутящего момента, водитель использует, чтобы повернуть колеса. Чем больше крутящий момент водитель использует для поворота колес, тем сильнее поворачивается штанга.
Вход рулевого вала образует внутреннюю часть узла золотникового клапана .Он также соединяется с верхним концом торсиона . Нижняя часть торсиона соединяется с внешней частью золотникового клапана. Торсион также поворачивает выход рулевого механизма, соединяясь либо с ведущей шестерней, либо с червячной передачей, в зависимости от того, какой тип рулевого управления имеет автомобиль.
Этот контент несовместим с этим устройством.
Анимация, показывающая, что происходит внутри поворотного клапана при первом повороте рулевого колеса
По мере того как стержень вращается, он вращает внутреннюю часть золотникового клапана относительно внешней стороны.Поскольку внутренняя часть золотникового клапана также соединена с рулевым валом (и, следовательно, с рулевым колесом), величина вращения между внутренней и внешней частями золотникового клапана зависит от того, какой крутящий момент водитель прикладывает к рулевому колесу. ,
Когда рулевое колесо не поворачивается, обе гидравлические магистрали обеспечивают одинаковое давление на рулевой механизм. Но если золотниковый клапан поворачивается в одну или другую сторону, порты открываются, чтобы подавать жидкость под высоким давлением в соответствующую линию.
Оказывается, такой тип гидроусилителя довольно неэффективен. Давайте посмотрим на некоторые достижения, которые мы увидим в ближайшие годы, которые помогут повысить эффективность.
,