Цены снижены! Бесплатная доставка контурной маркировки по всей России

Обороты двигателя: На каких оборотах лучше ездить чтобы продлить ресурс двигателя?

Содержание

На каких оборотах лучше ездить чтобы продлить ресурс двигателя?

Постоянная езда на повышенных оборотах двигателя неизменно приводит к повышенной нагрузке на автомобиль и быстрому выходу из строя силового агрегата. Чтобы избежать подобного необходимо стараться держать небольшие обороты, что позволит продлить срок службы двигателя, обеспечив при этом наилучшие показатели топливной экономичности. Поговорим поподробнее о том, какие же следует держать обороты двигателя для увеличения ресурса мотора.

На каких оборотах лучше ездить чтобы продлить ресурс двигателя?

Опасность езды на высоких оборотах

Общеизвестно, что высокие обороты, в особенности около красной зоны тахометра будут крайне опасными для двигателя. В подобном случае отмечается износ силового агрегата, моторное масло плохо смазывает подвижные элементы, появляется износ мотора и его перегрев, при этом смазка быстро теряет свои свойства, что еще больше усугубляет состояние двигателя.

Какие следует держать обороты мотора, чтобы предотвратить повышенную нагрузку на двигатель

При этом нужно помнить, что несколько раз в месяц всё же полезно раскручивать двигатель до таких высоких оборотов и давать ему, что называется жару. То есть, на трассе прохватывать на высокой скорости 5-10 километров, что позволит убрать весь нагар и закоксовку внутри двигателя. Нужно лишь обязательно помнить о безопасности во время таких профилактических поездок на высоких оборотах.

Поездки с низкими оборотами

Часто автовладельцы совершают распространенную ошибку, они стараются держать обороты двигателя на отметке в 2000 в минуту, что, по их мнению, позволяет существенно снизить нагрузку на мотор. Действительно, расход топлива в подобном случае уменьшается, однако, как ни странно, нагрузка на силовой агрегат лишь увеличивается.

Дело в том, что на таких низких оборотах отмечается неправильное формирование топливной смеси, а на цилиндрах и в поршнях появляются многочисленные отложения, которые не сгорают полностью и загрязняют двигатель. На низких оборотах мотора могут отмечаться проблемы с циркуляцией масла, что объясняется особенностью вращения коленвала и низким давлением от масляного насоса. Поэтому, если вы хотите продлить срок службы двигателя вашего автомобиля, всё же постоянно передвигаться на низких оборотах не стоит.

На каких оборотах лучше ездить чтобы продлить ресурс двигателя?

При частой эксплуатации автомобиля на минимальных оборотах существенно увеличивается нагрузка на трансмиссию, так как автовладельцу приходится постоянно переключать передачи, соответственно существенно уменьшается её эксплуатационный ресурс. Поэтому водителю не рекомендуется постоянно держать обороты на бензиновых автомобилях у отметки в 2000 в минуту. В подобном случае буквально к пробегу в 100 тысяч километров потребуется выполнять уже капитальный ремонт мотора.

Каковы оптимальные обороты двигателя

В каждом конкретном случае оптимальные обороты двигателя будут различаться, в зависимости от мощности силового агрегата, наличия или отсутствия турбины, типа топлива и так далее. Например, дизельные моторы являются низкооборотистыми, максимум тяги у них отмечается в диапазоне 2000-2500 оборотов. Тогда как небольшой по своему объему турбированный бензиновый мотор выдаст свою наивысшую мощность на показателях 3000-3500 оборотов в минуту.

Большинство экспертов и автомастеров рекомендуют оптимальные обороты двигателя на уровне 2500-3000 оборотов в минуту. В этом случае отмечается существенное уменьшение нагрузки на двигатель, сокращается расход топлива, автомобиль двигается в так называемом крейсерском режиме, что в особенности на трассе сокращает нагрузку, продлевая срок службы силового агрегата. Также необходимо при использовании автомобиля на трассе активировать высшую передачу, что позволяет улучшить показатели расхода топлива, одновременно при этом обеспечивается качественная смазка двигателя и его оптимальное охлаждение.

В каждом конкретном случае показатель оптимальных оборотов двигателя будет различаться, в зависимости от его мощности, рабочего объема, типа топлива и так далее. Автовладельцу на бензиновых авто следует стараться держать мотор в диапазоне 2,500-3,500 оборотов коленвала в минуту, что позволяет несколько снизить нагрузку на двигатель. Кстати, современные коробки автомат имеют продвинутую логику управления, они оптимальным образом переключают передачи, поддерживая обороты мотора таким образом, чтобы минимизировать нагрузку на силовой агрегат.

Оптимальные обороты двигателя

           Автовладельцы часто задумываются о том, на каких оборотах лучше ездить? Многим известно, что от индивидуального стиля езды напрямую зависит ресурс двигателя и других узлов автомобиля. По этому, мы рассмотрим, какие обороты мотора нужно держать в разных дорожных условиях во время эксплуатации автомобиля.

           Грамотная эксплуатация и постоянное поддержание оптимальных оборотов двигателя позволяет добиться увеличения моторесурса. Существуют режимы работы, когда мотор изнашивается меньше всего. Отметим, что данная тема является предметом обсуждений и споров многих водителей. Если конкретнее, их можно разделить на три основные группы:
— те, кто эксплуатирует двигатель на низких оборотах, постоянно ездят «внатяг».
— вторая группа — водители, которые раскручивают мотор до средних и выше оборотов;
— и автовладельцы, которые постоянно раскручивают мотор выше средних и высоких оборотов двигателя, часто загоняя стрелку тахометра в красную зону.

Эксплуатация на низких оборотах

 

           Езда на «низах» — при таком режиме водитель не поднимает обороты коленвала выше 2500 об/мин. на бензиновых двигателях и держит 1,1-1,2 тыс. об/мин. на дизельном. Такая манера езды навязывается еще с автошколы, инструкторы утверждают, что ездить необходимо на низких оборотах, так как в данном режиме двигатель нагружен меньше и достигается наибольшая экономия топлива. Что касается самого мотора и его ресурса, слишком «щадящая» эксплуатация срока службы ему не добавляет, а наоборот уменьшает.

Допустим, когда автомобиль движется со скоростью 60-км/ч на 4-й передаче по ровному асфальту, обороты около 2 тыс. В таком режиме минимальный расход топлива и мотор почти не слышно. При этом в такой езде можно выделить два главных минуса:
без понижения передачи практически не возможно резко ускориться, особенно на двигателях без турбины
после изменения дороги, например, на подъемах, водитель не переключается на пониженную передачу, а просто сильнее нажимает на педаль газа.
В первом случае мотор, находится вне «полки» крутящего момента, что не позволяет быстро разогнать машину при такой необходимости. В результате, подобная манера езды влияет на общую безопасность движения.
Второй случай напрямую влияет на двигатель. Движение на низких оборотах под нагрузкой с сильно нажатой педалью газа приводит к детонации мотора, которая в буквальном смысле слова разбивает двигатель изнутри.
          Расход топлива в данном режиме резко увеличивается, так как более сильное нажатие на педаль газа на повышенной передаче под нагрузкой вызывает обогащение топливно-воздушной смеси.
При езде «внатяг», даже при отсутствии детонации, повышается износ двигателя из-за того что на низких оборотах нагруженные трущиеся детали мотора смазываются недостаточно. Причиной является маслонасос, его производительность и создаваемое им давления моторного масла в смазочной системе зависит от оборотов двигателя. Другими словами, чем больше оборотов, тем выше давление масла, а при большой нагрузке на мотор с учетом низкого числа оборотов существует большой риск сильного износа вкладышей.

           Еще одним минусом езды на низких оборотах является усиленное коксование двигателя. При повышении оборотов растет нагрузка на двигатель и температура в цилиндрах существенно повышается. В итоге, часть нагара попросту выгорает, чего не происходит при эксплуатации на «низах».

Высокие обороты двигателя

            Исходя из выше перечисленного можно сделать вывод что мотор нужно раскручивать посильнее, так как машина будет откликаться на педаль газа и легко ускоряться, двигатель будет лучше очищаться а расход топлива не так уж сильно увеличится. Это не совсем так. Дело в том, что постоянная езда на высоких оборотах также имеет свои минусы.

Высокими считаются обороты, которые превышают показатель около 70% от общего числа доступных для бензинового двигателя. С дизельными немного по-другому, так как агрегаты данного типа менее оборотистые, но имеют более высокий крутящий момент. Обороты которые находятся за « полкой» крутящего момента дизеля считаются высокими.

Как высокие обороты влияют на ресурс двигателя? Сильное повышение оборотов двигателя влечет за собой увеличенную нагрузку на все его детали и систему смазки а также увеличивается и показатель температуры. В результате повышается износ мотора и возрастает риск перегрева двигателя.
          Также нужно обратить внимание, что на режимах высоких оборотов требования к качеству моторного масла повышаются. Смазочный материал должен обеспечивать надежную защиту, то есть соответствовать заявленным характеристикам по вязкости, стабильности масляной пленки и т.д.

Оптимальные обороты для двигателя

           Оптимальными оборотами двигателя можно считать средние и немного выше средних. Например, если на тахометре «зеленая» зона предполагает 6000 об/мин, тогда наиболее рационально держать от 2500 до 4500 об/мин
Оптимальными режимами работы для большинства моторов является показатель от 30 до 70 % от максимального числа оборотов. При таких условиях мотору наносится минимальный ущерб.
           Также, периодически желательно раскручивать хорошо прогретый и исправный мотор с качественным маслом на 80-90% при движении по ровной дороге. В таком режиме будет достаточно проехать 10-15 км. Отметим, что данное действие не нужно повторять часто.
Опытные автолюбители рекомендуют раскручивать двигатель почти до максимума один раз в 4-5 тыс. пробега. Это необходимо по разным причинам, например, чтобы стенки цилиндров изнашивались более равномерно, так как при постоянной езде только на средних оборотах может образоваться так называемая ступенька.

Поделитесь с коллегами:

На каких оборотах двигателя лучше ездить

Практически каждому водителю хорошо известно, что от индивидуального стиля езды напрямую зависит ресурс двигателя и других узлов автомобиля. По этой причине многие автовладельцы, особенно начинающие, часто задумываются о том, на каких оборотах лучше ездить. Далее мы рассмотрим, какие обороты мотора нужно держать с учетом разных дорожных условий во время эксплуатации транспортного средства.

Содержание статьи

Ресурс двигателя и обороты при езде

Начнем с того, что грамотная эксплуатация и постоянное поддержание оптимальных оборотов двигателя позволяет добиться увеличения моторесурса. Другими словами, существуют  режимы работы, когда мотор изнашивается меньше всего. Как уже было сказано, срок службы ДВС зависит от стиля вождения, то есть сам водитель может условно «регулировать» данный параметр. Отметим, что данная тема является предметом обсуждений и споров. Если конкретнее, водители делятся на три основные группы:

  • к первым относятся те, кто эксплуатирует двигатель на низких оборотах, постоянно передвигаясь «внатяг».
  • ко вторым следует отнести таких водителей, которые только периодически раскручивают свой мотор до оборотов выше средних;
  • третьей группой считаются автовладельцы, которые постоянно поддерживают силовой агрегат в режиме выше средних и высоких оборотов двигателя, часто загоняя стрелку тахометра в красную зону.

Езда на низких оборотах

Давайте разбираться подробнее. Начнем с езды на «низах». Такой режим означает, что водитель не поднимает обороты коленвала выше 2.5 тыс. об/мин. на бензиновых двигателях и держит около 1100-1200 об/мин. на дизеле. Такая манера езды навязывается многим еще со времен автошколы. Инструкторы авторитетно утверждают, что ездить необходимо на самых низких оборотах, так как в данном режиме достигается наибольшая экономия топлива, двигатель нагружен меньше всего и т.д.

Отметим, что на курсах вождения советуют не крутить агрегат, так как одной из главных задач является максимальная безопасность. Вполне логично, что низкие обороты в этом случае неразрывно связаны с ездой на малых скоростях. Логика в этом есть, так как медленное и размеренное движение позволяет быстрее научиться ездить без рывков при переключении передач на автомобилях с МКПП, приучает начинающего водителя двигаться в спокойном и плавном режиме, обеспечивает более уверенный контроль над автомобилем и т. д.

Очевидно, что после получения водительского удостоверения такая манера езды далее активно практикуется и на собственном авто, перерастая в привычку. Водители данного типа начинают нервничать, когда в салоне начинает прослушиваться звук раскрученного мотора. Им кажется, что повышение шума означает значительное увеличение нагрузки на ДВС.

Что касается самого двигателя и его ресурса, слишком «щадящая» эксплуатация срока службы ему не добавляет. Более того, все происходит с точностью до наоборот. Представим ситуацию, когда машина движется со скоростью 60-км/ч на 4-й передаче по ровному асфальту, обороты, допустим, на отметке около 2 тыс. В таком режиме двигателя почти не слышно даже на бюджетных авто, топливо расходуется минимально. При этом главных минусов в такой езде два:

  • практически полностью отсутствует возможность резко ускориться без переключения на пониженную передачу, особенно на «атмосферниках».
  • после изменения рельефа дороги, например, на подъемах, водитель не переключается на пониженную передачу. Вместо переключения он просто сильнее нажимает на педаль газа.

В первом случае мотор, зачастую, находится вне «полки» крутящего момента, что не позволяет быстро разогнать машину при такой необходимости. В результате, подобная манера езды влияет на общую безопасность движения. Второй пункт напрямую сказывается на двигателе. Прежде всего, движение на низких оборотах под нагрузкой с сильно нажатой педалью газа приводит к детонации мотора. Указанная детонация в буквальном смысле слова разбивает силовой агрегат изнутри.

Что касается расхода, экономия практически полностью отсутствует, так как более сильное нажатие на педаль газа на повышенной передаче под нагрузкой вызывает обогащение топливно-воздушной смеси. В результате расход горючего увеличивается.

Также езда «внатяг» повышает износ двигателя даже в случае отсутствия детонации. Дело в том, что на низких оборотах нагруженные трущиеся детали мотора смазываются недостаточно.  Причиной является зависимость производительности маслонасоса и создаваемого им давления моторного масла в смазочной системе от все тех же оборотов двигателя. Другими словами, подшипники скольжения рассчитаны на работу в условиях гидродинамической смазки. Такой режим предполагает подачу масла под давлением в зазоры между вкладышами и валом. Так создается нужная масляная пленка, которая препятствует износу сопряженных элементов.  Эффективность гидродинамической смазки имеет прямую зависимость от оборотов двигателя, то есть чем больше оборотов, тем выше давление масла.  Получается, при большой нагрузке на двигатель с учетом низкого числа оборотов существует большой риск сильного износа и поломки вкладышей.

Еще одним аргументом против езды на низких оборотах является усиленное коксование двигателя. Простыми словами, с набором оборотов растет нагрузка на ДВС и температура в цилиндрах существенно повышается. В результате часть нагара попросту выгорает, чего не происходит при постоянной эксплуатации на «низах».

Высокие обороты двигателя

Ну что, скажете вы, ответ очевиден. Мотор нужно раскручивать посильнее, так как машина будет уверенно откликаться на педаль газа, легко идти на обгон, двигатель очистится, расход топлива не так уж сильно возрастет и т. д. Это так, но только отчасти. Дело в том, что постоянная езда на высоких оборотах также имеет свои минусы.

Высокими оборотами можно считать такие, которые превышают приблизительный показатель около 70% от общего числа доступных для бензинового двигателя. С дизелем ситуация немного другая, так как агрегаты данного типа изначально менее оборотистые, но имеют более высокий крутящий момент. Получается, высокими оборотами для моторов данного типа можно считать те, которые находятся за « полкой» крутящего момента дизеля.

Теперь о ресурсе двигателя при таком стиле езды. Сильное раскручивание двигателя означает, что нагрузка на все его детали и систему смазки значительно возрастает. Также увеличивается и показатель температуры, дополнительно нагружая систему охлаждения. В результате повышается износ мотора и возрастает риск перегрева двигателя.

Также следует учитывать, что на режимах высоких оборотов требования к качеству моторного масла повышаются. Смазочный материал должен обеспечивать надежную защиту, то есть соответствовать заявленным характеристикам по вязкости, стабильности масляной пленки и т. д.

Игнорирование данного утверждения приводит к тому, что каналы системы смазки при постоянной езде на высоких оборотах могут забиться. Особенно часто это происходит при использовании дешевой полусинтетики или минерального масла. Дело в том, что многие водители меняют масло не раньше, а строго по регламенту или даже позже этого срока. В результате происходит разрушение вкладышей, нарушая работу коленвала, распредвала и других нагруженных элементов.

Какие обороты считаются оптимальными для мотора

Для сохранения ресурса двигателя лучше всего ездить на таких оборотах, которые условно можно считать средними и немного выше средних. Например, если на тахометре «зеленая» зона предполагает 6 тыс. об/мин, тогда наиболее рационально держать от 2.5 до 4.5 тыс.

В случае с атмосферными ДВС конструкторы стараются уместить полку крутящего момента именно в этом диапазоне. Современные турбированные агрегаты обеспечивают уверенную тягу на более низких оборотах мотора (полка момента более широкая), но двигатель все равно лучше немного раскручивать.

Специалисты утверждают, что оптимальными режимами работы для большинства моторов является показатель от 30 до 70 % от максимального числа оборотов при езде. При таких условиях силовому агрегату наносится минимальный ущерб.

Напоследок добавим, что периодически желательно раскручивать хорошо прогретый и исправный мотор с качественным маслом на 80-90% при движении по ровной дороге. В таком режиме будет достаточно проехать 10-15 км. Отметим, что данное действие не нужно повторять часто.

Опытные автолюбители рекомендуют раскручивать двигатель почти до максимума один раз в 4-5 тыс. пройденных километров. Это необходимо по разным причинам, например, чтобы стенки цилиндров изнашивались более равномерно, так как при постоянной езде только на средних оборотах может образоваться так называемая ступенька.

Читайте также

Чем холостой ход вредит мотору автомобиля — Российская газета

Среди факторов, которые способствуют снижению ресурса двигателя, не последнее значение имеет работа мотора на холостом ходу. В режиме холостого года коленвал двигателя совершает минимальное количество оборотов, при этом достаточное для поддержания работы самого мотора и всех его систем. В любом случае значение таких оборотов существенно ниже оптимальных для двигателя нагрузочных значений.

Когда есть необходимость в длительной режиме холостого хода? Не будем рассматривать экстремальные условия крайнего севера, где, долго работая в условиях низких температур, двигатель подвергается усиленному износу. Чаще всего холостой ход используется, когда водителю приходится прогревать двигатель перед поездкой. В таком же режиме мотор может работать, когда автомобиль стоит в пробке.

Рассуждая о вреде, который двигателю может нанести режим холостого хода, необходимо учитывать то, о каком моторе вообще идет речь. Такой режим может стать фактором, значительно усиливающим износ, в случае малообъемных турбированных силовых агрегатов. А именно такие все чаще и используются на современных машинах. Их ресурс, как, впрочем, и ресурс любого другого двигателя, ограничен моточасоми. И холостой ход, по сути, «выбирает» ограниченное количество моточасов работы и сокращает ресурс.

Другая проблема, которая также может усилить степень износа мотора, заключается в работе масла. И эти последствия могут стать еще более серьезными, если в работе силовой установки уже есть проблемы. На низких оборотах нарушается эффективность циркуляции масла в системе двигателя. Давление масла, а также объем прокаченного масла в системе двигателя напрямую зависят от количества его оборотов.

Низкое давление масла может стать одним из факторов износа маслонасоса, а в некоторых случаях и привести к масляному голоданию. Также не стоит забывать, что, если мотор часто и подолгу работает в режиме холостого хода, масло в нем придется менять строго по регламенту или даже почаще. Кроме того, работая долго на низких оборотах, двигатель не получает в нужном объеме горючей смеси, а тот объем смеси, который есть в цилиндрах, сгорает неэффективно, из-за чего и сам двигатель работает нестабильно.

Проблемы распространяются порой и на свечи зажигания. Из-за продолжительной работы на холостом ходу на них может накапливаться много нагара. А эта сажа снижает эффективность работы свечей, что и приводит к снижению мощности двигателя и повышенному расходу топлива.

В таком режиме страдает не только двигатель, но и выхлопная система, которой из-за тех же низких оборотов не удается эффективно дожечь бензин. В таком режиме, например, при длительной работе на холостом ходу в пробке, «достается» и каталитическому нейтрализатору выхлопных газов, из-за перегрева он может выйти из строя.

Короткие эпизоды работы двигателя на холостом ходу, возможно, и не нанесут ему серьезного ущерба, однако, например, прогрев мотора на холостом ходу все же стоит ограничить 5-10 минутами и уж точно не доводить до 20 минут. Время безопасной работы мотора в режиме холостых оборотов автопроизводитель обычно указывает в инструкции по эксплуатации автомобиля.

Гулять запрещено: что такое холостые обороты, и от чего они зависят

Если спросить автовладельца, что такое холостые обороты мотора, он наверняка ответит, что это режим, в котором мотор работает без нагрузки, и будет полностью прав. Многие даже смогут точно назвать правильную величину оборотов для их автомобилей. Но почему эти обороты именно такие? Почему не больше, не меньше, почему они изменяются, как и для чего поддерживаются? Сегодня мы попробуем в этом разобраться.

Как всё начиналось

На первых моторах не существовало даже самого понятия холостых оборотов. Частота рабочих и холостых оборотов практически совпадала, а рабочий диапазон двигателя был крайне мал (приблизительно всего от 250 до 450 оборотов в минуту). Ну а куда деваться: меньше нельзя, выше не крутится… Фитильные карбюраторы имели весьма небольшой рабочий диапазон и при малом потоке смеси сильно «переливали». Фактически их настраивали только на рабочие обороты.

Ситуация поменялась примерно к 1915 году. Появление на Packard Twin Six настоящего карбюратора с жиклерами и управления опережением зажигания позволило решить две задачи. Во-первых, значительно увеличить мощность, увеличив рабочие обороты до 3000 в минуту, а во-вторых, снизить устойчивые обороты за счет введения специальной системы смесеобразования на малых оборотах. Иными словами, системы холостого хода.

Все более поздние конструкции карбюраторов уже предусматривали регулировку и настройку смесеобразования на холостых оборотах, часто используя для этого режима отдельные дозирующие системы. Конечно, экология и даже ресурс для тех конструкций не были определяющими факторами, но моторы просто не могли работать на оборотах ниже тех, на которых мог создавать смесь карбюратор. Но затем система стала значительно сложнее.

Зачем нужны холостые обороты?

Пока мотор заглушен, никакого крутящего момента он, разумеется, не создаёт. Но и при работающем моторе мощность растет исключительно с ростом оборотов, а крутящий момент имеет пик в области средних или высоких оборотов (на наддувных двигателях момент появляется раньше, но тоже далеко не с нуля).

Чтобы нагрузить мотор полезной нагрузкой, нужно, чтобы он уже устойчиво крутился и был готов создавать крутящий момент. Иначе он просто заглохнет. Простите, что так сложно объясняю простую вещь, но это крайне важный для понимания дальнейшего момент.

Нагрузить ДВС можно только если он уже работает на устойчивых и достаточных для восприятия нагрузки оборотах. Никаких способов обойти это ограничение нет. Можно только избежать этой проблемы, используя дополнительный двигатель, который будет работать вместо ДВС до достижения тем рабочих оборотов. Например, такую функцию выполняет электромотор на гибридах или пневматический стартер с избыточной мощностью.

Те обороты, с которых мотор может воспринимать нагрузку, и называются холостыми.

Все обороты выше холостых — рабочие. Ниже начинается зона пусковых оборотов, на которых двигатель не переносит нагрузку по тем или иным причинам. Для большинства моторов легковых автомобилей холостые обороты составляют 500-900 оборотов в минуту, что не так уж мало. В случае использования АКПП можно немного «схитрить» и установить холостые обороты без нагрузки со стороны трансмиссии ниже, повышая их только при включении режима «Drive» в коробке.

Почему холостые обороты не постоянны?

При разных системах питания причины изменения холостых оборотов различны. На ДВС с простыми нерегулируемыми карбюраторами обороты зависят от нагрузки и смесеобразования. Если срабатывают автоматы увеличения оборотов, то с ростом нагрузки обороты будут падать. То же самое произойдёт из-за плохого смесеобразования, но этого стараются избежать, применяя различные системы холодного запуска, которые завышают обороты для обеспечения устойчивой работы двигателя.

Чем совершеннее система питания, тем менее заметны колебания. С простым карбюратором водитель сам регулирует холостые обороты. Его вмешательство требуется, если температура двигателя или нагрузка на него отличаются от выставленных при регулировке холостых оборотов. С электронным карбюратором с автоматом холодного запуска водитель уже ничего не регулирует, но обороты заметно повышаются для обеспечения устойчивой работы до прогрева.

Под капотом ВАЗ-2107 Жигули ‘1997–2006

Системы впрыска разве что позволят немного завысить холостые обороты до прогрева лямбда-сенсоров и удержат их чуть повышенными до нормализации смесеобразования на 100-1000 оборотов в минуту. И ещё они могут немного увеличить обороты при увеличении нагрузки со стороны системы кондиционирования или нагрузки от генератора. Во всех остальных случаях исправная система должна поддерживать обороты практически постоянными, в пределах +/- 30 оборотов в минуту.

К сожалению, все способы регулирования не идеальны. Регуляторы ХХ и дроссельные заслонки с электроприводом со временем загрязняются, не все свечи и форсунки работают идеально, системы EGR пропускают газы, сбоят системы регулирования фаз, а у цилиндров может быть разная компрессия, отчего в реальной жизни на старых машинах обороты все же немного «гуляют»: излишне просаживаются под нагрузкой или наоборот, завышаются.

Почему холостые обороты именно такие?

Выбор холостых оборотов — это всегда компромисс. Увеличивать их – значит увеличивать расход топлива и теплоотдачу двигателя без нагрузки, что, очевидно, является плохой идеей и для гражданской машины не годится. Снижение же приводит сразу к нескольким неприятным последствиям.

Во-первых, нарушается смесеобразование. Процессы в ДВС динамические, и вся его конструкция рассчитана на рабочие обороты. При снижении частоты вращения ухудшается очистка цилиндров от отработанных газов, затрудняется наполнение цилиндров свежей смесью, растут потери на перепуск, а значит, падает и мощность.

Может, такое занижение ХХ сделает мотор хотя бы экологичнее? Тоже нет. Скорее, наоборот. Даже если двигатель сохраняет возможность восприятия нагрузки на оборотах менее холостых, его рабочий процесс будет далек от расчетного. Например, на оборотах менее 400-500 часто даже катколлекторы перестают прогреваться до рабочей температуры, а количество пропусков зажигания растет.

Серьезной проблемой является снижение давления масла и объема его подачи. Тут все просто: меньше обороты — ниже давление. При каком-то минимуме давления подшипники скольжения выходят из режима жидкостного трения, и ресурс мотора стремительно уменьшается. И чем выше нагрузка, тем выше должно быть давление, а значит, и обороты мотора.

Нагрузка на мотор уже на холостых оборотах может быть значительной (особенно с МКПП). Автоматические коробки передач способны предотвратить неприятности, но проблемы полностью не решают, хотя значительно увеличивают ресурс ДВС в целом. В результате давление масла на холостых оборотах должно быть уже достаточным для восприятия полной нагрузки на мотор. К сожалению, чем выше давление и производительность маслонасоса на холостых оборотах, тем больше избыток давления на рабочих. А значит больше расход топлива, меньше ресурс масла. Регулируемый маслонасос позволяет немного улучшить ситуацию, но в основном все же служит для компенсации избыточного снижения давления масла после прогрева двигателя, а не для снижения оборотов холостого хода.

На машинах с автоматической коробкой передач нужно учитывать и ее «пожелания». Ведь маслонасос АКПП приводится от коленчатого вала двигателя, а значит и работа коробки передач зависит от оборотов холостого хода. При слишком малых оборотах давления не хватит на корректную работу механико-гидравлической системы управления. А для систем старт-стоп приходится устанавливать гидроаккумуляторы и дополнительные электронасосы. Это позволяет гидравлике включаться в работу сразу при запуске двигателя, а не спустя пять-десять секунд.

Привод различного навесного оборудования тоже создает сложности. Генератор, насосы ГУРа и кондиционера и помпа системы охлаждения имеют ограниченный рабочий диапазон, поэтому передаточное отношение системы привода дополнительных агрегатов подбирают с учетом максимальных оборотов двигателя. А минимальные обороты любого из устройств и нагрузка на подсистемы машины ограничивают нижнее значение холостых оборотов. Слишком большое снижение оборотов может привести к перегреву многоцилиндровых моторов из-за нарушения циркуляции жидкости, к разряду аккумулятора или неработоспособности системы кондиционирования. Правда, эти проблемы тоже решаемы.

Тут выручают переход на электроприводы усилителя руля, насосов системы охлаждения и кондиционера и установка регулируемого привода помпы. К счастью, генераторы имеют очень большой рабочий диапазон и не теряют КПД при высоких оборотах. Но у этих мер есть и недостатки. Зачастую они влекут за собой лишние затраты, а часто — и снижение КПД систем за счет двойного преобразования энергии.

Вибрация мотора при снижении оборотов в основном связаны с неустойчивостью рабочего процесса, но есть у неё и несколько других причин. Например, система подвески ДВС умеет гасить колебания только в определенном диапазоне частот. И чем ниже обороты, тем сложнее гасить возникающие вибрации. Причём помимо вибраций, передаваемых на кузов и влияющих на комфорт водителя и пассажиров, существует еще такая вещь как крутильные колебания, которые разрушительно действуют на трансмиссию и колеса.

Чем ниже обороты мотора, тем сложнее их гасить. Приходится или использовать не блокируемые гидротрансформаторы или двухмассовые маховики, или сочетание двух технологий одновременно. Повышение оборотов холостого хода позволяет снизить колебания момента при каждом обороте, отодвинуть частоты всех колебаний дальше от резонансных и сделать работу всех систем подавления вибраций эффективнее.

Неустойчивые, плавающие обороты двигателя. Проблемы и решение.

Неустойчивые, плавающие обороты двигателя. Проблемы и решение.

В большинстве случаев с проблемой плавающих оборотов сталкиваются владельцы автомобилей, оснащенных двигателем с электронным впрыском. Причиной плавающих оборотов или неустойчивых оборотов может быть несколько факторов. О возможных неисправностях, которые влекут за собой неустойчивые обороты и о методах устранения подобных неполадок– далее в статье.

Рекомендации специалистов ХАДО

Если вы заметили, что обороты начали плавать, проверьте состояние:

  • Регулятора холостого хода, датчика массового расхода воздуха, датчика положения дроссельной заслонки. Если обнаружится поломка одного из вышеупомянутых элементов, необходимо произвести его замену. В случае несерьезной поломки можно очистить узел при помощи средства Verylube Очиститель заслонки и клапана EGR.
  • Подсоса воздуха внутри системы.
  • Системы питания. Если форсунки топливоподачи засорены, обороты будут неустойчивыми. В этом случае рекомендуется применять промывку инжекторов XADO MaxiFlush.
  • Системы зажигания. Для устранения плавающих оборотов из-за неисправной системы зажигания, нужно проверить, насколько хорошо функционируют свечи, высоковольтные провода и катушки зажигания.
  • Электронного блока управления двигателем (ЭБУ). В случае если блок управления не способен сформировать соответствующий сигнал для обеспечения правильного функционирования топливных форсунок двигателя, помочь в разрешении проблемы поможет только проведение профессиональной диагностики на СТО и ремонт узла.

Каталог продукции

Вы вышли из Вашего Личного Кабинета.

Ваша корзина покупок была сохранена. Она будет восстановлена при следующем входе в Ваш Личный Кабинет.

Укажите ваши данные

Заполните все поля формы с подробной информацией о модели Вашей машины для того, чтобы наши эксперты смогли Вам помочь.

Ваш запрос отправлен

Бесплатный звонок

Ваш запрос отправлен

Ваша заявка принята.

С вами свяжется наш консультант в ближайшее время.

Часы работы: Пн-Пт: с 9:00 до 18:00
Суббота, воскресенье: выходной.

Контроль Оборотов Двигателя — CUPOL Оператор Мониторинга в Москве

Контроль оборотов двигателя — один из эффективных способов сократить расходы на обслуживание автопарка. Не секрет, что езда на повышенных оборотах негативно воздействует на мотор и коробку передач. Поэтому износ транспортного средства значительно увеличивается. Кроме того, такая манера езды ведет к росту расхода топлива. При этом повышенные обороты — это не единственная проблема. Простаивание автомобиля или техники на холостых оборотах также увеличивает расходы на обслуживание.

Рассчитать стоимость

получить коммерческое предложение

Не все водители бережно относятся к служебному автотранспорту. Однако установка систем мониторинга ТС с возможностью удаленного контроля оборотов позволяет снизить расходы на амортизацию, сократить дополнительные траты, выявить непрофессионализм и халатное отношение шоферов.

Для контроля оборотов используются различные способы, среди которых одним из самых эффективных считается применение данных штатных датчиков транспортного средства с помощью подключения к CAN-шине. Для этого необходимо установить на автомобиль спутниковый терминал с интерфейсом CAN или использовать в дополнение к трекеру CAN-log. Это устройство, обеспечивающее бесконтактное считывание данных с CAN-шины.

CAN — это популярный промышленный протокол (англ. Controller Area Network — сеть контроллеров), который также используется в современном транспорте, от легкового до спецтехники. CAN-шина представляет собой магистраль из проводов, по которой передаются сигналы различных штатных датчиков. Считывание информации с нее позволяет получить целый набор различных данных, для сбора которых иначе потребовалось бы подключение дорогостоящих устройств.

Бесконтактное считывание позволяет посмотреть эти сведения без риска потерять гарантию на технику и транспорт и не нарушает целостность проводов и безопасность электронных систем.

Данные передаются в систему мониторинга транспорта, которая проводит их анализ и выводит график режима использования транспортного средства. Они фильтруются по трем типам: от 0 до 800 — холостой ход, 800 до 3000 — рабочие обороты и более 3000 — повышенные обороты. Таким образом, можно легко узнать, как эксплуатируется автомобиль.

Системы мониторинга CUPOL помогут вам эффективно контролировать транспорт по различным показателям, в том числе и таким специфическим, как контроль оборотов двигателя.

Основные сведения об оборотах двигателя

Обороты двигателя — одно из самых основных измерений функциональности любого автомобильного двигателя. Он используется для определения того, как и где двигатель вырабатывает мощность, а также является ключевым аспектом эффективного вождения и диагностики потенциальных проблем. Почти каждый автомобиль или грузовик оснащен тахометром на приборной панели, который измеряет и отображает число оборотов в минуту, показывая, насколько важен этот аспект работы вашего автомобиля.

Что означает об / мин ?

Обороты двигателя — это сокращение от числа оборотов в минуту или скорости, с которой двигатель фактически вращается внутри.Вот почему вы также услышите число оборотов в минуту, называемое скоростью двигателя. Что именно крутится внутри вашего мотора? Ответ — коленчатый вал, который вращается за счет движения поршней, перемещающихся вверх и вниз в цилиндрах, когда свечи зажигания загораются и взрывают топливо, которое подается в двигатель. Поршни соединены шатунами с коленчатым валом.

Почему об / мин важно?

С первого взгляда число оборотов двигателя может многое рассказать о том, что происходит внутри двигателя. У каждого двигателя есть так называемый диапазон мощности, который представляет количество лошадиных сил и крутящий момент, которые он производит, в зависимости от того, насколько быстро вращается коленчатый вал. Как правило, чем выше частота вращения, тем больше мощности вырабатывается в диапазоне частот вращения двигателя. Некоторые двигатели вырабатывают большую часть крутящего момента на очень низких оборотах, а затем падают при повышении, например, дизельные двигатели или большие двигатели V8 в легковых автомобилях. Другие должны вращаться очень быстро, чтобы получить пиковую мощность. Это типично для бензиновых двигателей меньшего размера.Когда дело доходит до выработки электроэнергии, не путайте красную линию в верхней части тахометра с оптимальной точкой. На самом деле это предел, при котором можно безопасно разогнать двигатель, а не показатель того, где можно найти наибольшую мощность.

Это помогает узнать, при каких оборотах ваш двигатель производит наибольшую мощность, чтобы вы могли использовать преимущества этой области диапазона мощности во время движения, чтобы улучшить производительность и помочь узнать, когда переключить (в автомобиле с ручным управлением), чтобы воспользоваться преимуществами его дизайн. Если вы предпочитаете сосредоточиться на эффективности, вы обнаружите, что чем ниже частота вращения двигателя, тем меньше он потребляет топлива.Это не означает, что вы должны постоянно тащить двигатель на высокой передаче, но это означает, что нужно осторожно нажимать педаль газа, чтобы избежать резких скачков оборотов двигателя и потребления дополнительного газа, когда подойдет более постепенное ускорение.

Ознакомьтесь со всеми деталями двигателя , доступными на NAPA Online, или доверьтесь одному из наших 17 000 пунктов обслуживания NAPA AutoCare для текущего обслуживания и ремонта. Для получения дополнительной информации об оборотах двигателя и тахометрах, поговорите со знающим экспертом в местном магазине NAPA AUTO PARTS.

Как рассчитать скорость колеса и автомобиля по оборотам двигателя — x-инженер.org


Скорость автомобиля и колеса можно рассчитать как функцию скорости двигателя, если известны параметры и состояние трансмиссии. В этом руководстве мы собираемся вычислить скорость автомобиля и колеса для заданного:

  • оборотов двигателя
  • передаточного числа (включенной передачи)
  • передаточного числа главной передачи (в дифференциале)
  • (свободного статического) колеса радиус

Также предположим, что в муфте сцепления или гидротрансформаторе нет пробуксовки, поскольку двигатель механически связан с колесами.

Этот метод может быть применен к любой архитектуре трансмиссии (с передним или задним приводом), но для облегчения понимания компонентов мы собираемся использовать трансмиссию с полным приводом (RWD).

Изображение: Продольная диаграмма трансмиссии автомобиля — расчет скорости

где:
ω e [рад / с] — частота вращения двигателя
ω g [рад / с] — частота вращения двигателя частота вращения выходного вала коробки передач
ω d [рад / с] — частота вращения ведущего колеса дифференциала
ω wr [рад / с] — частота вращения правого колеса
ω wl [ рад / с] — частота вращения левого колеса
v wl [м / с] — линейная скорость левого колеса
v wr [м / с] — линейная скорость правого колеса
i x [-] — передаточное число включенной передачи
i 0 [-] — передаточное число дифференциала
r w [м] — статический радиус колеса

Для упрощения расчета предположим, что транспортное средство двигайтесь по прямой линии, а также чтобы оба колеса имели одинаковый радиус. Это означает, что:

\ [\ omega_ {wr} = \ omega_ {wl} = \ omega_ {w} \ tag {1} \]

, где ω w [рад / с] — обычная скорость вращения колеса. .

Поскольку и транспортное средство, и колесо движутся вместе в линейном направлении, скорость транспортного средства (линейная) равна линейной скорости колеса. Итак, если мы вычисляем линейную скорость колеса, у нас также есть скорость автомобиля.

\ [v_ {wr} = v_ {wl} = v_ {w} = v_ {v} \ tag {2} \]

Где v w [м / с] — это обычная линейная скорость колеса, а v v [м / с] — скорость автомобиля.

Поскольку коробка передач связана с двигателем через муфту (на механических коробках передач) или гидротрансформатор (на автоматических коробках передач), мы считаем, что нет абсолютно никакого проскальзывания в муфте (полностью замкнутом) или в гидротрансформаторе ( муфта блокировки замкнута). В этом случае частота вращения сцепления ω, c [рад / с] равна частоте вращения двигателя ω, e [рад / с] .

\ [\ omega_ {c} = \ omega_ {e} \ tag {3} \]

Изображение: Схема продольной трансмиссии автомобиля — расчет скорости

В отличие от расчета крутящего момента колеса, передаточные числа уменьшают скорость колеса.Скорость выходного вала коробки передач равна скорости сцепления, деленной на передаточное число:

\ [\ omega_ {g} = \ frac {\ omega_ {c}} {i_ {x}} \ tag {4} \]

Скорость вращения ведущей шестерни дифференциала также уменьшается, равная скорости выходного вала коробки передач, деленной на передаточное число дифференциала:

\ [\ omega_ {d} = \ frac {\ omega_ {g}} {i_ {0}} \ tag {5} \]

Скорость левого и правого колеса равна дифференциальной скорости:

\ [\ omega_ {wr} = \ omega_ {wl} = \ omega_ {d} \ tag {6} \]

Объединение все вышеперечисленные уравнения дают формулу для функции скорости вращения колес от частоты вращения двигателя:

\ [\ omega_ {w} = \ frac {\ omega_ {e}} {i_ {x} \ cdot i_ {0}} \ tag {7} \]

Для частоты вращения двигателя преобразование из об / мин в рад / с выполняется как:

\ [\ omega_ {e} = \ frac {N_ {e} \ cdot \ pi} {30} \ tag { 8} \]

Где N e — частота вращения двигателя в [об / мин] .

Если нам нужна частота вращения колеса N w в [об / мин] , от [рад / с] , нам нужно применить обратное преобразование:

\ [N_ {w} = \ frac {\ omega_ {w} \ cdot 30} {\ pi} \ tag {9} \]

Кроме того, линейная скорость колеса рассчитывается как функция скорости вращения и радиуса как:

\ [v_ {w} = \ omega_ {w} \ cdot r_ {w} \ tag {10} \]

Комбинируя уравнения (7), (8) и (10), получаем выражение функции скорости автомобиля и колеса от скорости двигателя, коробки передач и передаточных чисел дифференциала:

\ [ v_ {v} \ text {[м / с]} = v_ {w} \ text {[m / s]} = \ frac {N_ {e} \ cdot \ pi \ cdot r_ {w}} {30 \ cdot i_ {x} \ cdot i_ {0}} \ tag {11} \]

Если мы хотим получить скорость [км / ч] , формула будет иметь следующий вид:

\ [\ bbox [# FFFF9D] {V_ {v } \ text {[км / ч]} = V_ {w} \ text {[км / ч]} = \ frac {3.6 \ cdot N_ {e} \ cdot \ pi \ cdot r_ {w}} {30 \ cdot i_ {x} \ cdot i_ {0}}} \ tag {12} \]

Пример 1 . Рассчитайте скорость автомобиля в [км / ч] для автомобиля со следующими параметрами:

  • частота вращения двигателя, N e = 2300 об / мин
  • коробка передач (1 st ) передаточное число, i x = 4,171
  • передаточное число главной передачи, i 0 = 3,460
  • маркировка размера шины 225 / 55R17

Шаг 1 .Рассчитайте (свободный статический) радиус колеса по маркировке размера шины. Методика расчета радиуса колеса описана в статье Как рассчитать радиус колеса. Расчетный радиус колеса составляет r w = 0,33965 м .

Шаг 2 . Рассчитайте крутящий момент колеса, используя уравнение (12).

\ [V_ {v} = \ frac {3.6 \ cdot 2300 \ cdot \ pi \ cdot 0.33965} {30 \ cdot 4.171 \ cdot 3.460} = 20.4068 \ text {kph} \]

Тот же метод можно применить для электромобиль, при этом частота вращения двигателя заменяется частотой вращения двигателя.

Вы также можете проверить свои результаты, используя калькулятор ниже.

Для получения дополнительных руководств щелкните по ссылкам ниже.

Датчик оборотов двигателя

После покупки или лизинга вашего нового Lexus в Earnhardt Lexus вам будет интересно узнать, что поддерживает ваш красивый автомобиль в отличном состоянии. Частично ответ зависит от блока управления двигателем (ЭБУ) и датчиков, которые он контролирует в вашем двигателе. Один из самых важных — датчик оборотов двигателя.

Важно обращать внимание на то, как работает ваша машина, и быть готовым, если вы заметите, что что-то не так. Независимо от марки или модели, у нас вы можете запланировать сертифицированный ремонт авто. У наших механиков есть инструменты и оборудование, необходимые для проведения точного ремонта любого типа автомобиля или внедорожника.

Что такое блок управления двигателем

Вы можете думать о блоке управления двигателем как о мозге вашего автомобиля. В вашем новом Lexus есть ряд датчиков, которые взаимодействуют с блоком управления двигателем (ECU) или модулем управления двигателем (ECM), чтобы поддерживать оптимальную производительность вашего автомобиля.ЭБУ регулирует четыре основные части ваших систем Lexus: соотношение воздух-топливо, скорость холостого хода, изменение фаз газораспределения и момент зажигания. Некоторые из датчиков в вашем Lexus включают датчики массового расхода воздуха, датчики кислорода и датчики топлива и воздуха.

Что такое датчик скорости двигателя?

Датчик скорости двигателя, также известный как датчик скорости трансмиссии, является одним из датчиков, который взаимодействует с ЭБУ, чтобы поддерживать ваш Lexus в отличном рабочем состоянии. Работа датчика скорости двигателя заключается в вычислении скорости вращения колес и, в конечном итоге, в определении скорости вашего движения.

Где находится датчик оборотов двигателя и какой свет двигателя ему соответствует?

Датчик расположен на трансмиссии автомобиля, поэтому его иногда называют датчиком скорости трансмиссии. Он отправляет информацию на ваш спидометр и компьютер вашего двигателя, чтобы сообщить коробке передач, когда нужно переключиться. Если спидометр в вашем Lexus не работает или есть индикатор проверки двигателя, который сопровождает проблемы с переключением, обязательно позвольте техническому специалисту Earnhardt Lexus осмотреть ваш автомобиль.

Автомобили Lexus имеют хорошие рейтинги безопасности, но если они не работают должным образом, путешествие может стать опасным. Для безопасности вашего автомобиля важно, чтобы вы не игнорировали индикаторы проверки двигателя. К тому времени, когда загорятся эти огни, проблема станет серьезной и может повредить другие компоненты вашего автомобиля.

Как работает датчик скорости двигателя?

Совершенная трансмиссия Lexus работает точно благодаря датчикам частоты вращения двигателя. Современные трансмиссии имеют датчики для расчета передаточного числа на основе непосредственных данных, а не только прогнозов, сделанных инженерами при создании трансмиссии.

В то время как монитор выходного вала сообщает, сколько нужно толкать колеса, монитор входного вала передает информацию, необходимую ЭБУ для расчета этой выходной мощности. Это позволяет лучше уловить, как скорость, новая мощность и остаточная мощность толкают колеса и перемещают Lexus.

Если у вас есть какие-либо вопросы относительно датчика частоты вращения двигателя в вашем Lexus, свяжитесь с Earnhardt Lexus или нашим отделом обслуживания, чтобы узнать больше. У нас есть специалисты, которые помогут со всеми вашими потребностями Lexus!

Влияние оборотов двигателя, скорости заправки и фаз горения на термическое расслоение, необходимое для ограничения интенсивности детонации HCCI на JSTOR

Термическое расслоение может снизить скорость повышения давления и повысить выходную мощность двигателей HCCI.В этой статье систематически исследуется, как следует регулировать степень теплового расслоения ядра заряда, чтобы избежать чрезмерного детонации при увеличении частоты вращения двигателя и скорости заправки. Это достигается путем сочетания многозонного моделирования химической кинетики и экспериментов с двигателями с использованием изооктана в качестве топлива. Эксперименты показывают, что для конфигурации двигателя с низким остаточным давлением следы давления самоподобны при изменении частоты вращения двигателя, когда CA50 поддерживается путем регулирования температуры на впуске.Следовательно, абсолютная скорость повышения давления, измеренная в бар / мс, увеличивается пропорционально частоте вращения двигателя. В результате интенсивность детонации (звона) резко возрастает с увеличением оборотов двигателя, если этому не противодействовать каким-либо образом. В этой статье описывается, как регулировку тепловой ширины заряда в цилиндре можно использовать для ограничения интенсивности звона до 5 МВт / м² по мере увеличения как скорости двигателя, так и заправки топливом. Если тепловая ширина может быть адаптирована без ограничений, это обеспечивает плавную работу даже для комбинаций высокой скорости, высокой нагрузки и фазирования сгорания, близкой к ВМТ. Поскольку большие изменения тепловой ширины заряда не всегда возможны, считается, что замедление горения снижает требования к тепловому расслоению. Результаты показывают, что замедление горения несет в себе значительный потенциал, поскольку усиливает преимущество фиксированной тепловой ширины. Следовательно, термическое расслоение, необходимое для работы с приемлемой интенсивностью детонации, может быть существенно уменьшено за счет использования замедлителя горения. Это позволяет сочетать высокие обороты двигателя и высокую скорость заправки даже для работы с естественным тепловым расслоением.Однако для такой операции, вероятно, потребуется очень точное управление фазированием горения.

SAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности. Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.

Двигатель

— Official Raft Wiki

Двигатель — это элемент навигации в Raft.

Двигатель можно получить через Чертеж: Двигатель, который можно найти на Васагатане. Изучив чертеж, игроки могут построить и установить двигатель, чтобы плыть против ветра. При использовании в сочетании с рулевым колесом игрок получает полный контроль над тем, в каком направлении он хочет плыть. Один паровоз может толкнуть плот до 100 фундаментов. Для каждого набора из 100 фундаментов сверх начальных 100 необходимо построить и запустить еще один двигатель одновременно, чтобы у них было достаточно мощности для плавания плота.Обратите внимание, что сети сбора не учитываются при подсчете количества фондов.

Двигатель работает на досках или биотопливе. При использовании досок Двигатель прожигает одну доску за 36 секунд, а полный бак из 17 досок ровно за 600 секунд (10 минут вместо 612 секунд из-за переполнения). Одно биотопливо стоит 17 досок во время работы двигателя, если поместить его непосредственно в двигатель, и 20 досок, если подавать из бака, но также требует меда, что затрудняет получение топлива. Однако биотопливо можно хранить в резервуарах для биотоплива и подключать к двигателю через топливные трубы, что автоматизирует процесс заправки двигателя топливом.Биотопливный бак может быть заполнен четырьмя канистрами с биотопливом и может обеспечивать питание одного двигателя в общей сложности на 48 минут (примерно от 2,4 (без сна) до 3,6 (максимум спящий) игровых дней — см. Часы).

Если Двигатель не может толкать плот, независимо от того, закреплен он на якоре или перегружен, он замедлится до остановки, одновременно заикаясь, указывая на то, что что-то не так. В это время топливо не используется, несмотря на то, что двигатель включен.

Ниже приводится сравнение работающего и заикающегося двигателя:

Если двигатель не работает должным образом, это может быть вызвано следующими причинами:

  • Слишком много фондов. Двигатель может толкать до 100 фундаментов. Убедитесь, что количество двигателей покрывает количество фондов.
  • Плот стоит на якоре. Убедитесь, что в данный момент плот на месте не удерживается якорями.
  • В одном или нескольких двигателях не хватает топлива. Проверьте уровень топлива на всех двигателях.
  • Двигатели идут в противоположных направлениях. Проверьте рычаг направления двигателя и убедитесь, что они совпадают.

Двигатель следует нескольким параметрам, когда дело доходит до определения скорости плота [1] .

Первый параметр касается скорости плавания плота при использовании двигателей, которая всегда оценивается от 1,5 до 2,5 и никогда не может превышать эти числа. Один двигатель будет толкать плот со скоростью 2, а добавление дополнительного двигателя увеличит скорость плота до 2,5.

Второй параметр касается перегрузки плота . Как упоминалось выше, один двигатель может перемещать до 100 фундаментов, однако существует «зона замедления» между 101-110 фундаментами (на каждый двигатель), где плот будет продолжать движение, но с меньшей скоростью. Эта скорость определяется как 1 на двигатель. Если используется только 1 двигатель, и он находится в «Медленной зоне», скорость будет установлена ​​на минимум 1,5.

Третий и последний параметр ищет отношение между количеством фундаментов и количеством двигателей . В Raft есть три основных параметра скорости двигателя, не считая дрифта. Медленное плавание (1.5), когда один Двигатель может толкать плот, но на минимальной скорости, прежде чем полностью остановиться. Средняя скорость (2), достигается за счет использования одного двигателя на плоту под 100 фундаментами или за счет использования двух двигателей в «медленной зоне» (201–220 фундаментов).Высокая скорость (2,5), когда плот имеет несколько двигателей, которые успешно плывут по нему. Поскольку скорость двигателя аддитивна при работе нескольких двигателей одновременно, высокая скорость всегда достигается, если плот успешно плывет по крайней мере с 3 двигателями, но не в том случае, если плот перегружен.

  • Поместите плот на плот и поверните, чтобы плыть в желаемом направлении.
  • Используйте с рулевым колесом для полного контроля направления.
  • Емкость двигателя составляет 50, а одного биотоплива — 60.Таким образом, заливка биотоплива непосредственно в баки двигателя приведет к потере 10 единиц топлива. Чтобы предотвратить это, игрок должен использовать бак с биотопливом.

Все, что вы когда-либо хотели знать о поршнях — Характеристика — Автомобиль и водитель

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Кусочки алюминия внутри вашего двигателя живут в огненном аду.При полностью открытой дроссельной заслонке и 6000 об / мин поршень бензинового двигателя каждые 0,02 секунды подвергается воздействию силы почти 10 тонн, поскольку повторяющиеся взрывы нагревают металл до температуры более 600 градусов по Фаренгейту.

В наши дни этот цилиндрический Аид жарче и интенсивнее, чем когда-либо, а с поршнями, вероятно, станет только хуже. По мере того как автопроизводители стремятся к повышению эффективности, производители поршней готовятся к будущему, в котором самые мощные безнаддувные бензиновые двигатели вырабатывают 175 лошадиных сил на литр по сравнению со 130 сегодня.С турбонаддувом и увеличенной мощностью возникают еще более жесткие условия. За последнее десятилетие рабочие температуры поршней поднялись на 120 градусов, а пиковое давление в цилиндрах увеличилось с 1500 фунтов на квадратный дюйм до 2200.

Поршень рассказывает историю двигателя, в котором он находится. Заводная головка может показывать отверстие, количество клапанов и то, впрыскивается ли топливо непосредственно в цилиндр. Однако конструкция и технология поршня также могут многое сказать о более широких тенденциях и проблемах, стоящих перед автомобильной промышленностью.Чтобы придумать изречение: как автомобиль едет, так и двигатель; и как двигатель едет, так и поршень. Стремясь повысить экономию топлива и снизить уровень выбросов, автопроизводители требуют более легких поршней с меньшим коэффициентом трения, способных выдерживать более жесткие условия эксплуатации. Именно эти три проблемы — долговечность, трение и масса — отнимают рабочие дни поставщиков поршней.

Во многих отношениях развитие бензиновых двигателей идет по пути, проложенному дизелями 15 лет назад. Чтобы компенсировать 50-процентное увеличение пикового давления в цилиндре, некоторые алюминиевые поршни теперь имеют железную или стальную вставку для поддержки верхнего кольца.Самым горячим бензиновым двигателям скоро потребуется охлаждающий канал или закрытый канал на нижней стороне головки, который более эффективно отводит тепло, чем современный метод простого распыления масла на нижнюю часть поршня. Сквиртеры выстреливают маслом в небольшое отверстие в нижней части поршня, которое питает галерею. Однако эту, казалось бы, простую технологию нелегко изготовить. Создание полого канала означает отливку поршня в виде двух частей и их соединение посредством трения или лазерной сварки.

На поршни приходится не менее 60 процентов трения двигателя, и улучшения здесь напрямую влияют на расход топлива. Снижающие трение пластыри, пропитанные графитом, нанесенные трафаретной печатью на юбку, теперь стали почти универсальными. Поставщик поршней Federal-Mogul экспериментирует с конической поверхностью масляного кольца, которая позволяет уменьшить натяжение кольца без увеличения расхода масла. Более низкое трение кольца может разблокировать до 0,15 лошадиных сил на цилиндр.

Автопроизводители также жаждут новых покрытий, снижающих трение между деталями, которые трутся или вращаются друг о друга.Твердое и скользкое алмазоподобное покрытие, или DLC, перспективно для гильз цилиндров, поршневых колец и пальцев, где оно может устранить необходимость в подшипниках между пальцем и шатуном. Но это дорого и мало применяется в современных автомобилях.

«[Производители] часто обсуждают DLC, но вопрос о том, попадут ли они в серийные автомобили или нет, — говорит Йоахим Вагенбласт, старший директор по разработке продукции немецкого поставщика автозапчастей Mahle.

Все более сложное компьютерное моделирование и более точные методы производства также позволяют создавать более сложные формы. В дополнении к чашам, куполам, и абзацам клапанов, необходимые для оформления и для достижения конкретного коэффициента сжатия, асимметричные юбки имеют меньшую, более жесткую область на упорной стороне поршня, чтобы уменьшить трение и концентрацию напряжений. Переверните поршень, и вы увидите конические стенки толщиной чуть более 0,1 дюйма. Более тонкие стенки требуют более жесткого контроля допусков, которые уже измеряются в микронах или тысячных долях миллиметра.

Более тонкие стены также требуют лучшего понимания теплового расширения объекта, который иногда должен нагреваться ниже нуля до нескольких сотен градусов за считанные секунды. Металл в вашем двигателе не расширяется равномерно при нагревании, поэтому для оптимизации допусков требуется опыт проектирования и возможности точной обработки для создания небольших эксцентриситетов в деталях.

«Ничто из того, что мы делаем, не бывает прямым или круглым», — говорит Кери Вестбрук, директор по проектированию и технологиям Federal-Mogul. «Мы всегда вносим какую-то компенсацию».

Поршни дизельных двигателей претерпевают собственную эволюцию, поскольку пиковое давление в цилиндрах возрастает до 3600 фунтов на кв. Mahle и Federal-Mogul прогнозируют переход от литого алюминия к поршням из кованой стали. Сталь плотнее алюминия, но в три раза прочнее, что делает поршень более устойчивым к более высоким давлениям и температурам без увеличения веса.

Сталь позволяет заметно изменить геометрию за счет уменьшения высоты сжатия поршня, определяемой как расстояние от центра пальца запястья до вершины заводной головки.На эту площадь приходится 80 процентов веса поршня, поэтому чем короче, тем легче. Важно то, что меньшая высота сжатия приводит не только к усадке поршней. Это также позволяет сделать блок двигателя короче и легче, так как высота палубы уменьшается.

Mahle производит стальные поршни для новейших турбодизелей, таких как четырехкратный призер Ле-Мана Audi R18 TDI и двигатель Mazda LMP2 Skyactiv-D. Компания начнет поставки своих первых стальных поршней для легкового серийного дизельного двигателя Renault 1.5-литровый четырехцилиндровый, позже в этом году.

Неизменная актуальность двигателя внутреннего сгорания обусловлена ​​непрерывной эволюцией его компонентов. Поршни не сексуальны. Они не такие модные, как литий-ионные батареи, такие сложные, как трансмиссия с двойным сцеплением, и не такие интересные, как дифференциал с векторизацией крутящего момента. Тем не менее, после более чем столетия автомобильного прогресса поршни возвратно-поступательного действия продолжают вырабатывать большую часть энергии, которая движет нами.

1. Феррари F136

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ferrari 458 Italia (показан) , 458 Spider

Тип двигателя: DOHC V-8

Рабочий объем: 274 куб. Дюймов, 4497 ​​куб.

Конкретный вывод: 125.0 л.с. / л

Макс.скорость двигателя: 9000 об / мин

Диаметр цилиндра: 3,70 дюйма

Вес: 2,1 фунта

2. Ford Fox

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ford Fiesta (показан) , Focus

Тип двигателя: рядный трехцилиндровый с турбонаддувом DOHC

Рабочий объем: 61 куб. Дюйм, 999 куб.

Конкретный вывод: 123.1 л.с. / л

Макс.скорость двигателя: 6500 об / мин

Диаметр цилиндра: 2,83 дюйма

Вес: 1,5 фунта

3. Cummins ISB 6,7

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ram Heavy Duty (показан)

Тип двигателя: дизельный рядный шестицилиндровый двигатель с турбонаддувом

Рабочий объем: 408 куб. Дюймов, 6690 куб.

Конкретный вывод: 55.3 л.с. / л

Макс.скорость двигателя: 3200 об / мин

Диаметр цилиндра: 4,21 дюйма

Вес: 8,9 фунта

4. Ford Coyote

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ford F-150, Mustang (показан)

Тип двигателя: DOHC V-8

Рабочий объем: 302 куб. Дюймов, 4951 куб.

Конкретный вывод: от до 84.8 л.с. / л

Макс.скорость двигателя: 7000 об / мин

Диаметр цилиндра: 3,63 дюйма

Вес: 2,4 фунта

5. Fiat Fire 1.4L Turbo

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Приложения: Dodge Dart; Fiat 500 Abarth (на рисунке) , 500L, 500 Turbo

Тип двигателя: рядный четырехцилиндровый SOHC с турбонаддувом

Рабочий объем: 83 куб. Дюйма, 1368 куб.

Конкретный вывод: от до 117.0 л.с. / л

Макс.скорость двигателя: 6500 об / мин

Диаметр цилиндра: 2,83 дюйма

Вес: 1,5 фунта

6. Cummins ISX15

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: тяжелых грузовиков (показан International Prostar)

Тип двигателя: дизельный рядный шестицилиндровый SOHC с турбонаддувом

Рабочий объем: 912 куб. Дюймов, 14 948 куб.

Конкретный вывод: от до 40.1 л.с. / л

Макс.скорость двигателя: 2000 об / мин

Диаметр цилиндра: 5,39 дюйма

Вес: 26,4 фунта

7. Chrysler LA-Series Magnum V-10

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Dodge Viper (показан)

Тип двигателя: толкатель V-10

Рабочий объем: 512 куб. Дюймов, 8382 куб.

Конкретный вывод: 76.4 л.с. / л

Макс.скорость двигателя: 6400 об / мин

Диаметр цилиндра: 4,06 дюйма

Вес: 2,8 фунта

8. Ford EcoBoost 3.5L

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Приложения: Ford Expedition, Explorer Sport, F-150 (показан) , Taurus SHO, Transit; Линкольн МКС, МКТ, Навигатор

Тип двигателя: с двойным турбонаддувом DOHC V-6

Рабочий объем: 213 куб. Дюймов, 3496 куб.

Конкретный вывод: от до 105.8 л.с. / л

Макс.скорость двигателя: 6500 об / мин

Диаметр цилиндра: 3,64 дюйма

Вес: 2,6 фунта

9. Toyota 2AR-FE

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Scion tC (показан) ; Тойота Камри, РАВ4

Тип двигателя: DOHC рядный четырехцилиндровый

Рабочий объем: 152 куб. Дюймов, 2494 куб.

Конкретный вывод: от до 72.2 л.с. / л

Макс.скорость двигателя: 6500 об / мин

Диаметр цилиндра: 3,54 дюйма

Вес: 2,5 фунта

10. Цепная пила Stihl MS441

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: MS441 Цепная пила C-M Magnum (на рисунке) , MS441 Цепная пила C-MQ Magnum

Тип двигателя: двухтактный одноцилиндровый

Рабочий объем: 4 куб. Дюйма, 71 куб.

Конкретный вывод: 79.7 л.с. / л

Макс.скорость двигателя: 13500 об / мин

Диаметр цилиндра: 1,97 дюйма

Вес: 0,4 фунта

11. Chrysler Hellcat 6.2L

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Приложения: Dodge Challenger SRT Hellcat

Тип двигателя: толкатель V-8 с наддувом

Рабочий объем: 376 куб. Дюймов, 6166 куб.

Конкретный вывод: 114.7 л.с. / л

Макс.скорость двигателя: 6200 об / мин

Диаметр цилиндра: 4,09 дюйма

Вес: 3,0 фунта

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

По мере увеличения нагрузки на поршни возрастают и требования к шатунам. Более высокое давление сгорания приводит к большим нагрузкам на стержни, соединяющие поршни с кривошипом.За редким исключением экзотических деталей из титана, шатуны обычно либо изготавливаются из порошковой стали, сжимаются и нагреваются в форме, либо выковываются из стальной заготовки для более эффективных применений. Главный технологический сдвиг — это треснувшие крышки шатунов как для металлических, так и для кованых шатунов. Раньше шток и крышка кривошипа изготавливались как отдельные детали. Стержни с треснувшими крышками выходят из формы как единая деталь в форме гаечного ключа. Конец шатунной шейки протравливается, а затем с помощью пресса защелкивается надвое.Полученная неровная поверхность улучшает выравнивание; обеспечивает более надежное соединение крышки со стержнем; и позволяет получить более тонкий и легкий узел шатуна.

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Неметаллические поршни: Керамика и композиты отличаются меньшим тепловым расширением, меньшим весом и большей прочностью и жесткостью по сравнению с алюминием.В 1980-х годах Mercedes-Benz использовал грант правительства Германии для создания двигателя 190E с поршнями из углеродного композита, который без проблем пробегал 15 000 миль. Несмотря на то, что технология хороша, производство было ограничивающим фактором. Исследование НАСА 1990 года показало, что изготовление одного поршня из углеродно-углеродной заготовки стоило 2000 долларов. Альтернативой был трудоемкий процесс ручной укладки.

Роторы Ванкеля: Хорошо, хорошо, мы знаем, что это не возвратно-поступательный поршень, но чугунный треугольный ротор является аналогом поршня двигателя Ванкеля, потому что он преобразует энергию сгорания в крутящий момент.Поскольку на горизонте нет новой Mazda RX, наша единственная надежда на роторное возрождение, похоже, — это Audi, которая дразнила нас расширителем диапазона типа Ванкеля в своей гибридной концепции Audi A1 e-tron 2010 года.

Овальные поршни: В то время, когда двухтактные двигатели для мотоциклов были нормой, Honda представила четырехтактный двигатель на Мировом Гран-при мотоциклов в 1979 году. Он считается одним из самых странных двигателей в истории. Мотоцикл Honda NR500 GP был оснащен двигателем V-4 с V-образным вырезом под углом 100 градусов, овальными цилиндрами с восемью клапанами на каждом и двумя шатунами на поршень.Герметизация овальных поршней оказалась сложной задачей (первоначальным бизнесом Соитиро Хонда была поставка поршневых колец для Toyota), но это было одной из наименьших проблем команды. Мотоциклы регулярно снимались с гонок World GP и иногда не попадали в квалификацию. В течение трех лет Honda вернулась к традиционному двухтактному гоночному двигателю.

Двигатели с оппозитными поршнями: Дизельный двухтактный двигатель EcoMotors с оппозитными поршнями и оппозитными цилиндрами (OPOC) обеспечивает повышение эффективности на целых 15 процентов по сравнению с обычным двигателем с воспламенением от сжатия.Поместив камеру сгорания между двумя поршнями, компания устранила головки цилиндров и клапанный механизм, которые являются источниками значительных потерь тепла и трения. Двигатель OPOC с меньшим количеством деталей также должен быть дешевле и легче, если он не окажется на полке с фантастическим карбюратором Fish.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

Исследование влияния момента зажигания на характеристики бензинового двигателя и выбросы | European Transport Research Review

Первая корректировка рабочих характеристик производилась при изменении положения дроссельной заслонки. Путем изменения положения дроссельной заслонки давление во впускном коллекторе было изменено до 100 кПа в положении полностью открытой дроссельной заслонки. Скорость поддерживалась на уровне 3400 об / мин, а коэффициент эквивалентности был равен единице.

Результаты показывают, что среднее эффективное давление в тормозной системе (BMEP) имеет тенденцию увеличиваться с увеличением угла опережения зажигания до 31 ° перед верхней мертвой точкой (BTDC), а затем снижается.Наилучшие характеристики будут достигнуты при максимальном воспламенении 31 ° до ВМТ. Если опережение зажигания недостаточно опережение, исходная часть максимального давления будет проявляться в ходе расширения, и в этом случае мы потеряем полезную эффективность и снизим производительность.

Максимальное значение BMEP соответствует моменту зажигания. 31 ° BTDC. Минимальное опережение для максимального тормозного момента (MBT) определяется как наименьшее опережение, при котором достигается 99% максимальной мощности.

Следует отметить, что MBT будет меняться как в зависимости от положения дроссельной заслонки, так и в зависимости от частоты вращения двигателя при увеличении дроссельной заслонки; плотности заряда в цилиндре в менее плотных смесях потребуется не очень большое опережение опережения зажигания.В этом случае происходит возгорание, которое дает подходящие характеристики (рис. 2).

Рис. 2

Связь между IMEP и BMEP и опережением зажигания — Широко открытая дроссельная заслонка; Коэффициент эквивалентности одного

На приведенном выше рисунке показано, что указанное среднее эффективное давление (IMEP) имеет тенденцию к увеличению с опережением момента зажигания между 21 и 41 ° до ВМТ. Ожидается, что IMEP должен увеличиваться с увеличением угла синхронизации до точки, а затем снижаться. Наилучшие характеристики будут достигнуты, когда большая часть сгорания происходит около верхней мертвой точки.Если угол опережения зажигания установлен недостаточно быстро, поршень уже будет двигаться вниз, когда происходит большая часть сгорания. В этом случае мы теряем способность расширять эту часть газа во всем диапазоне, снижая производительность. Если угол опережения зажигания слишком опережающий, слишком много газа будет гореть, пока поршень все еще поднимается. Работа, которая должна быть проделана для сжатия этого газа, уменьшит производимую чистую работу. Эти конкурирующие эффекты приводят к максимуму IMEP как функции опережения угла опережения зажигания.

Как видно на рис. 3, пиковое давление увеличивается с увеличением угла опережения зажигания перед верхней мертвой точкой. Максимальное давление будет достигнуто, если весь газ будет сожжен к моменту достижения поршнем ВМТ. Но давление снижается с менее точным опережением зажигания, поскольку: газ не сгорает полностью, пока поршень не будет опускаться на такте расширения.

Рис. 3

Взаимосвязь между температурой выхлопных газов и пиковым давлением в цилиндре в зависимости от времени зажигания при открытой дроссельной заслонке; коэффициент эквивалентности одного

На приведенном выше рисунке также показано, что температура выхлопных газов снижается при приближении к ВМТ и ВМТ.IMEP представляет собой работу, проделанную с поршнем. Температура выхлопных газов представляет собой энтальпию выхлопных газов для идеальных газов. Энтальпия является функцией только температуры, а энергия, выделяемая при сгорании топлива, должна идти на работу по расширению. Температуры выхлопных газов также снижаются, если требуется сохранить энергию (рис. 4).

Рис. 4

Взаимосвязь между BMEP и опережением зажигания. Частота вращения двигателя 3400 об / мин, давление во впускном коллекторе 100 кПа

Результаты показывают, что BMEP увеличивается с опережением угла опережения зажигания.Это ожидало, что BMEP уменьшится с приближением времени воспламенения до верхней мертвой точки. Если зажигание недостаточно развито, поршень уже будет двигаться вниз, когда происходит большая часть сгорания. В этом случае мы теряем возможность расходовать эту порцию газа и снижаем производительность. Если зажигание слишком опережающее, большая часть газа будет гореть, пока поршень все еще поднимается; работа, которая должна быть проделана для сжатия этого газа, уменьшит произведенную чистую работу. Кроме того, результаты показывают, что максимальное BMEP находится в пределах от -21 ° до 41 °, а дата имеет максимальное BMEP при опережения зажигания при 31 ° BTDC.

Рисунок 5 показывает, что удельный расход топлива при торможении (BSFC) имеет тенденцию улучшаться с увеличением угла опережения зажигания до достижения верхней мертвой точки. Следует отметить, что при увеличении BMEP BSFC изменяется в обратном направлении.

Рис. 5

Взаимосвязь между BSFC и моментом зажигания при 3400 об / мин и коэффициентом эквивалентности, равным единице

На рисунке 6 показана концентрация O 2 и HC в зависимости от угла синхронизации. Угол опережения приводит к увеличению пикового давления в цилиндре. Это более высокое давление выталкивает больше топливно-воздушной смеси в щели (наиболее важно в пространство между днищем поршня и стенками цилиндра), где пламя гасится, а смесь остается несгоревшей.Кроме того, температура в конце цикла, когда смесь выходит из этих щелей, ниже при более опережающем моменте зажигания. Более поздняя температура означает, что углеводороды и кислород не вступают в реакцию. Это увеличивает концентрацию кислорода в выхлопе и несгоревших углеводородов.

Рис. 6

Зависимость между концентрацией O 2 и HC от момента зажигания при 3400 об / мин и давлением во впускном коллекторе 100 кПа

Рис. 7

Зависимость между концентрацией O 2 , CO и HC от Время зажигания, давление во впускном коллекторе 100 кПа и коэффициент эквивалентности, равный единице

На приведенном выше рисунке концентрация окиси углерода, кислорода и углекислого газа изменяется очень мало в зависимости от момента зажигания в исследованном диапазоне (рис.7).

Здесь отношение эквивалентности поддерживалось постоянным и равным единице, поэтому кислорода было достаточно для реакции большей части углерода с CO 2 . Концентрация CO увеличивалась, а концентрация CO 2 снижалась, когда не хватало кислорода. Некоторое количество окиси углерода действительно появляется в выхлопных газах из-за замороженной равновесной концентрации CO, O 2 и CO 2 .

Рис. 8

Взаимосвязь между концентрациями NO в зависимости от момента зажигания.Число оборотов двигателя при 3400 об / мин и давление во впускном коллекторе 100 кПа

На рисунке показана зависимость концентрации NO в выхлопных газах от момента зажигания. Образование NO зависит от температуры. При опережении угла опережения зажигания пиковое давление в цилиндре увеличивается. Закон идеального газа гласит, что увеличение пикового давления должно соответствовать увеличению максимальной температуры, а более высокая температура вызывает повышение концентрации NO (рис. 8).

Рис. 9

Зависимость мощности и крутящего момента от момента зажигания

Результаты показывают, что мощность имеет тенденцию к увеличению с опережением искры между 17 и 35 ° CA BTDC.Ожидается, что мощность должна увеличиваться с опережением искры до точки, а затем снижаться. Наилучшие характеристики будут достигнуты, когда большая часть сгорания происходит около верхней мертвой точки. Если искра недостаточно развита, поршень уже будет двигаться вниз, когда происходит большая часть сгорания. В этом случае мы теряем способность расширять эту часть газа во всем диапазоне, снижая производительность. Если зажигание слишком опережающее, слишком много газа будет гореть, пока поршень все еще поднимается.В результате работа, которая должна быть выполнена для сжатия этого газа, уменьшит производимую чистую работу. Эти конкурирующие эффекты приводят к максимальной мощности в зависимости от опережения зажигания.

Также он показывает, что крутящий момент увеличивается с увеличением опережения зажигания. Это происходит из-за увеличения давления в такте сжатия, и, следовательно, создается больше чистой работы. Необходимо отметить, что при дальнейшем увеличении опережения зажигания крутящий момент не будет увеличиваться в значительной степени из-за пикового давления в цилиндре во время периода сжатия и уменьшения давления в ходе такта расширения.По этой причине определение оптимальной угла опережения зажигания является одной из наиболее важных характеристик для двигателя SI (рис. 9).

На рисунке 10 представлены результаты расчетов теплового КПД в сравнении с экспериментальными данными. Тепловой КПД делится на полученную энергию. Можно видеть, что чистая работа увеличивается с увеличением опережения зажигания до точки, а затем немного уменьшается. Это происходит из-за увеличения трения при высоких значениях опережения зажигания и, следовательно, уменьшения чистой работы.Согласно рис. 6, наибольший объем сети приходится на 31 ° CA BTDC.

Рис.

alexxlab / 15.07.2020 / Разное

Добавить комментарий

Почта не будет опубликована / Обязательны для заполнения *