Цены снижены! Бесплатная доставка контурной маркировки по всей России

Кпд современных двс: КПД двигателя внутреннего сгорания. Сколько приблизительно равен, а также мощность в процентах

Содержание

3 Возможности повышения эффективного кпд поршневых двс

1. Возможности повышения эффективного кпд поршневых двс

На экономичность двигателя оказывает воздействие большое количество факторов. В данном разделе мы рассмотрим лишь те из них, которые связаны с одним из наиболее ответственных элементов рабочего процесса двигателя – подводом теплоты в цикле. Именно он в основном и определяет пути совершенствования поршневого ДВС согласно требованиям, обозначенным в предыдущем разделе. В ДВС подвод тепла осуществляется, в основном путем сжигания углеводородных топлив в воздухе.

Эталоном совершенства тепловой машины, к которым относятся и поршневые двигатели внутреннего сгорания, является тепловая машина, в которой реализуется цикл Карно. Как известно, КПД этого цикла зависит от температуры горячего источника Т1 и температуры холодильника Т2:

.

Практическая реализация этого цикла затруднена, что объясняется целым рядом факторов, главными из которых являются:

1.        Сложность осуществления изотермических подвода и отвода теплоты.

2.       Современные конструкционные материалы имеют предел по температурному режиму, что ограничивает допустимую максимальную температуру цикла. Если учесть, что КПД цикла Карно максимально в сравнении с другими циклами лишь при условии одинаковых температурных диапазонов в цикле, то в реальных условиях при заданных материалах другие циклы могут иметь более высокую максимальную температуру вследствие значительно меньшего времени воздействия ее на стенки рабочей камеры.

Представляет интерес сравнение КПД цикла Карно с циклами, реализуемыми в современных поршневых ДВС. Условия сравнения должны быть следующими:

Рекомендуемые файлы

Техническое задание

Инженерия требований и спецификация программного обеспечения

FREE

Маран Программная инженерия

Программаня инженерия

-70%

2021г 30 билетов РК №1 с решением (Теория + Задач)

Физика

Вариант 10 — ЛР №2, 3, 7, 8, 11, 12, 15

Безопасность жизнедеятельности (БЖД и ГРОБ)

FREE

Заполненные лабы 2,3,5,6,7,8,9,10,14,15

Материаловедение

Курсач по ТММ, 63А.

Теория механизмов машин (ТММ)

1.       Так как в современных ДВС в качестве окислителя используется кислород атмосферы, то в циклах должна быть общая начальная точка цикла, соответствующая параметрам окружающей среды.

2.       В связи с тем, что основной схемой двигателя является поршневой двигатель с жестким кривошипно – шатунным механизмом, необходимо сравнивать эти циклы при одинаковой степени сжатия.

Рис. 1.1. Термодинамические циклы поршневого ДВС: Vz – изохора минимального объема; Va – изохора максимального объема; а – общая начальная точка циклов, соответствующая параметрам окружающей среды, с – точка конца сжатия для различных циклов; z – точка конца подвода теплоты для различных циклов

Если рассмотреть эти циклы в T-S координатах, то видно, что лишь при количестве тепла подведенном в цикле стремящемся к нулю, КПД цикла Карно и  КПД с подводом теплоты при р = const становятся равными КПД цикла с изохорным подводом теплоты. Поэтому при указанных выше ограничениях более эффективен цикл с подводом тепла при постоянном объеме. Однако на практике, сокращать продолжительность меньше 40 – 50 градусов угла п.к.в. нецелесообразно ввиду сильного роста механической и тепловой нагрузки на двигатель. Таким образом, 40 – 50 град. является оптимальной продолжительностью сгорания.

Известно, что увеличение степени сжатия и показателя адиабаты рабочего тела приводит к однозначному росту термического КПД цикла. Для цикла с подводом теплоты при постоянном объеме термический КПД определяется по формуле:

 .

Ниже приведены примерные значения показателя адиабаты для идеального газа: одноатомного – 1,67; двухатомного – 1,4; трех- и многоатомного – 1,29. Отсюда, нетрудно вычислить прирост термического КПД при переходе рабочего тела от трехатомной структуры к двухатомной. К двухатомным молекулам принадлежат  кислород и азот, к трехатомным – продукты полного сгорания – углекислый газ и вода. Таким образом, все мероприятия, которые направлены на сокращение коэффициента остаточных газов в рабочей камере будут приводить к росту КПД. Это означает, что с точки зрения термического КПД необходимо стремиться к повышению коэффициента наполнения на режимах близких к полной нагрузке и к обеднению смеси, а, следовательно, отказу от дросселирования на частичных нагрузках.

Характер изменения индикаторного и эффективного КПД в зависимости от степени сжатия и способа регулирования нагрузки более сложен. На рис. 1.2 представлены характерные зависимости эффективного КПД безнаддувного четырехтактного двигателя с качественным регулированием нагрузки от степени сжатия при различных нагрузках, полученные при частоте вращения коленчатого вала, соответствующей максимальному крутящему моменту. Продолжительность сгорания – 80 град. п.к.в. Видно, что повышение степени сжатия выше определенного значения приводит к падению эффективного КПД двигателя. Это обусловлено двумя основными причинами. Во-первых, увеличением механических потерь (рис. 1.3), поскольку с повышением степени сжатия растет давление газов в цилиндре двигателя (рис.1. 4). При увеличении коэффициента избытка воздуха относительная доля механических потерь возрастает, соответственно снижается значение степени сжатия, соответствующее максимальному эффективному КПД.

Во-вторых, повышение степени сжатия при неизменной продолжительности сгорания влечёт большее отклонение от изохорного подвода теплоты. Это легко понять, если ввести условную величину:

где

Vh – часть рабочего объёма двигателя, на которую распространяется процесс теплоподвода. При изохорном подводе теплоты (Vh=0) это выражение переходит в известное выражение для степени сжатия (расширения):

Отношение этих величин характеризует отклонение от изохорности подвода теплоты в зависимости от объема камеры сгорания:

Видно, что с уменьшением объема камеры сгорания, а, следовательно, с увеличением степени сжатия, отклонение от изохорности при постоянной продолжительности теплоподвода увеличивается. Как следствие, с повышением степени сжатия (при неизменной продолжительности сгорания) индикаторный КПД будет расти гораздо медленнее термического и, при определённых условиях, даже снижаться (рис. 1.3). По этой же причине практически не увеличиваются максимальные значения температуры цикла (рис. 1.4). При меньшей продолжительности сгорания рост индикаторного КПД будет продолжаться до более высоких значений степени сжатия.

Таким образом, варьирование степени сжатия в диапазоне от 12,5 до 20 практически не влияет на эффективный КПД двигателя на полной нагрузке. Если учесть, что большинство транспортных двигателей эксплуатируется на частичных режимах (меньше половины максимальной мощности) до 50 – 70% общего времени, а на режимах холостого хода до 40%, то можно констатировать, что снижение степени сжатия до значений 12,5 — 15 не повлечёт ухудшения экономичности. При этом уровень нагрузок на элементы двигателя (рис. 1.4) значительно уменьшится (до 30%).

К тому же высокие степени сжатия приводят к необходимости увеличения массы и габаритов двигателя, что в условиях применения его в автомобилях и тракторах, как правило, приводит к увеличению расхода топлива, а также – к перерасходу материалов и энергии при производстве, как двигателей, так и агрегатов, на которые они устанавливаются.

Рис.1.2. Зависимость эффективного КПД от степени сжатия при различных нагрузках

Рис.1.3. Зависимость механического (hm) и индикаторного (hi) КПД от степени сжатия при различных нагрузках

Рис. 1.4. Зависимости максимального давления и максимальной температуры цикла от степени сжатия.

На рис. 1.5 представлены характерные зависимости показателей четырехтактного двигателя от коэффициента избытка воздуха, полученные на режиме близком к холостому ходу (обороты двигателя n = 1000 об/мин и цикловая доза топлива постоянны). Рост эффективной мощности четырехтактного двигателя с увеличением коэффициента избытка воздуха объясняется ростом индикаторного КПД, а соответственно и индикаторной мощности, и снижением насосных потерь. В расчетах мощность насосных потерь включена в индикаторную мощность. Поэтому кривая 2 есть результат суммирования их влияний. Мощность механических потерь состоит только из потерь на трение. Увеличение с ростом коэффициента избытка воздуха индикаторного КПД является следствием относительного уменьшения количества продуктов сгорания, содержащих в основном трехатомные компоненты, которые обладают более высокой теплоемкостью.

На рис. 1.6 представлены зависимости показателей двухтактного двигателя с кривошипно-камерной продувкой от коэффициента избытка воздуха, полученные на режиме, близком к холостому ходу (обороты двигателя n = 2000 об/мин и цикловая доза топлива постоянны). Зависимость 2 на этом рисунке представляет собой, как и в случае с четырехтактным двигателем индикаторную мощность за вычетом мощности, затрачиваемой на насосные ходы двигателя. Поэтому мощность механических потерь определяется только потерями на трение.

Рис.1.5. Распределение мощностей при работе двигателя на режиме близком к холостому ходу: 1 – эффективная мощность; 2 – индикаторная мощность; 3 – мощность механических потерь; 4 – мощность насосных потерь двигателя

В случае двухтактного двигателя с кривошипно-камерной продувкой рост индикаторной мощности с увеличением коэффициента избытка воздуха практически компенсируется соответствующим ростом насосных потерь, что наряду с увеличением мощности механических потерь приводит к тому, что эффективная мощность изменяется меньше, чем в четырехтактном ДВС. Следовательно, менее значительно будет меняться и расход топлива.

Дросселирование на впуске вызывает рост относительного количества остаточных газов. Разбавление смеси остаточными газами может создать в цилиндре двигателя такие условия, когда воспламенение смеси или вообще прекращается, или сгорание развивается вяло. Отсюда вытекает необходимость обогащения смеси по мере дросселирования, поскольку максимумы скоростей воспламенения и распространения пламени лежат в области богатых смесей. Это приводит к выбросу в атмосферу продуктов неполного сгорания и перерасходу топлива. Поэтому, на практике, при переходе с количественного регулирования нагрузки двухтактного ДВС на качественное, выигрыш в топливной экономичности, видимо, будет более значительным.

Рис. 1.6. Зависимости показателей двигателя от коэффициента
избытка воздуха; режим, близкий к холостому ходу:
1 – эффективная мощность; 2 – индикаторная мощность; 3 – мощность механических потерь; 4 – мощность насосных потерь двигателя

Таким образом, как для двухтактных, так и четырехтактных двигателей в безнаддувном исполнении для повышения эффективного КПД необходимо, чтобы рабочий процесс позволял реализовать следующие основные требования:

1. Подвод теплоты в цикле, близкий к изохорному (40 – 50 град.пкв).

2. Отсутствие ограничений по степени сжатия (оптимальная находится в диапазоне 12 – 15).

3. Качественное регулирование – работа в широком диапазоне изменения коэффициента избытка воздуха (1 – 6).

4. Учитывая, что двигатели находятся в составе автомобилей, экономичность которых также зависит от массы и размеров, необходимо добавить требование высокой удельной мощности, которая зависит и от частоты вращения. Как показала практика, достаточным диапазоном эксплуатации по целому ряду причин является диапазон, реализованный в современных двигателях с искровым воспламенением.

Необходимо упомянуть еще об одном требовании к рабочему процессу поршневого ДВС, которое, по всей видимости, в будущем может стать определяющим.

Массовое использование ископаемых источников сырья для производства моторных топлив привело к истощению углеводородных ресурсов. В свете надвигающегося глобального топливного кризиса многие ведущие научно-исследовательские организации и предприятия энергетической отрасли мира ведут широкомасштабные исследования по предотвращению его возможных негативных последствий. Анализ современных подходов позволил выделить два лидирующих направления в этом вопросе:

1. Увеличение энергоэффективности использования ископаемых топливных ресурсов

2. Замена современных товарных топлив на возобновляемые альтернативные топлива.

В современных условиях вопрос увеличения эффективности производства механической энергии не может быть решён без рассмотрения полного цикла производства и потребления топлива, что может быть описано системой «перерабатывающий завод – топливо – двигатель». С такой позиции можно установить взаимосвязь между эффективностью производства топлива и эффективностью его сжигания в традиционном поршневом ДВС. Так, например, увеличение коэффициента полезного действия бензинового двигателя обеспечивается за счёт повышения степени сжатия, что, в свою очередь, требует увеличения детонационной стойкости топлива, и, следовательно, существенное увеличение энергозатрат, усложнение производства и увеличение стоимости топлива.

Принципиальным решением этого вопроса могло бы стать использование нефтяных топлив широкого фракционного состава, что, по оценкам специалистов, должно значительно повысить эффективность переработки сырья за счёт отказа от дорогостоящих методов нефтепереработки, снижения требований к перерабатывающему оборудованию и экономии углеводородного сырья. Однако, традиционные типы поршневых двигателей не способны функционировать на таком топливе.

Осуществление второго пункта также имеет некоторые особенности. По данным ведущих двигателестроительных фирм мира, одним из наиболее предпочтительных альтернативных топлив, способным частично, а в перспективе и полностью, заменить традиционные нефтяные топлива, являются спирты, произведенные из лигноцеллюлозного сырья, в том числе биоэтанол. Объясняется это практически неисчерпаемой сырьевой базой (при производстве из органического сырья и отходов), простотой производства и хранения.

Тем не менее, как и в случае с традиционными топливами, анализ системы «перерабатывающий завод – топливо – двигатель» даёт более полное представление о перспективах внедрения этанола. В традиционных поршневых двигателях можно использовать только обезвоженный этанол (содержание воды менее 1%) ввиду  необходимости добавления бензина, что объясняется низкой испаряемостью и, как следствие низкими пусковыми свойствами этанола. При этом производство обезвоженного этанола значительно дороже обводненного – примерно в полтора-два раза. И если для производства обезвоженного этанола требуется специальное высокоорганизованное производство, то обводненный этанол можно производить, в том числе, и в условиях крупного сельскохозяйственного предприятия из отходов обычных посевных культур, без высоких требований к квалификации обслуживающего персонала.

В то же время, добавление в рабочую камеру двигателя воды является наиболее перспективным способом понижения токсичности отработавших газов. Этанол является наилучшим топливом, с точки зрения добавления воды, поскольку он образует с водой устойчивые смеси, а с товарными топливами вода не смешивается. Применение обводнённого этанола в качестве топлива для поршневого ДВС позволило бы одновременно радикально улучшить экологические характеристики двигателя, решить проблемы исчерпания источников углеводородного сырья и роста количества парниковых газов в атмосфере. Тем не менее, как уже отмечалось выше, воспламенять и сжигать обводнённый этанол в традиционных поршневых двигателях не представляется возможным.

Таким образом, как в случае с нефтяными топливами, так и в случае с альтернативными топливами производители вынуждены идти на компромисс между эффективностью производства топлива и эффективностью двигателя, функционирующего на этом топливе.

Обобщая вышесказанное, необходимо ещё раз отметить, что в современных условиях вопрос увеличения КПД производства механической энергии не может быть решён без рассмотрения полного цикла производства и потребления топлива. Анализ системы «перерабатывающий завод – топливо – двигатель» показывает, что существенного результата в этом вопросе можно добиться, если обеспечить эффективную работу поршневого двигателя внутреннего сгорания на дешёвых и простых в изготовлении видах топлива.

 Таким образом, еще одним требованием к рабочему процессу является возможность работы:

1.       на любых современных товарных топливах (от дизельного топлива до высокооктановых бензинов;

2.       на водных растворах этанола.

Рабочий процесс, реализующий все эти требования, обеспечит широкое применение нефтяных топлив широкого фракционного состава и водных растворов этанола в качестве моторного топлива и, одновременно, объединит лучшие качества дизелей и бензиновых двигателей. Широкое внедрение двигателя с таким рабочим процессом  позволит добиться существенного повышения эффективности производства топлив без ухудшения эффективности самого двигателя, что означает повышение энергоэффективности всей системы «перерабатывающий завод – топливо – двигатель». С экономической точки зрения необходимо также, чтобы рабочий процесс реализовывался на базе традиционного поршневого ДВС, т.е. имелась возможность конвертирования традиционных поршневых двигателей (в том числе уже эксплуатируемых).

Традиционные бензиновые двигатели имеют к моменту воспламенения уже подготовленную, близкую к однородной, смесь. Это условие налагает два ограничения:

1. по максимальной (вблизи 10) степени сжатия, т.к. в однородных смесях при повышенных степенях сжатия возникает детонация,

2. по максимальному обеднению топливовоздушной смеси, т.к. в однородных смесях бедный концентрационный предел искрового воспламенения близок к составу с a » 1.

Эти же ограничения практически исключают возможность реализации работы на низкооктановых топливах. С другой стороны однородная стехиометрическая смесь, в сочетании  с искровым воспламенением позволяют реализовать высокую удельную мощность.

Дизели имеют к моменту самовоспламенения неоднородную смесь, что позволяет реализовать качественное регулирование и бездетонационное сгорание. Однако снижение степени сжатия в быстроходных безнаддувных модификациях до вышеуказанного оптимального диапазона приводит к ухудшению процессов воспламенения и сгорания (будет рассмотрено в последующих разделах).

Дизели позволяют осуществить многотопливный цикл при высоких степенях сжатия (более 20). Повышенные значения максимального давления и жесткости сгорания цикла при высоких степенях сжатия определяют высокие нагрузки на детали цилиндропоршневой группы, что приводит к увеличению механических потерь и требует более прочной конструкции двигателя. При использовании топлив с низкими цетановыми числами (например, бензинов) указанные явления усиливаются, поэтому время работы дизеля на резервных топливах по техническим условиям не превышает 10% от общего ресурса двигателя. Снижение степени сжатия в дизелях до уровня 12 – 15 позволило бы снизить массу и габариты двигателя без увеличения расхода топлива. Однако в традиционном дизеле снижение степени сжатия менее 15 приводит к ухудшению смесеобразования, воспламенения и сгорания.

В связи с ограничениями по максимальной частоте вращения и минимальному значению коэффициента избытка воздуха дизели имеют низкую, относительно поршневых ДВС с искровым воспламенением, литровую мощность. Вес и габариты дизеля из-за высоких степеней сжатия достаточно большие. Соответственно, остается относительно низкой удельная мощность, что в условиях применения его в автомобилях и тракторах, как правило, приводит к увеличению расхода топлива, а также приводит к перерасходу материалов и энергии при производстве, как двигателей, так и агрегатов, на которые они устанавливаются.

Решение вышеперечисленных задач выдвигает ряд проблем смесеобразования, воспламенения и сгорания, которые необходимо разрешить в целях достижения высоких экологических и экономических показателей как двигателя, так и системы «перерабатывающий завод – топливо – двигатель» в целом.

Вопросы для самоконтроля

1.       Цикл Карно. Причины отсутствия практической реализации цикла Карно.

2.       Обоснуйте преимущества цикла двигателя с изохорным подводом теплоты. При каких условиях они справедливы. Причины необходимости увеличения продолжительности теплоподвода до 40 –50 град. угла пкв.

3.       Каково влияние продолжительности теплоподвода на КПД? Как влияет на КПД величина теплоподвода?

4.       Объясните причины влияния свойств рабочего тела на КПД двигателя.

5.       Назовите способы регулирования мощности в поршневых ДВС, их суть. В каких типах поршневых двигателей они применяются?

Вам также может быть полезна лекция «6 Гигиенические регламенты применения добавок, улучшающих внешний вид пищевых продуктов».

6.       Охарактеризуйте поведение индикаторного КПД в зависимости от степени сжатия. Как влияют на него свойства рабочего тела, скоростной режим двигателя?

7.        Как изменяется зависимость индикаторного КПД от степени сжатия при различных нагрузках. Влияет ли способ регулирования мощности на их протекание?

8.       Охарактеризуйте поведение эффективного КПД в зависимости от степени сжатия. Как влияют на него свойства рабочего тела, нагрузка, способ регулирования, скоростной режим двигателя?

9.       Объясните причины влияния способа регулирования мощности на эффективный КПД двигателя. Влияет ли способ регулирования мощности на КПД при полной нагрузке?

10.   Охарактеризуйте зависимость степени сжатия, соответствующей максимальному эффективному КПД, от нагрузки при качественном регулировании мощности.

КПД двигателя внутреннего сгорания – познаем эффективность в сравнении

Известно, что эффективность работы автомобильного двигателя внутреннего сгорания находится в прямой зависимости от величины коэффициента полезного действия. КПД двигателя выражается в виде соотношения мощностей, передаваемых на коленвал и поршни. Современные ДВС отличаются наибольшей эффективность, в сравнении с устаревшими аналогами. Например, мотор объемом 1,6 л., раньше развивал мощность не более 70 лошадиных сил, а теперь этот параметр часто достигает 150 л. с.

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность

. Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потер
и
. Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери

. НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала. Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

  • замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
  • в то время, как дизельные – 40% соответственно;
  • при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

  1. Более высокий показатель степени сжатия.
  2. Воспламенение топлива происходит по другому принципу.
  3. Корпусные детали нагреваются меньше.
  4. Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
  5. В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
  6. Коленчатый вал дизеля раскручивается с меньшими оборотами.

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

Энергетическая ценность солярки и бензина

Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.

Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного , сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению , есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

На этом заканчиваю, читайте наш АВТОБЛОГ.

Понятие коэффициента полезного действия (КПД) может быть применено к самым различным типам устройств и механизмов, работа которых основана на использовании каких-либо ресурсов. Так, если в качестве такого ресурса рассматривать энергию, используемую для работы системы, то результатом этого следует считать объем полезной работы, выполненной на этой энергии.

В общем виде формулу КПД можно записать следующим образом: n = A*100%/Q. В данной формуле символ n применяется в качестве обозначения КПД, символ A представляет собой объем выполненной работы, а Q — объем затраченной энергии. При этом стоит подчеркнуть, что единицей измерения КПД являются проценты. Теоретически максимальная величина этого коэффициента составляет 100%, однако на практике достигнуть такого показателя практически невозможно, так как в работе каждого механизма присутствуют те или иные потери энергии.

Анализ теплового цикла

Тепловой цикл включает в себя четыре термодинамических базовых процесса. Вначале происходит преобразование состояния рабочего тела, а затем, возвращение его в исходное состояние: сжатие, получение тепла, расширение и отвод тепла.

Каждый из этих процессов осуществляется по следующей схеме, которая определяет условия реализации цикла:

  1. Изотермический — работа выполняется при постоянной температуре.
  2. Изобарический — рабочий цикл реализуется при постоянном давлении.
  3. Изометрический — тепловой процесс протекает при постоянном объеме
  4. Адиабатический — цикл осуществляется при постоянной энтропии.

Для того чтобы процесс был максимально приближен к обратимому, есть два способа перемещения поршня: изотермический — это означает, что тепло постепенно поступает или выходит из резервуара при температуре, бесконечно отличающейся от температуры газа в поршне, и адиабатический, при котором теплообмен вообще не происходит, газ действует, как пружина.

Таким образом, когда подводится тепло и газ расширяется, температура газа должна оставаться такой же, как и у источника тепла, при этом газ расширяется изотермически. Точно так же позже он будет сжиматься в цикле изотермически, с выделением тепла.

Чтобы выяснить эффективность, нужно проследить за полным циклом двигателя, выяснить, сколько он работает, сколько тепла забирается из топлива и сколько энергии теряется при подготовке к следующему циклу.

Характеристики теплового цикла, связанного с тепловым двигателем, обычно описываются с помощью двух диаграмм изменения состояния: диаграммы PV, показывающей соотношение давление-объем, и диаграммы TS, демонстрирующей пару температура-энтропия.

Для постоянной массы газа работа теплового двигателя представляет собой повторяющийся цикл, и его PV-диаграмма будет выглядеть замкнутой фигурой.

Где теряется эффективность

Забегая вперёд можно констатировать, что для бензиновых двигателей КПД равен примерно 25 процентам. Почему так мало, и чем обусловлены такие цифры? Причины здесь в потерях: если взять некое количество топлива, и обозначить его ста процентами чистой энергии, передающейся мотору, то можно проследить все потери.

  • Для начала следует разобрать топливную эффективность. Все мы в курсе, что топливо сгорает не полностью, и некоторая его часть просто выходит в виде отработанных газов и вместе с ними. А это уже потеря примерно четверти эффективности, то есть – минус 25%. Даже инжектор и другие современные системы не решают этого вопроса, хоть и стали очень эффективными.
  • Далее идут тепловые потери. Мотор греет себя, воздух, другие элементы и узлы, к примеру, радиатор, охлаждающую жидкость, свой корпус, а также выхлоп. В этом месте эффективность теряет ещё около 35%.
  • Немало процентов забирают механические потери. Это поршни, шестерни, кольца, подшипники и прочие элементы и узлы, где присутствует трение. Сюда же относим и нагрузки генератора, который при выработке электроэнергии заметно тормозит коленвал. Несмотря на то, что смазочные материалы стали гораздо эффективнее, вынь да положь ещё двадцать процентов потерь.

И что у нас остаётся в остатке? А всего 20%! Понятно, что это средний показатель, и бензиновые двигатели бывают более эффективными, но насколько – может ещё пять-семь процентов, не больше. Да и двигателей таких совсем немного. Итого из залитых десяти литров топлива, что автомобиль съедает на сто километров пробега, на полезную работу уходить всего два с половиной литра, а остальные семь-восемь литров попросту уходят в потери.

Лучшие двигатели внутреннего сгорания эффективны на 25%

Мощность и КПД

Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.

Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.

Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.

Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.

На что тратиться полезная энергия?

Первый пункт здесь – это потери, возникающие непосредственно при горении топлива, ведь все топливо в двигателе никогда не сгорает, часть его улетает в выхлопную трубу. Эта часть, в среднем, составляет около 25%.

Следующим местом (точнее явлением), куда исчезает энергия, является тепло, выделяемое при горении. Возможно, кто-то из вас еще помнит со времен, проведенных на школьной скамье, что для получения тепла требуется энергия, соответственно, образуемое тепло – это есть потери энергии. Здесь стоит заметить, что тепла при работе двигателя внутреннего сгорания образуется с излишком, что требует внедрения серьезной системы охлаждения.

Далее, кроме тепла, выделяемого от горения, тепло выделяется и при самой работе двигателя, ведь все его части трутся, теряя тем самым часть своей энергии.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

Повышение кпд двигателя внутреннего сгорания

КПД двигателя: как на него влияет конструкция, питание, топливо?

   Нет в мире более бесполезной штуки, чем личный автомобиль. Подобное утверждение звучит очень странно от автомобильного энтузиаста, который к тому же десять лет проработал журналистом, но это действительно так! Не поймите неправильно, я не спорю с тем, что личный автомобиль полезен в хозяйстве: я говорю немножко о другом. А именно: автомобиль – это перевод ресурсов. Без вариантов. А все из-за врожденно низкого коэффициента полезного действия двигателя. 

   Наверняка вы помните цифры КПД двигателя внутреннего сгорания из школьной программы: это примерно 20-30%. Иными словами, только 20-30% энергии, выделяемой при сгорании топлива, конвертируется в мощность! Если еще учесть трансмиссионные потери (а заодно и механический КПД двигателя – этим термином обозначают энергию, которая завязла во вспомогательных агрегатах), то «косвенный» КПД двигателя внутреннего сгорания – то есть та энергия, которая перемещает автомобиль – и того ниже! Остальная энергия уходит, по сути, на нагрев атмосферы: это – тепло, выделяемое выпускной системой и радиатором охлаждения. То и другое автопроизводители стремятся применять с пользой: например, автомобильная печка использует тепло двигателя для нагрева кабины. А вот выхлопные газы… Ну, они – ключевой элемент в самом изящном «лайф-хаке», используемом автопроизводителями для повышения КПД двигателя. Имя этого «лайф-хака» – турбонаддув. 

   Идея турбонаддува заключается в том, чтобы использовать «бесполезные» отработавшие газы для повышения КПД двигателя внутреннего сгорания. Энтузиастам, которые плотно соприкасаются с этой темой, прекрасно известен принцип действия турбонаддува: отработавшие газы раскручивают турбину, которая механически соединена с центробежным компрессором – вот он уже под большим давлением (от 0,5 и вплоть до трех баров) гонит воздух в цилиндры. Массовое применение турбонаддува началось в Японии в 80-90-е годы прошлого века. Сегодня тенденцию подхватила еще и Европа: большинство современных машин из Старого Света оснащено турбонаддувом. Вкупе с высокоточным непосредственным впрыском топлива, который позволяет каждую каплю горючего применять с пользой, это позволило добиться роста КПД двигателей по экспоненте: даже скромные 1,6-литровые двигатели нынче выдают около 200 сил! 

   КПД дизельных двигателей – отдельная история. Приведенные несколькими абзацами ранее цифры в 20-30% — это усредненный КПД бензинового двигателя. Современные дизельные двигатели – не чета старым тракторным моторам: в них используется высокоточный впрыск под большим давлением, хитрый турбонаддув с изменяемой геометрией, поэтому по мощности они уже не уступают своим бензиновым собратьям. Кстати, о турбонаддуве с изменяемой геометрией: его чаще используют именно в дизельных двигателях, поскольку для изготовления подобных турбин для бензиновых моторов требуются дорогие сплавы. Почему? Все дело в температуре горения: в дизельных двигателях она значительно (на несколько сотен градусов) ниже! КПД двигателя в таком случае выше уже по одной этой причине: меньше энергии превращается в бесполезное тепло! Как следствие – полезного тепла тоже меньше: все знают, что дизельные двигатели (а вместе с ней – печка в салоне) дольше нагреваются… Что касается конкретных цифр КПД двигателей внутреннего сгорания, работающих на дизельном топливе, то некоторые источники говорят о 40%. Разница по сравнению с бензиновыми двигателями значительная! С учетом более скромного расхода топлива, а также более низкой температуры горения «солярки», такие показатели выглядят вполне правдоподобно. 

   Разговор о КПД двигателя автомобиля не был бы полным без упоминания роторно-поршневых силовых агрегатов. Из всех моторов, широко применяемых в автомобильной промышленности, именно они – двигатели с максимальной КПД. Не надо быть ученым, чтобы это понять, достаточно вооружиться здравым смыслом: если у обычного четырехтактного двигателя внутреннего сгорания за два оборота коленвала происходит один мощностной такт, то в роторном двигателе за один оборот происходит аж три вспышки топлива! У такого двигателя КПД равен примерно 45 процентам. Почему же такие моторы не получили широкого применения, и кроме как в спортивных «Маздах» мы их больше нигде не видим? Простой ответ – грязный выхлоп: КПД у таких двигателей выше, мощность – больше, но и вредных выбросов тоже много. Поэтому от них даже Mazda – и та отказалась… КПД двигателя – вопрос не только его конструкции: не меньшее значение имеет еще и топливо, которое в нем используется. 

   Данная статья размещена на сайте Econcar, поэтому было бы очень странно, если бы в ней не был упомянут энергетик для моторов: как и полагается, его применение способствует повышению КПД двигателя внутреннего сгорания, за счет снижения температуры горения, не говоря уже о том, что в его присутствии топлива в цилиндрах сгорает больше, чем без него.

Пётр Максимов, специально для www.econcar.ru

Обзор 10 новых двигателей внутреннего сгорания / Хабр

Подписывайтесь на каналы:
@AutomotiveRu — новости автоиндустрии, железо и психология вождения
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla

Шествие двигателей внутреннего сгорания продолжается, при этом в них появляются инновации – от изменяемой степени сжатия до клапанов без кулачков.

Электрические силовые агрегаты в наши дни на пике моды, но эволюция двигателя внутреннего сгорания не замедлилась. На самом деле, новые изменения происходят быстрее, чем когда-либо.

Рассмотрим, например, этот краткий список последних инноваций двигателя: двигатель с турбонаддувом без кулачков; новый дизель с самым низким в мире коэффициентом сжатия; четырехцилиндровый двигатель с переменным коэффициентом сжатия; первый в мире бензиновый двигатель, использующий зажигание при сжатии.

Здесь мы собрали фотографии двигателей, предлагающих некоторые из последних инноваций в области силовых агрегатов. От интеллектуальных двигателей грузовиков до крошечных моделей с турбонаддувом, мы предлагаем вам подборку основных достижений последних лет. Пролистайте следующие слайды, чтобы увидеть лучшие из них.

2,2-литровый двигатель Mazda SkyActiv-D имеет самый низкий в мире коэффициент сжатия (14,1:1) среди всех дизельных двигателей, что, как сообщается, дает потребителям множество преимуществ. Более низкие показатели сжатия идут рука об руку с более низким давлением и пониженной температурой в верхней части поршня, что способствует лучшему смешению воздуха и топлива, а также уменьшает проблемы с оксидами азота и сажей, давно ассоциирующиеся с дизельным двигателем, говорит Mazda. Более того, более низкий коэффициент сжатия SkyActiv-D обеспечивает меньшее трение и меньший вес конструкции. На нью-йоркском автосалоне на прошлой неделе японский автопроизводитель объявил, что собирается изменить антидизельные настроения последнего времени, установив новый 2,2-литровый дизельный двигатель на компактный кроссовер CX-5 2019 года.

Представьте себе полноразмерный пикап, работающий всего на двух цилиндрах. Это то, на что способен Chevrolet Silverado, благодаря добавлению в новый 2,7-литровый турбодвигатель электромеханического регулируемого распределительного вала и функции активного управления подачей топлива (Active Fuel Management). В целом, двигатель предлагает 17 различных схем отключения цилиндров, что позволяет ему справиться практически с любой ситуацией при движении. «Это все равно, что иметь разные двигатели для работы на низких и высоких оборотах», — отметил главный инженер двигателя Том Саттер в пресс-релизе. «Профиль распределительного вала и синхронизация клапанов полностью отличаются на низких и высоких скоростях». Двигатель мощностью 310 л.с. и крутящим моментом 471.8 Нм заменяет 4,3-литровый V-6 на Silverado.

Производитель суперкаров Koenigsegg Automotive AB возлагает большие надежды на технологию бескулачкового двигателя, которую он представил на концептуальном автомобиле в 2016 году. Известная как FreeValve, эта технология использует «пневмо-гидравлические-электронные» приводы для управления процессом сгорания в каждом цилиндре. Koenigsegg говорит, что с помощью этих приводов, вместо кулачковых валов, можно более точно управлять процессом сгорания в каждом цилиндре. FreeValve также позволяет люксовому автопроизводителю отказаться от других дорогостоящих автозапчастей, включая корпус дроссельной заслонки, кулачковый привод, ГРМ, выпускной клапан, предкаталитический преобразователь и систему непосредственного впрыска. По слухам, компания готовит технологию для установки на суперкар стоимостью 1,1 миллиона долларов, который будет выпущен в 2020 году. В интервью Top Gear основатель компании Кристиан фон Кёнигсегг (Christian von Koenigsegg) заявил, что FreeValve позволит ему построить автомобиль с нулевым уровнем выбросов и двигателем внутреннего сгорания. «Идея заключается в том, чтобы доказать миру, что даже двигатель внутреннего сгорания может быть полностью СО2-нейтральным», — сказал он.

Говорят, что двигатель Nissan VC-Turbo является первым в мире готовым к производству двигателем с переменным коэффициентом сжатия. VC-Turbo разрабатывался более 20 лет, и он использует усовершенствованную многозвеньевую систему для изменения коэффициента сжатия. Во время работы угол наклона многозвеньевых рычагов варьируется, что приводит к регулировке верхней мертвой точки поршней. С изменением положения поршня меняется и степень сжатия. Результат — производительность по требованию. Высокий коэффициент сжатия обеспечивает большую эффективность, в то время как низкий коэффициент сжатия увеличивает мощность и крутящий момент. VC-Turbo доступен в Nissan Altima 2019.

3,6-литровый двигатель Pentastar от Fiat Chrysler Automobiles является примером внимательного отношения к деталям и политики постоянного совершенствования. Двигатель использует две ключевые особенности для повышения топливной экономичности и крутящего момента. Первая из них — это регулируемый подъем клапана (VVL). VVL позволяет двигателю оставаться в режиме пониженного подъема до тех пор, пока водитель не потребует больше мощности. Затем он реагирует переключением в режим повышенного подъема для улучшения сгорания топлива. Вторая инновация — это рециркуляция отработавших газов с охлаждением, которая, как говорят, сокращает выбросы вредных веществ, снижает потери при прокачке и позволяет работать без стука при высоких нагрузках двигателя. Эти особенности обеспечивают Pentastar увеличение экономии топлива на 6%, при этом крутящий момент увеличивается на 14,9%. Fiat Chrysler также отмечает, что эти улучшения наблюдаются при оборотах двигателя ниже 3000 об/мин, когда повышенный крутящий момент необходим больше всего.

В наши дни производительность двигателя — это не только крутящий момент и лошадиные силы. Речь идет и об эффективности. Toyota доказала это в 2018 году, представив 2,5-литровый четырехцилиндровый двигатель Dynamic Force, который, по имеющимся данным, обладает тепловым КПД около 40%. Это большой шаг вперед, учитывая, что большинство современных двигателей приближаются к 30%, что, в свою очередь, означает, что 70% энергии сгорания топлива теряется в виде тепла. Toyota добилась этого с помощью ряда современных усовершенствований, включая длинный ход, высокий коэффициент сжатия, форсунки с двойными распылителями, интеллектуальную регулировку синхронизации клапанов и непосредственный впрыск топлива. Результат: Экономия топлива на трассе 2018 Camry составляет 29 и 41 мг, что на 26% выше по сравнению с предыдущей моделью.

1,5-литровый двигатель EcoBoost от Ford заслуживает внимания, потому что это еще один пример «умного» маленького двигателя, способного управлять относительно большим автомобилем с помощью двух цилиндров. Рядный трехцилиндровый EcoBoost выполняет эту задачу при отключении цилиндра, который определяет ситуацию, когда один цилиндр не нужен, и поэтому автоматически отключает его. Система может отключить или активировать цилиндр всего за 14 миллисекунд для поддержания плавного хода. Однако даже на трех цилиндрах она способна выдать 180 л.с. и 240 Нм крутящего момента (при сгорании 93-октанового топлива). Этот двигатель установлен в европейском Ford Fusion и американском внедорожнике Ford Escape, способном буксировать до 900 кг.

В 2018 году компания Cadillac еще больше увлеклась турбокомпрессорами, представив двигатель Twin Turbo V-8. Twin Turbo использует «горячую V-образную конфигурацию» — то есть устанавливает турбокомпрессоры в верхней части двигателя, в ложбине между головками. Таким образом, инженеры Cadillac утверждают, что они уменьшили общий размер конструкции двигателя и практически ликвидировали отставание турбокомпрессоров. Использованный на Cadillac CT6 V-Sport, новый двигатель выдает примерно 550 л.с. и обеспечивает потрясающий крутящий момент в 850.1 Нм.

Для тех, у кого есть страсть к старомодным лошадиным силам и крутящему моменту, у Dodge есть ответ в виде 6,2-литрового высокомощного двигателя HEMI V-8. Двигатель, выдающий 797 л.с. и 958.6 Нм крутящего момента, большую часть своей мощности черпает из 2,7-литрового нагнетателя — самого большого заводского нагнетателя среди всех серийных автомобилей. Наряду с нагнетателем в двигателе используются высокопрочные шатуны и поршни, высокоскоростной клапанный механизм и два двухступенчатых топливных насоса. 6,2-литровый двигатель, используемый в Dodge Challenger Hellcat Redeye, способен принимать огромное количество бензина в высокопроизводительном режиме, опорожняя бак чуть менее чем за 11 минут. Хорошая новость, однако, в том, что при нормальных дорожных условиях Hellcat все еще находится на отметке 10.69 л/100 км. Dodge хвастается тем, что Hellcat является самым быстрым в отрасли маслкаром с разгоном 0-100 км/ч в 3,4 секунды.

Поговорим о другой крупной инновации в двигателе 2018 года: Mazda выпустила двигатель SkyActiv-X, который, как говорят, является первым в мире бензиновым двигателем, использующим воспламенение при сжатии. Соединив две классические технологии, инженеры Mazda утверждают, что они объединили высокую тягу бензинового двигателя с эффективностью, крутящим моментом и реакцией дизеля. Ключом к их реализации является технология, известная под названием Spark Controlled Compression Ignition, которая максимально увеличивает зону, в которой возможно воспламенение от сжатия, и обеспечивает плавный переход между воспламенением от сжатия и воспламенением от искры. При внедрении двигателя прошлой осенью Mazda сообщила удивительные цифры: крутящий момент повысился на 10-30%, а КПД — на 20-30% по сравнению с предшественником. Mazda говорит, что двигатель также предлагает большую свободу в выборе передаточных чисел, что еще больше увеличивает экономию топлива и ходовые качества двигателя.

Подписывайтесь на каналы:
@AutomotiveRu — новости автоиндустрии, железо и психология вождения
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla



О компании ИТЭЛМА

Мы большая компания-разработчик

automotive

компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.


Читать еще полезные статьи:

Инженеры Тойоты приблизили КПД бензиновых моторов к дизелям — ДРАЙВ

Японцы обещают поставить новые двигатели на целый ряд легковушек, которые подошли к смене поколений либо плановому обновлению. Со временем это семейство моторов охватит 30% моделей концерна. В частности, они будут использоваться на автомобилях, основанных на архитектуре TNGA.

Компания Toyota планирует до конца 2015 года вывести в свет четырнадцать двигателей из новой серии. Пока она представила пару новинок: агрегаты 1.3 (на фото под заголовком) и 1.0. В них нашли применение несколько разработок, позволивших поднять расчётный термический КПД до 38 и 37% соответственно. Причём первое число инженеры считают практически рекордным для массовых бензиновых двигателей. Оно сопоставимо с тепловой эффективностью легковых дизелей, которые показывают более 40%. Новые ДВС используют цикл Аткинсона (точнее Миллера, это его разновидность). Обычно его применяют в гибридах, но эти моторы рассчитаны на самостоятельную работу.

В цикле Аткинсона впускные клапаны закрываются позже обычного. Так фактическая степень сжатия смеси оказывается ниже, чем геометрическая. А вот расширение происходит полное. В результате удаётся лучше использовать энергию горячих газов и выбрасывать меньше полезного тепла в выхлопную трубу. Правда, для корректной работы такого цикла на разных нагрузках и оборотах не обойтись без фазовращателей.

Степень сжатия у нового мотора с объёмом 1,3 литра весьма высока — 13,5:1. Почти столько же в маздовских агрегатах Skyactiv-G (14:1). Чтобы побороть детонацию, конструкторы пошли на несколько ухищрений. Например, рубашка охлаждения модифицирована таким образом, чтобы существенно снизить температуру стенок цилиндра в самом проблемном месте — вблизи выпускных клапанов. Выпускной коллектор построен по схеме 4-2-1, что улучшило очистку цилиндров от отработанных газов. А на такте впуска в цилиндре формируется вертикальный вихрь, который влияет на распределение смеси и полноту её сгорания.

На рисунке показаны выпускной коллектор новой «четвёрки» и вихрь на впуске, который генерируется специально подобранной формой впускных каналов.

Помимо этого, сразу несколько мер были приняты для снижения тепловых и механических потерь. Это изменяемые фазы на впуске с электрическим фазовращателем VVT-iE, рециркуляция отработанных газов с охлаждением, полимерное покрытие подшипников, специальная обработка поверхности юбки поршня, цепной привод системы газораспределения с низким трением, ремень для привода навесного оборудования с низкими внутренними потерями при изгибе.

Интересно, что мотор 1.8 2ZR-FXE на нынешнем Приусе показывает тепловой КПД 38,5% при степени сжатия 13:1. Но то агрегат, специально созданный под гибридную систему, которая может уравновесить недостатки цикла Аткинсона (скажем, неустойчивость работы на малых оборотах).

Практически все эти приёмы использованы и на литровом агрегате, который Toyota спроектировала в кооперации с Daihatsu. Степень сжатия тут пониже (11,5:1), но у его предшественника (1KR-FE) было 10,5. Японцы утверждают, что одна только замена прежних моторов на новые принесёт экономию топлива в 10%. А в сочетании с несколькими другими мерами (вроде системы start/stop) — до 15% (с двигателем 1.3) и до 30% (с 1.0).

Мы полагаем, что улучшенный литровый агрегат после запуска на поток достанется новому малышу Aygo, а заодно и его собратьям Peugeot 108 и Citroen C1. Наверняка его подарят и обновлённому Ярису.

Что означает в формуле кпд теплового двигателя. КПД двигателя внутреннего сгорания. Падение КПД и общие потери в электродвигателе

Среди множества характеристик различных механизмов в автомобиле решающее значение имеет КПД двигателя внутреннего сгорания . Для того чтобы выяснить суть этого понятия, необходимо точно знать, что представляет собой классический двигатель внутреннего сгорания.

КПД двигателя внутреннего сгорания – что это такое?

В первую очередь, мотор преобразует тепловую энергию, возникающую при сгорании топлива, в определенное количество механической работы. В отличие от паровых машин, эти двигатели более легкие и компактные. Они гораздо экономичнее и потребляют строго определенное жидкое и газообразное топливо. Таким образом, КПД современных двигателей рассчитывается на основании их технических характеристик и прочих показателей.

КПД (коэффициент полезного действия) представляет собой отношение фактически передаваемой мощности на вал двигателя к мощности, получаемой поршнем за счет действия газов . Если провести сравнение КПД двигателей различной мощности, то можно установить, что это значение для каждого из них имеет свои особенности.

Оба двигателя, несмотря на схожесть конструкции, имеют различные виды смесеобразования. Поэтому поршни карбюраторного мотора работают при более высоких температурах, требующих качественного охлаждения. Из-за этого тепловая энергия, которая могла бы превратиться в механическую, рассеивается без всякой пользы, понижая общее значение КПД.

Тем не менее, для того чтобы повысить КПД бензинового двигателя, принимаются определенные меры. Например, на один цилиндр могут устанавливаться два впускных и выпускных клапана, вместо конструкции, когда размещается один впускной и один выпускной клапан. Кроме того, в некоторых двигателях на каждую свечу устанавливается отдельная катушка зажигания. Управление дроссельной заслонкой во многих случаях осуществляется с помощью электропривода, а не обыкновенным тросиком.

КПД дизельного двигателя – заметная эффективность

Дизель является одной из разновидностей двигателей внутреннего сгорания, в котором воспламенение рабочей смеси производится в результате сжатия. Поэтому давление воздуха в цилиндре намного выше, чем у бензинового двигателя. Сравнивая КПД дизельного двигателя с КПД других конструкций, можно отметить его наиболее высокую эффективность.

При наличии низких оборотов и большого рабочего объема показатель КПД может превысить 50 %.

Следует обратить внимание на сравнительно небольшой расход дизельного топлива и низкое содержание вредных веществ в отработанных газах. Таким образом, значение коэффициента полезного действия двигателя внутреннего сгорания полностью зависит от его типа и конструкции. Во многих автомобилях низкий КПД перекрывается различными усовершенствованиями, позволяющими улучшить общие технические характеристики.

Коэффициент полезного действия (КПД) – широко используемая характеристика эффективности некоторой системы или устройства. В нашем случае этой системой выступает двигатель внутреннего сгорания. Казалось бы, о какой эффективности может идти речь в мире современных моторов, разве она не равна 100 процентам? Но оказывается, как нет в нашем мире идеально черного или белого, так нет и машины, у которой вся энергия, получаемая от горения топлива, полностью переходит в механическую энергию, а последняя в свою очередь в полезную энергию прижимающую пилота автомобиля в его кресло.

Что такое КПД двигателя внутреннего сгорания.

Отношение полезной энергии к полной (затраченной), выраженное в процентном отношении, и есть искомый КПД двигателя внутреннего сгорания. Разберемся, куда же теряется энергия.

На что тратиться полезная энергия?

Первый пункт здесь – это потери, возникающие непосредственно при горении топлива, ведь все топливо в двигателе никогда не сгорает, часть его улетает в выхлопную трубу. Эта часть, в среднем, составляет около 25%.

Следующим местом (точнее явлением), куда исчезает энергия, является тепло, выделяемое при горении. Возможно, кто-то из вас еще помнит со времен, проведенных на школьной скамье, что для получения тепла требуется энергия, соответственно, образуемое тепло – это есть потери энергии. Здесь стоит заметить, что тепла при работе двигателя внутреннего сгорания образуется с излишком, что требует внедрения серьезной системы охлаждения.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

КПД бензинового и дизельного двигателя.

При этом стоит оговориться, что у бензиновых и дизельных машин КПД двигателя внутреннего сгорания различен: 20% против 40% (соответственно). Данный факт имеет место быть потому, что несмотря на то, что потери на обслуживание механики и нагрев планеты в бензиновых моторах и «дизелях» сопоставимы, количество сжигаемого в процессе горения топлива у дизельных двигателей выше.

Подводя итоги и вспомнив историю появления двигателя внутреннего сгорания, когда КПД составлял немногим более 5%, можно сказать, что инженеры шагнули далеко вперед, а учитывая факт того, что 100% КПД, а по сути идеального двигателя, им вряд ли удастся добиться, можно утверждать, что современные двигатели, скорее всего, достигли своего верха возможного КПД, поэтому неудивительно, что сегодня все чаще автомобилистам предлагаются машины с гибридными двигателями и электромобили, ведь КПД движка у них (электромобилей) – для справки – порядка 90%.

Видео.

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели .

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя .

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 , которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 , совершает работу А» и передаёт холодильнику количество теплоты Q 2 .

Для того чтобы двигатель работал непрерывно, необходимо рабочее тело вернуть в начальное состояние, при котором температура рабочего тела равна Т 1 . Отсюда следует, что работа двигателя происходит по периодически повторяющимся замкнутым процессам, или, как говорят, по циклу.

Цикл — это ряд процессов, в результате которых система возвращается в начальное состояние.

Коэффициент полезного действия (КПД) теплового двигателя.

Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Второй закон термодинамики может быть сформулирован следующим образом:

Второй закон термодинамики:
невозможно создать вечный двигатель второго рода, который полностью превращал бы теплоту в механическую работу.

Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

А» = Q 1 — |Q 2 | , (13.15)

где Q 1 — количество теплоты, полученной от нагревателя, a Q2 — количество теплоты, отданной холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы А», совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η

Максимальное значение КПД тепловых двигателей.

Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , а также определить пути его повышения.

Впервые максимально возможный КПД теплового двигателя вычислил французский инженер и учёный Сади Карно (1796-1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т 1 , при этом он получает количество теплоты Q 1 .

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т 2 . После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q 2 , сжимаясь до объёма V 4

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 — 800 К и Т 2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Коэффициент полезного действия (КПД) — термин, которые можно применить, пожалуй, к каждой системе и устройству. Даже у человека есть КПД, правда, наверно, пока не существует объективной формулы для его нахождения. В этой статье расскажем подробно, что такое КПД и как его можно рассчитать для различных систем.

КПД-определение

КПД — это показатель, характеризующий эффективность той или иной системы в отношении отдачи или преобразования энергии. КПД — безмерная величина и представляется либо числовым значением в диапазоне от 0 до 1, либо в процентах.

Общая формула

КПД обозначается символом Ƞ.

Общая математическая формула нахождения КПД записывается следующим образом:

Ƞ=А/Q, где А — полезная энергия/работа, выполненная системой, а Q — энергия, потребляемая этой системой для организации процесса получения полезного выхода.

Коэффициент полезного действия, к сожалению, всегда меньше единицы или равен ей, поскольку, согласно закону сохранения энергии, мы не можем получить работы больше, чем потрачено энергии. Кроме того, КПД, на самом деле, крайне редко равняется единице, так как полезная работа всегда сопровождается наличием потерь, например, на нагрев механизма.

КПД теплового двигателя

Тепловой двигатель — это устройство, превращающее тепловую энергию в механическую. В тепловом двигателе работа определяется разностью количества теплоты, полученного от нагревателя, и количества теплоты, отданной охладителю, а потому КПД определяется по формуле:

  • Ƞ=Qн-Qх/Qн, где Qн — количество теплоты, полученное от нагревателя, а Qх — количество теплоты, отданное охладителю.

Считается, что высочайший КПД обеспечивают двигатели, работающие по циклу Карно. В данном случае КПД определяется по формуле:

  • Ƞ=T1-T2/T1, где Т1 — температура горячего источника, T2 — температура холодного источника.

КПД электрического двигателя

Электрический двигатель — это устройство, которое преобразует электрическую энергию в механическую, так что КПД в данном случае — это коэффициент эффективности устройства в отношении преобразования электрической энергии в механическую. Формула нахождения КПД электрического двигателя выглядит так:

  • Ƞ=P2/P1, где P1 — подведенная электрическая мощность, P2 — полезная механическая мощность, выработанная двигателем.

Электрическая мощность находится как произведение тока и напряжения системы (P=UI), а механическая — как отношение работы к единице времени (P=A/t)

КПД трансформатора

Трансформатор — это устройство, которое преобразует переменный ток одного напряжения в переменный ток другого напряжения, сохраняя частоту. Кроме того, трансформаторы также могут преобразовывать переменный ток в постоянный.

Коэффициент полезного действия трансформатора находится по формуле:

  • Ƞ=1/1+(P0+PL*n2)/(P2*n), где P0 — потери режима холостого хода, PL — нагрузочные потери, P2 — активная мощность, отдаваемая нагрузке, n — относительная степень нагружения.

КПД или не КПД?

Стоит заметить, что помимо КПД существует еще ряд показателей, которые характеризуют эффективность энергетических процессов, и иногда мы можем встретить описания типа — КПД порядка 130%, однако в данном случае нужно понимать, что термин применен не совсем корректно, и, вероятнее всего, автор или производитель понимает под данной аббревиатурой несколько иную характеристику.

К примеру, тепловые насосы отличаются тем, что они могут отдавать больше теплоты, чем расходуют. Так, холодильная машина может отвести от охлаждаемого объекта больше теплоты, чем затрачено в энергетическом эквиваленте на организацию отвода. Показатель эффективности холодильной машины называется холодильным коэффициентом, обозначается буквой Ɛ и определяется по формуле: Ɛ=Qx/A, где Qx — тепло, отводимое от холодного конца, A — работа, затраченная на процесс отвода. Однако иногда холодильный коэффициент называют и КПД холодильной машины.

Интересно также, что КПД котлов, работающих на органическом топливе, рассчитывается обычно по низшей теплоте сгорания, при этом он может получиться больше единицы. Тем не менее, его все равно традиционно называют КПД. Можно определять КПД котла по высшей теплоте сгорания, и тогда он всегда будет меньше единицы, однако в данном случае неудобно будет сравнивать показатели котлов с данными других установок.

Известно, что вечный двигатель невозможен. Это связано с тем, что для любого механизма справедливо утверждение: совершённая с помощью этого механизма полная работа (в том числе на нагревание механизма и окружающей среды, на преодоление силы трения) всегда больше полезной работы.

Например, больше половины работы двигателя внутреннего сгорания совершается впустую тратится на нагревание составных частей двигателя; некоторое количество теплоты уносят выхлопные газы.

Часто необходимо оценивать эффективность механизма, целесообразность его использования. Поэтому, чтобы рассчитывать, какая часть от совершённой работы тратится впустую и какая часть с пользой, вводится специальная физическая величина, которая показывает эффективность механизма.

Эта величина называется коэффициентом полезного действия механизма

Коэффициент полезного действия механизма равен отношению полезной работы к полной работе. Очевидно, коэффициент полезного действия всегда меньше единицы. Эту величину часто выражают в процентах. Обычно её обозначают греческой буквой η (читается «эта»). Сокращённо коэффициент полезного действия записывают КПД.

η = (А_полн /А_полезн) * 100 %,

где η КПД, А_полн полная работа, А_полезн полезная работа.

Среди двигателей наибольший коэффициент полезного действия имеет электрический двигатель (до 98 %). Коэффициент полезного действия двигателей внутреннего сгорания 20 % — 40 %, паровой турбины примерно 30 %.

Отметим, что для увеличения коэффициента полезного действия механизма часто стараются уменьшить силу трения. Это можно сделать, используя различные смазки или шарикоподшипники, в которых трение скольжения заменяется трением качения.

Примеры расчета КПД

Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж. Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Решение. Найдём общую массу велосипеда и велосипедиста:

m = 55 кг + 5 кг = 60 кг

Найдем их общий вес:

P = mg = 60 кг * 10 Н/кг = 600 Н

Найдём работу, совершённую на подъём велосипеда и велосипедиста:

Aполезн = РS = 600 Н * 10 м = 6 кДж

Найдём КПД велосипеда:

А_полн /А_полезн * 100 % = 6 кДж / 8 кДж * 100 % = 75 %

Ответ: КПД велосипеда равен 75 %.

Рассмотрим ещё один пример. На конец плеча рычага подвешено тело массой m. К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Найдите, насколько поднялось тело, если коэффициент полезного действия рычага равен η %.

Решение. Найдём работу, совершённую силой F:

η % от этой работы совершено на то, чтобы поднять тело массой m. Следовательно, на поднятие тела затрачено Fhη / 100. Так как вес тела равен mg, тело поднялось на высоту Fhη / 100 / mg.

Как выходец из СССР Николай Школьник изобрел самый мощный в мире двигатель

«Газета.Ru» пообщалась с создателями самого мощного в мире двигателя внутреннего сгорания. Как увеличить в разы КПД мотора, в чем отличие нового агрегата от известных роторных двигателей и в чем преимущество советского образования перед американским — в материале отдела науки.

Выходец из СССР, живущий в США, вместе с сыном изобрел, запатентовал и испытал самый мощный и эффективный в мире двигатель внутреннего сгорания. Новый мотор будет в разы превосходить существующие по КПД и уступать по массе.

В 1975 году вскоре после окончания Киевского политехнического института молодой физик Николай Школьник уехал в США, где получил научную степень и стал физиком-теоретиком — его интересовали приложения, связанные с общей и специальной теорией относительности. Поработав в области ядерной физики, молодой ученый открыл в США две компании: одну — занимающуюся программным обеспечением, вторую – разрабатывающую шагающие роботы. Позже он на десять лет занялся консультированием проблемных компаний, занимающихся техническими инновациями.

Однако как инженера Школьника постоянно волновал один вопрос — почему современные автомобильные моторы такие неэкономичные?

И действительно, несмотря на то что поршневой двигатель внутреннего сгорания человечество совершенствует уже полтора века,

КПД бензиновых моторов сегодня не превышает 25%, дизельных — порядка 40%.

Между тем сын Школьника Александр поступил в MIT и получил степень доктора в области компьютерных наук, стал специалистом в области оптимизации систем. Думая над увеличением КПД двигателя, Николай Школьник разработал собственный термодинамический цикл работы двигателя HEHC (High-efficiency hybrid cycle), который стал ключевым этапом в реализации его мечты.

«Последний раз такое происходило в 1892 году, когда Рудольф Дизель предложил новый цикл и создал свой двигатель», — пояснил в интервью «Газете.Ru» Школьник-младший.

Изобретатели остановились на роторном двигателе, принцип которого был предложен в середине XX века немецким изобретателем Феликсом Ванкелем. Идея роторного двигателя проста. В отличие от обычных поршневых моторов, в которых много вращающихся и движущихся частей, снижающих КПД, роторный двигатель Ванкеля имеет овальную камеру и вращающийся внутри нее треугольный ротор, который своим движением образует в камере различные участки, где происходит впуск, сжатие, сгорание и выпуск топлива.

close

100%

Плюсы двигателя — мощность, компактность, отсутствие вибраций. Однако, несмотря на более высокий КПД и высокие динамические характеристики, роторные двигатели за полвека не нашли широкого применения в технике. Одним из немногих примеров серийной установки стало их использование на автомобилях Mazda RX.

Слабыми местами таких моторов являлись ненадежность, связанная с низкой износостойкостью уплотнителей, благодаря которым ротор плотно примыкает к стенкам камеры, и низкая экологичность.

Уже работая в фирме LiquidPiston, основателями которой они стали, Школьники создали свою, абсолютно новую реинкарнацию идеи роторных моторов. Принципиальным в ней было то, что в двигателе Школьников не камера,

а ротор напоминает по форме орех, который вращается в треугольной камере.

Это позволило решить ряд непреодолимых проблем двигателя Ванкеля. Например, пресловутые уплотнители теперь можно делать из железа и крепить их неподвижно к стенкам камеры. При этом масло подводится прямо к ним, в то время как раньше оно добавлялось в сам воздух и, сгорая, создавало грязный выхлоп, а смазывало плохо.

Кроме того, при работе двигателя Школьников происходит так называемое изохорное горение топлива, то есть горение при постоянном объеме, что увеличивает КПД мотора.

Изобретатели создали один за другим пять моделей принципиально нового мотора, последняя из которых в июне была впервые протестирована — ее поставили на спортивный карт. Испытания оправдали все ожидания.

Миниатюрный двигатель размером со смартфон, массой менее 2 кг имеет мощность всего 3 л.с. Двигатель высокооборотистый, работает на частоте 10 тыс. об./мин., но может достигать и 14 тыс. КПД мотора составляет 20%. Это много, учитывая, что обычный поршневой мотор такого же объема в 23 «кубика» имел бы КПД лишь 12%, а поршневой мотор такой же массы дал бы всего 1 л.с.

Но главное, КПД таких моторов резко растет при увеличении их объемов.

Так, следующий двигатель Школьников будет дизельным мотором мощностью 40 л.с., при этом его КПД составит уже 45%, а это выше, чем эффективность лучших дизелей современных грузовиков.

Весить он будет всего 13 кг, притом что его поршневые аналоги такой же мощности сегодня весят под 200 кг.

Этот мотор уже планируется ставить на генератор, который будет вращать колеса дизель-электрического автомобиля. «Если же мы построим еще больший двигатель, мы можем достичь КПД в 60%», — поясняет Школьник.

В перспективе компактные, оборотистые и мощные моторы Школьников планируется использовать там, где эти свойства особенно важны — при конструировании легких дронов, ручных бензопил, газонокосилок и электрогенераторов.

Пока мотор гоняли 15 часов, однако по нормативам, чтобы пойти в производство, он должен отработать непрерывно 50 часов. При этом для автомобильной промышленности требуется надежность мотора на 100 тыс. миль пробега, что пока остается мечтой, признают конструкторы.

«Это самый экономичный, мощный двигатель не только среди роторных, но и всех двигателей внутреннего сгорания.

Это показывают наши измерения, а то, что мы получим на более крупных моторах, мы уже смоделировали на компьютерах», — радуется Школьник-младший.

То, что озвученные цифры — не фантазии изобретателей, подтверждает серьезность намерений инвесторов. Сегодня в стартап уже вложено $18 млн венчурных инвестиций, $1 млн которых дало американское агентство передовых разработок DARPA.

Интерес военных тут понятен. Дело в том, что военными США в авиации применяется в основном топливо JP-8. И военные хотят, чтобы вообще вся армейская техника работала на этом виде топлива, на котором, кстати, могут работать и дизельные моторы.

Но современные дизельные двигатели громоздки, поэтому DARPA так активно присматривается к разработке Школьников.

Александр считает, что создать столь революционный двигатель помогло отчасти образование, которое получил его отец еще в СССР. «Он думает по-другому, не так, как обычный инженер в США. Его фантазия ограничена только физикой. Если физика говорит — что-то возможно, то он верит, что это так, и лишь думает, как это можно сделать», — добавил Александр.

Сам Николай Школьник по-своему рассказывает об истории своего успеха и преимуществах советского образования.

«В США я переживал, что, имея специальность «машиностроение», я не буду иметь достаточного бэкграунда по физике и, особенно, математике.

Эти опасения оказались напрасными благодаря превосходной подготовке, которую я получил в советской школе.

Эта солидная образовательная подготовка до сих пор помогает мне здесь в нашей работе с новым роторным двигателем. С моей точки зрения, есть два больших отличия между американскими инженерами и получившими образование в России. Во-первых, американские инженеры невероятно эффективны в том, что они делают. Обычно требуется два-три русских инженера, чтобы заменить одного американского. Однако русские имеют более широкий взгляд на вещи (связанный с образованием, по крайней мере в мое время) и способность достигать целей с минимумом ресурсов, что называется, на коленке», — поделился размышлениями Николай Школьник.

Mazda заявляет, что ее бензиновый двигатель следующего поколения будет работать чище, чем электромобиль

Mazda делает ставку в своем будущем на продолжение существования двигателя внутреннего сгорания, с такими умными технологиями, как искровое зажигание от сжатия, которое дебютирует в двигателе Skyactiv-X для серийных автомобилей Mazda нового поколения. Но автопроизводитель уже задумывается о будущем двигателей внутреннего сгорания. Automotive News сообщает, что Mazda работает над новым газовым двигателем Skyactiv-3, который, по словам автопроизводителя, будет таким же чистым, как электромобиль.

Выступая на техническом форуме в Токио, руководитель трансмиссии Mazda Мицуо Хитоми сказал, что главная цель Skyactiv-3 — повысить тепловой КПД двигателя примерно до 56 процентов. Если это будет достигнуто, двигатель Skyactiv станет первым поршневым двигателем внутреннего сгорания, который превращает большую часть энергии своего топлива в энергию, а не в отходы из-за трения или потери тепла.

На сегодняшний день самый термически эффективный автомобильный двигатель внутреннего сгорания принадлежит команде Mercedes-AMG Формулы 1 с КПД 50 процентов; AMG надеется, что двигатель F1 в уличном суперкаре Project One достигнет 41-процентного теплового КПД, что сделает его самым термически эффективным двигателем для серийных автомобилей в истории. Automotive News говорит, что цель Mazda — 56% — это улучшение на 27% по сравнению с нынешними двигателями Mazda. Хитоми не указал сроки, когда Skyactiv-3 выйдет в производство, и не указал, как Mazda надеется добиться такого улучшения.

Заявление Mazda о том, что Skyactiv-3 будет более чистым в эксплуатации, чем полностью электрический автомобиль, является смелым и требует некоторой распаковки. Mazda основывает свое утверждение на своих оценках выбросов «от скважины к колесам», подсчитывая загрязнение, вызванное как производством ископаемого топлива, так и выработкой электроэнергии коммунальными предприятиями, чтобы сравнить выбросы Skyactiv-3 и электромобилей.Такой анализ отражает реальность того, что в настоящее время большая часть электроэнергии вырабатывается за счет ископаемого топлива. В регионах, где электричество получают от ветра, солнца или гидроэлектроэнергии, электромобили явно выиграют спор, но сегодня это не так для многих потребителей.

Если Mazda сможет создать серийный двигатель внутреннего сгорания с тепловым КПД более 50 процентов, это будет невероятный подвиг — и, вероятно, поможет гарантировать дальнейшую выживаемость поршневого двигателя.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Эффективность холодного пуска двигателя внутреннего сгорания: обзор проблемы, причин и возможных решений

https://doi.org/10.1016/j.enconman.2014.03.002Получить права и содержание

Основные моменты

источники I.C. Эффективность холодного пуска двигателя проверяется и количественно оценивается.

Возможные решения рассматриваются вместе, а выгода оценивается количественно.

Обсуждаются возможные конфликты между различными подсистемами двигателя.

При холодном пуске наблюдается снижение расхода топлива до 7%.

Наблюдается снижение выбросов до 40% при холодном пуске.

Реферат

Законодательство по выбросам транспортных средств продолжает ужесточаться, чтобы свести к минимуму воздействие двигателей внутреннего сгорания на окружающую среду. Одной из областей, вызывающих серьезную озабоченность в этом отношении, является холодный запуск; тепловой КПД двигателя внутреннего сгорания значительно ниже при холодном пуске, чем при достижении автомобилем устойчивых температур из-за неоптимальных температур смазочного материала и компонентов. Стремление к тепловому КПД (как двигателя внутреннего сгорания, так и транспортного средства в целом) привело к испытаниям множества решений для оценки их достоинств и влияния на другие системы транспортного средства на этапе прогрева (и при необходимости внедряются. ).Общая цель этих подходов — уменьшить потери энергии, чтобы системы и компоненты достигли предполагаемого диапазона рабочих температур как можно скорее после запуска двигателя. В случае с двигателем это в первую очередь касается системы смазки. Вязкость смазочного материала очень чувствительна к температуре, а повышенная вязкость при низких температурах приводит к более высоким потерям на трение и перекачивание, чем можно было бы наблюдать при заданной рабочей температуре. Подходы, используемые для решения этой проблемы, включают использование материалов с фазовым переходом (для снижения скорости охлаждения в течение периода после работы двигателя) [1], [2] и использование термозащитных покрытий в попытке изолировать цилиндр. растачивать и предотвращать потерю тепла (таким образом увеличивая количество энергии, используемой для работы тормоза [3]).Также был опробован ряд системных изменений, включая отводные системы в смазочном контуре для снижения тепловых потерь. Здесь представлен критический обзор исследований в области управления тепловым режимом транспортного средства на этапе холодного запуска, который был продиктован желанием улучшить как двигатель, так и общий КПД двигателя транспортного средства. Обзор включает в себя как разработки системы, так и вопросы выбора материалов, а также роль, которую эти две области должны сыграть в решении этой критической проблемы.

Ключевые слова

Энергоэффективность

Холодный запуск двигателя

Экономия топлива

Смазка

Изоляция

Материалы фазового перехода

Рекомендуемые статьиЦитирующие статьи (0)

Copyright © 2014 Авторы.Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Цитирование статей

Будущее конструкции двигателей внутреннего сгорания: тенденции 2022 года

Изобретение двигателя внутреннего сгорания (IC) стало благом для транспорта, повышения эффективности и всего остального Америки. Но по мере того, как технологии ИС стареют, а забота об окружающей среде возрастает, на их место стремятся альтернативы.

Автопроизводители и потребители задумываются о будущем производства легковых и грузовых автомобилей с двигателями внутреннего сгорания и рассматривают модель , которая заменит существующие модели .Обзор того, что привело нас к этому, а также новые проблемы эффективности и защиты окружающей среды, которые может помочь решить порошковый металл, — вот уроки, которые ни один OEM-инженер не должен пропустить:

Будущее конструкции двигателей внутреннего сгорания

Обратите внимание на следующие внешние факторы, которые повлияют на подход инженеров к проектированию двигателей внутреннего сгорания в течение следующего десятилетия:

  1. Ограничения на выбросы CO₂
  2. Эффективность двигателя для снижения выбросов
  3. Дизель по сравнению с традиционным газом
  4. электромобилей vs.Автомобили с ДВС
  5. Порошковая металлургия поддерживает переход к экологичности

Откройте изображение в новой вкладке, чтобы увидеть полноразмерную версию этой инфографики:


1. Ограничения на выбросы CO₂

Глобальный углеродный проект сообщил, что выбросы углекислого газа во всем мире, как ожидается, вырастут на 4,9% в 2021 году, что почти вернется к рекордным уровням 2019 года. Выбросы резко упали с 2019 по 2020 год (5,4%), поскольку пандемия COVID привела к остановке путешествий.

В августе 2021 года Агентство по охране окружающей среды США (EPA) предложило пересмотренные рекомендации по выбросам парниковых газов для легковых и грузовых автомобилей на 2023-2026 модельные годы. Предлагаемые стандарты предусматривают увеличение выбросов на 10% по сравнению с текущими стандартами для автомобилей 2023 МГ и на 5% большее снижение выбросов в каждый из следующих 3 лет. Текущие стандарты становятся более строгими только на 1,5% с каждым годом.

В то же время EPA объявило о планах по сокращению выбросов загрязняющих веществ от тяжелых грузовиков с помощью более строгих правил.Агентство ожидает, что новые правила будут применяться к большегрузным автомобилям с 2027 МГ.

Независимо от планов EPA, политическая и экологическая атмосфера по-прежнему способствует повышению эффективности двигателей внутреннего сгорания в большей степени, чем потребительский спрос. Независимо от того, согласны ли инженеры и руководители лично с изменениями в воздухе, отрасль неуклонно движется в этом направлении.

2. Как повысить эффективность выбросов двигателя внутреннего сгорания?

Управление энергоэффективности и возобновляемых источников энергии сообщает, что производители снизили выбросы загрязняющих веществ более чем на 99% за 30-летний период.Творческие умы достигли этого, поддерживая или увеличивая экономию топлива.

Помимо бензина и дизельного топлива, производители изучают другие способы увеличения экономии топлива:

  • Использование биодизеля
  • Использование других альтернативных или возобновляемых видов топлива
  • Комбинирование двигателей внутреннего сгорания с гибридными электрическими силовыми агрегатами


3. Дизельные двигатели и традиционные бензиновые двигатели

Когда европейцы перешли с дизельных автомобилей на бензиновые, произошло соответствующее увеличение выбросов углекислого газа.Неожиданным поворотом стало то, что некоторые из сегодняшних автомобильных стратегий основаны на дизельных двигателях.

Многие большие дизельные грузовики на самом деле производят меньше выбросов CO2, чем небольшие газовые автомобили, свидетельствуют отчеты. Благодаря усовершенствованным технологиям были произведены дизельные двигатели, которые могут использоваться в автомобилях меньшего размера и обеспечивать:

  • Лучше расход бензина
  • Снижение выбросов углерода
  • Больший крутящий момент
  • Двигатель с более длительным сроком службы

В исследовании Университета Мичигана 2021 года (совместно с General Motors) утверждалось, что в потребительских транспортных средствах 100% возобновляемое дизельное топливо может снизить выбросы углерода.Инженеры-участники заявили, что использование возобновляемого углеводородного биотоплива снизило углеродный след на 80% по сравнению с традиционным нефтяным топливом в тестируемых ими дизелях Chevy Cruze и GMC Sierra.

Может быть, дизельное топливо станет хорошей заменой, в то время как некоторые части мира (например, США) начинают покупать электромобили?


4. Аккумуляторные электромобили и автомобили с двигателем внутреннего сгорания

Вы знали, что это произойдет. Хотя бензиновые двигатели, похоже, не исчезнут полностью, они сталкиваются с жесткой конкуренцией со стороны своих электрических конкурентов.

Даже BMW, член совета директоров которой отвечает за разработку, назвал автоматическую электрификацию «чрезмерно разрекламированной» в 2019 году, сигнализирует о начале конца. В октябре 2021 года BMW объявила, что прекратит производство двигателей внутреннего сгорания на одном из своих заводов (в Мюнхене) к 2024 году. BMW стремится к тому, чтобы к 2030 году 50% продаж новых автомобилей были электрическими,

Одна вещь, которую сторонники двигателей IC всегда могли повесить над головами сторонников электричества, — это аккумулятор. В частности, это:

  • Размер
  • Стоимость
  • Долговечность
  • Возможности зарядки или их отсутствие

Тем не менее, согласно прогнозам, к середине 2022-х годов электромобили достигнут паритета цен с традиционными автомобилями, поскольку стоимость аккумуляторных батарей для электромобилей резко упадет.В 2021 году агентство BloombergNEF прогнозировало, что стоимость литий-ионных аккумуляторных батарей для электромобилей к 2023 году упадет ниже 100 долларов за кВт-ч, то есть примерно на 20%. Эти сокращения, безусловно, происходят быстрее, чем ожидал рынок.

В будущем опасения по поводу дальности хода для электромобилей будут меньше. Технология развивается, и появляется все больше зарядных станций. «Беспокойство о запасе хода» (опасения потребителей, что им будет негде подзарядить аккумулятор) по-прежнему остается реальной проблемой, которую OEM-производителям все еще необходимо решить.

Передовая порошковая металлургия, которая сильно отличается от порошковой металлургии вашего отца, становится все более важным фактором при проектировании компонентов двигателей.

«Зеленая» технология — порошковая металлургия — идет рука об руку с будущим экологичных автомобилей. Спеченные магнитомягкие материалы с более высокой плотностью обеспечивают невиданный ранее рост производительности. Возможно, вы слышали историю о металлическом порошке раньше, но эти новые материалы отличаются от материалов Standard 35, на которые производители полагались на протяжении десятилетий.

Стандарт 35 MPIF является отличной базой для производителей порошковой металлургии, но для ваших будущих конструкций статора и ротора могут потребоваться материалы и процессы, которые превосходят «стандартные» уровни производительности. В некоторых случаях можно даже исключить компонент из сборки, спроектировав его из порошкового металла.

Современная передовая технология уплотнения может быть немного дороже вначале, но в долгосрочной перспективе она может значительно сэкономить производителям (и водителям).

Многие компоненты можно преобразовать в металлический порошок.Порошковая металлургия добилась больших успехов в создании мелких деталей для электродвигателей и других автозапчастей по многим причинам:

В частности, магнитомягкие композитные материалы лидируют в создании сверхэффективных электродвигателей.

Современные услуги порошковой металлургии позволяют плавно перейти от традиционной конструкции двигателей внутреннего сгорания к более эффективным и экологически безопасным двигателям будущего. Это стало возможным благодаря развитию PM-материалов (как вы найдете ниже) и процессов (например, спекания).

Конечно, двигатели IC еще какое-то время будут существовать. Порошковая металлургия также может способствовать созданию новых или альтернативных двигателей внутреннего сгорания.

Чтобы узнать, как можно использовать новые материалы и процессы порошковой металлургии для обновления конструкции и производительности вашего двигателя, посетите наш ресурсный центр:

(Примечание редактора: эта статья была первоначально опубликована в сентябре 2019 года и недавно была обновлена).

Этот двигатель до 10 раз меньше дизельных поршневых двигателей, но намного эффективнее

Это содержание стало возможным благодаря нашему спонсору; он не написан и не обязательно отражает точку зрения редакции Engadget.

Двигатели внутреннего сгорания не видели каких-либо фундаментальных технологических прорывов более 100 лет. Обычны большие, громоздкие и неэффективные двигатели, и они, как правило, используют значительное количество топлива в своей работе. В частности, современные дизельные двигатели громоздки, неэффективны по топливу и во многих случаях слишком громкие. LiquidPiston X-Engines обеспечивает увеличенный запас хода и снижает выбросы парниковых газов по сравнению с традиционными двигателями с бензиновым и дизельным двигателем, а также обеспечивает преимущество в размере и весе по сравнению с большинством своих конкурентов.Инвестирование в эту захватывающую технологию может помочь продвинуть ее к цели трансформации рынков приложений, которые потребуют более эффективного использования ископаемого топлива при переходе на биотопливо и усилении электрификации.

LiquidPiston устранил эти ограничения унаследованных двигателей внутреннего сгорания (ДВС), создав новый оптимизированный термодинамический цикл и платформу роторного двигателя. Термодинамический цикл определяет, сколько энергии, содержащейся в топливе, можно преобразовать в полезную работу, а остаток будет потрачен впустую в виде тепла.Запатентованный термодинамический цикл LP, получивший название высокоэффективного гибридного цикла (HEHC), имеет максимальный теоретический тепловой КПД, который примерно на 30 процентов больше, чем максимальный теоретический тепловой КПД циклов Отто (бензин) и дизельного топлива, которые использовались с недавнего времени. 1800-е годы. LP доказала, что благодаря гораздо более высокому пределу теплового КПД, его X-Engine может достичь более высокого КПД по топливу, чем поршневые двигатели того же рабочего объема или мощности.

В мире наблюдается серьезный толчок к электрификации транспортных средств, особенно в автомобильной сфере.Это дает преимущества в производительности и снижении шума, но с добавлением больших тяжелых батарей, которые необходимо переносить и перезаряжать. Плотность энергии ископаемых видов топлива по-прежнему в 40 раз выше, чем у лучших современных аккумуляторов, поэтому во многих приложениях имеет смысл использовать преимущества электрической тяги с точки зрения экономики и производительности, но с гораздо меньшей батареей, которую можно заряжать во время работы транспортного средства с помощью небольшого бортовой расширитель диапазона, сжигающий топливо для привода электрогенератора.

По сути, транспортное средство перевозит топливо, более энергоемкое, чем аккумулятор, которое необходимо преобразовать в электроэнергию.Кроме того, дозаправка обеспечивается существующей системой распределения бензина / дизельного топлива, которая сегодня широко используется. LP сосредоточила и продолжает уделять особое внимание усовершенствованным технологиям сгорания, конструкции платформы двигателя и инновациям в работе двигателей, на ее счету более 60 патентов, выданных и находящихся на рассмотрении. Нововведения включают элегантный компактный дизайн, состоящий всего из двух основных движущихся частей: вала и ротора. Простота роторной архитектуры X-Engine уменьшает количество деталей и количество используемого металла, более тихую работу из-за отсутствия поршней и клапанов, а также гораздо меньшую вибрацию по сравнению с поршневыми двигателями.

Инвестиции в разработку двигателя LP будут способствовать его дальнейшему развитию и разработке приложений. В настоящее время компания фокусируется на военной и аэрокосмической сферах, но позже планирует выйти на промышленный, коммерческий и автомобильный рынки. Если вы интересуетесь технологиями двигателей, их разнообразным применением и прогрессом, поддержите их и внесите свой вклад в развитие LiquidPiston.

Вы можете поддержать двигатели LiquidPiston и их работу, став инвестором.По мере того, как LP продолжает свое текущее взаимодействие с несколькими агентствами Министерства обороны США, они также будут двигаться в направлении обслуживания рынков морских судов для промышленной и коммерческой энергетики, беспилотных летательных аппаратов (БПЛА), городской воздушной мобильности (UAM) и автомобильных гибридных электрических силовых установок.

Возможны изменения цен.

Engadget объединяется с StackSocial , чтобы предложить вам новейшие наушники, гаджеты, технические игрушки и учебные пособия.Этот пост не является редакционным одобрением, и мы зарабатываем часть всех продаж. Если у вас есть какие-либо вопросы о продуктах, которые вы видите здесь, или о предыдущих покупках, обратитесь в службу поддержки StackSocial здесь .

% PDF-1.4 % 2394 0 объект > эндобдж xref 2394 285 0000000016 00000 н. 0000010652 00000 п. 0000010818 00000 п. 0000011227 00000 п. 0000011626 00000 п. 0000012409 00000 п. 0000012461 00000 п. 0000013135 00000 п. 0000013250 00000 п. 0000013501 00000 п. 0000013759 00000 п. 0000014169 00000 п. 0000020889 00000 п. 0000021077 00000 п. 0000023885 00000 п. 0000026780 00000 п. 0000029537 00000 п. 0000031954 00000 п. 0000034729 00000 п. 0000037585 00000 п. 0000037710 00000 п. 0000037811 00000 п. 0000040553 00000 п. 0000043038 00000 п. 0000046010 00000 п. 0000046148 00000 п. 0000046301 00000 п. 0000046453 00000 п. 0000046605 00000 п. 0000046758 00000 н. 0000046911 00000 п. 0000047064 00000 п. 0000047217 00000 п. 0000047370 00000 п. 0000047521 00000 п. 0000047672 00000 п. 0000047825 00000 п. 0000047978 00000 п. 0000048130 00000 н. 0000048281 00000 п. 0000048433 00000 п. 0000048586 00000 п. 0000048739 00000 п. 0000048892 00000 н. 0000049045 00000 п. 0000049198 00000 п. 0000049351 00000 п. 0000049504 00000 п. 0000049657 00000 п. 0000049810 00000 п. 0000049963 00000 н. 0000050116 00000 п. 0000050267 00000 п. 0000050418 00000 п. 0000050571 00000 п. 0000050724 00000 п. 0000050877 00000 п. 0000051030 00000 п. 0000051183 00000 п. 0000051336 00000 п. 0000051489 00000 п. 0000051642 00000 п. 0000051795 00000 п. 0000051948 00000 п. 0000052101 00000 п. 0000052254 00000 п. 0000052407 00000 п. 0000052560 00000 п. 0000052713 00000 п. 0000052866 00000 п. 0000053019 00000 п. 0000053168 00000 п. 0000053317 00000 п. 0000053468 00000 п. 0000053619 00000 п. 0000053770 00000 п. 0000053921 00000 п. 0000054072 00000 п. 0000054223 00000 п. 0000054374 00000 п. 0000054525 00000 п. 0000054678 00000 п. 0000054831 00000 п. 0000054984 00000 п. 0000055135 00000 п. 0000055286 00000 п. 0000055439 00000 п. 0000055592 00000 п. 0000055745 00000 п. 0000055898 00000 п. 0000056051 00000 п. 0000056204 00000 п. 0000056355 00000 п. 0000056506 00000 п. 0000056658 00000 п. 0000056810 00000 п. 0000056963 00000 п. 0000057116 00000 п. 0000057269 00000 п. 0000057422 00000 п. 0000057574 00000 п. 0000057726 00000 п. 0000057879 00000 п. 0000058032 00000 п. 0000058185 00000 п. 0000058338 00000 п. 0000058489 00000 п. 0000058640 00000 п. 0000058793 00000 п. 0000058946 00000 п. 0000059099 00000 н. 0000059252 00000 п. 0000059405 00000 п. 0000059558 00000 п. 0000059705 00000 п. 0000059850 00000 п. 0000060001 00000 п. 0000060154 00000 п. 0000060307 00000 п. 0000060460 00000 п. 0000060613 00000 п. 0000060766 00000 п. 0000060919 00000 п. 0000061072 00000 п. 0000061225 00000 п. 0000061378 00000 п. 0000061531 00000 п. 0000061684 00000 п. 0000061834 00000 п. 0000061984 00000 п. 0000062137 00000 п. 0000062290 00000 н. 0000062441 00000 п. 0000062592 00000 п. 0000062743 00000 п. 0000062892 00000 п. 0000063043 00000 п. 0000063196 00000 п. 0000063349 00000 п. 0000063502 00000 п. 0000063655 00000 п. 0000063808 00000 п. 0000063961 00000 п. 0000064114 00000 п. 0000064267 00000 п. 0000064419 00000 п. 0000064571 00000 п. 0000064724 00000 п. 0000064877 00000 п. 0000065029 00000 п. 0000065181 00000 п. 0000065334 00000 п. 0000065487 00000 п. 0000065640 00000 п. 0000065793 00000 п. 0000065944 00000 п. 0000066095 00000 п. 0000066248 00000 п. 0000066401 00000 п. 0000066553 00000 п. 0000066705 00000 п. 0000066856 00000 п. 0000067007 00000 п. 0000067160 00000 п. 0000067311 00000 п. 0000067462 00000 п. 0000067615 00000 п. 0000067768 00000 п. 0000067921 00000 п. 0000068074 00000 п. 0000068227 00000 п. 0000068380 00000 п. 0000068532 00000 п. 0000068684 00000 п. 0000068837 00000 п. 0000068990 00000 н. 0000069143 00000 п. 0000069296 00000 п. 0000069449 00000 п. 0000069601 00000 п. 0000069753 00000 п. 0000069906 00000 н. 0000070059 00000 п. 0000070212 00000 п. 0000070365 00000 п. 0000070518 00000 п. 0000070671 00000 п. 0000070822 00000 п. 0000070973 00000 п. 0000071125 00000 п. 0000071277 00000 п. 0000071430 00000 п. 0000071582 00000 п. 0000071734 00000 п. 0000071887 00000 п. 0000072038 00000 п. 0000072187 00000 п. 0000072338 00000 п. 0000072491 00000 п. 0000072644 00000 п. 0000072797 00000 п. 0000072950 00000 п. 0000073103 00000 п. 0000073254 00000 п. 0000073405 00000 п. 0000073552 00000 п. 0000073699 00000 п. 0000073852 00000 п. 0000074005 00000 п. 0000074157 00000 п. 0000074309 00000 п. 0000074462 00000 н. 0000074615 00000 п. 0000074767 00000 п. 0000074919 00000 п. 0000075072 00000 п. 0000075550 00000 п. 0000075703 00000 п. 0000075856 00000 п. 0000076009 00000 п. 0000076162 00000 п. 0000076315 00000 п. 0000076468 00000 п. 0000076621 00000 п. 0000076774 00000 п. 0000076927 00000 п. 0000077080 00000 п. 0000077233 00000 п. 0000077384 00000 п. 0000077533 00000 п. 0000077684 00000 п. 0000077837 00000 п. 0000077990 00000 п. 0000078143 00000 п. 0000078296 00000 п. 0000078449 00000 п. 0000078602 00000 п. 0000078755 00000 п. 0000078908 00000 п. 0000079061 00000 п. 0000079213 00000 п. 0000079365 00000 п. 0000079518 00000 п. 0000079671 00000 п. 0000079824 00000 п. 0000079977 00000 н. 0000080130 00000 п. 0000080281 00000 п. 0000080432 00000 п. 0000080585 00000 п. 0000080737 00000 п. 0000080889 00000 п. 0000081040 00000 п. 0000081191 00000 п. 0000081344 00000 п. 0000081496 00000 н. 0000081648 00000 н. 0000081799 00000 п. 0000081950 00000 п. 0000082103 00000 п. 0000082256 00000 п. 0000082409 00000 п. 0000082562 00000 н. 0000082713 00000 п. 0000082864 00000 н. 0000083017 00000 п. 0000083170 00000 п. 0000083323 00000 п. 0000083476 00000 п. 0000083627 00000 п. 0000083778 00000 п. 0000083931 00000 н. 0000084084 00000 п. 0000084239 00000 п. 0000084396 00000 п. 0000084553 00000 п. 0000084709 00000 п. 0000084865 00000 н. 0000085022 00000 п. 0000085162 00000 п. 0000102910 00000 н. 0000141178 00000 н. 0000141331 00000 н. 0000010428 00000 п. 0000006123 00000 н. трейлер ] / Назад 2066931 / XRefStm 10428 >> startxref 0 %% EOF 2678 0 объект > поток h [P -%! U! @ Xe5 @.* «»: ˪: ࠣ3> | TUb [tsOws

Эволюция двигателя внутреннего сгорания

Люди строят автомобили уже более века, и почти под каждым капотом находится двигатель внутреннего сгорания. В течение последних 100 лет его принцип оставался неизменным: воздух и топливо попадают внутрь, в цилиндрах происходит взрыв, и сила толкает вас вперед. Но с каждым годом инженеры оттачивают двигатель внутреннего сгорания, чтобы он двигался быстрее и дальше, делая его более эффективным, чем раньше, и производя такую ​​мощность, которую вы раньше видели только на суперкарах.Состояние двигателя внутреннего сгорания никогда не могло бы зайти так далеко без этих серьезных скачков. Вот как мы дошли до этого.


1955

Впрыск топлива

До впрыска топлива дозирование бензина в камеру сгорания было неточным и сложным процессом. Карбюраторы часто нуждались в очистке и восстановлении, и на них влияли погодные условия, температура и высота над уровнем моря. Для сравнения, впрыск топлива был простым: он помогал двигателю работать более плавно, стабильно на холостом ходу, работал более эффективно и избавлял от надоедливой рутины регулировки дроссельной заслонки каждый раз, когда вы ее запускали.Созданный на основе самолетов военного времени, он впервые был внедрен в автомобиль в 1955 году. В том же году Стирлинг Мосс и Денис Дженкинсон проехали на гоночном автомобиле Mercedes-Benz 300SLR через изнурительную гонку Mille Miglia протяженностью 992 мили в Италии, победив с рекордом. ни разу не сломался: 10 часов 7 минут 48 секунд.

Британский автогонщик Стирлинг Мосс на пути к победе в итальянской гонке Mille Miglia Race, установив новый рекорд.

KeystoneGetty Images

Дорожная версия

Benz стала не только первым серийным автомобилем с системой впрыска топлива, разработанным Bosch, но и самым быстрым автомобилем в мире.Два года спустя Chevrolet подарила Corvette двигатель «Fuelie» с системой впрыска топлива Rochester Ramjet, которая смогла разогнать 300SL. Тем не менее, именно системы Bosch с электронным управлением нашли свое применение почти во всех автопроизводителях Европы, а к восьмидесятым годам система впрыска топлива захватила мир.


1962

Турбонаддув

Турбокомпрессор — одна из жемчужин развития двигателей. Турбина в форме улитки, набирающая больше воздуха в цилиндр, когда-то позволяла 12-цилиндровым истребителям времен Второй мировой войны взлетать выше, быстрее и дальше.Угадай, что? То же самое и на суше. Когда в 1962 году дебютировал первый автомобиль с турбонаддувом, он был обнаружен не под капотом легкого европейского малолитражного автомобиля, BMW 2002 или Saab 99, а благодаря мозговому доверию General Motors, укомплектованному деньгами и желающему попробовать новые технологии.

Предоставлено Hagerty

В то время Oldsmobile Jetfire требовал — почти с каждым баком, полным бензина, — добавлением «Turbo Rocket Fluid», оригинального названия дистиллированной воды и метанола Jetsons.GM отказалась от этой концепции в середине десятилетия. Но к концу 1970-х такие компании, как BMW, Saab и Porsche, заняли позицию, доказали свою ценность в автоспорте, и теперь каждая машина имеет турбокомпрессор. Почти.

Турбокомпрессор превратился из грязного трюка с быстрой скоростью в вашем 930 Turbo в выполнение семейных обязанностей в вашей Mazda CX-9, чей 2,5-литровый двигатель был оснащен первой в своем роде системой Dynamic Pressure Turbo в 2016 году. В действии действует принцип «большой палец над садовым шлангом»: ограниченный поток ускоряет выхлоп в турбину, улучшая отзывчивость на низких оборотах и ​​уменьшая турбо-лаг.Кроме того, с более строгими стандартами выбросов и эффективности, это необходимый компонент для выжимания мощности большого двигателя из самых маленьких и легких двигателей. И крутящий момент! Вам больше не нужно сбивать мессершмитты, чтобы почувствовать себя втянутым в кресло.


1964

Роторный двигатель

Единственным двигателем, который действительно сломал шаблон — единственным, кто попал в производство — было вращающееся чудо инженера Феликса Ванкеля, треугольник внутри овала, вращающийся, как демон.По самой природе своей конструкции роторный двигатель легче, менее сложен и имеет более высокие обороты, чем типичная коробка с поршнями. Mazda и несуществующий немецкий автопроизводитель NSU были первыми, кто подписал контракт; В 1964 году NSU Spider стал первым серийным автомобилем с Ванкелем.

Mazda, однако, была единственной компанией, которая действительно работала с ним — первой Mazda с роторным двигателем была Cosmo 1967 года, предшественница длинной линейки спортивных автомобилей, седанов и даже случайных пикапов. последний RX-8 сошел с конвейера в 2012 году.Концепция RX-Vision 2016 года, представленная на Токийском автосалоне 2015 года, подтвердила непристойные слухи о том, что группа преданных своему делу инженеров, которым нечего терять, все еще разрабатывает следующий великий роторный двигатель где-то на заводе в Хиросиме.

Вверху слева: Mazda Cosmo Sport 110S 1967 года выпуска; справа и внизу слева: роторный двигатель Mazda RENESIS

. Предоставлено Mazda

.

1981

Деактивация цилиндра

Идея проста.Чем меньше срабатывает цилиндр, тем лучше пробег. Как превратить V8 в четырехцилиндровый? Если вы были Кадиллаком около 1981 года, вы представили двигатель с метко названным 8-6-4, в котором использовались соленоиды с электронным управлением для закрытия клапанов на двух или четырех цилиндрах. Это должно было повысить эффективность, скажем, при движении по шоссе. Но последовавшая за этим ненадежность и неуклюжесть были настолько печально известны, что никто не осмеливался повторить попытку в течение двадцати лет.

Теперь у нескольких производителей эта идея наконец-то работает — и она перешла к двигателям меньшего размера.


2012

Степень сжатия

Наука работает следующим образом: внутри цилиндра двигателя чем меньше вы можете сжать воздух и топливо, тем больше мощности вы получите при взрыве. Объем, который поршень может сжать, и есть степень сжатия. Но производители не могут слишком сильно увеличивать степень сжатия, иначе смесь воспламенится сама по себе; последующий «стук» разорвет двигатель.

В надире 1970-х годов, задыхаясь от правил смога и вынужденных бороться с неэтилированным бензином, производители построили массивные двигатели V8, которые хрипели.Эти большие мальчики сдерживались болезненно низкой степенью сжатия — свинец, который когда-то был в бензине, предотвращал детонацию. Благодаря электронному управлению подачей топлива и лучшему пониманию контроля за выбросами двигатели стали вырабатывать больше мощности при уменьшении рабочего объема.

Двигатель Mazda SKYACTIV-G 2018 года с отключением цилиндров выдает 187 лошадиных сил и 186 фунт-фут крутящего момента.

Предоставлено Mazda

.

В 2012 году двигатель Mazda SKYACTIV-G был запущен в производство с самой высокой степенью сжатия для серийного двигателя, поразительной 14: 1 (в Америке — 13: 1), что позволяет ему извлекать энергию практически из каждой капли бензина без множество оборудования для защиты от смога.Следующее нововведение Mazda вывело высокую степень сжатия на новый уровень. SKYACTIV-X использует искровое зажигание от сжатия (SPCCI) для воспламенения топливно-воздушной смеси с минимальным количеством бензина, сочетая крутящий момент дизельного двигателя с высокими оборотами бензинового двигателя.

Даже спустя столетие, даже при использовании альтернативных видов топлива и методов движения, двигатель внутреннего сгорания остается самой большой добычей в городе. Спустя столько времени основы не изменились. Но всегда найдется автомобильная компания, которая готова представить что-то новое, и постоянное совершенствование является ключом к сохранению актуальности двигателя внутреннего сгорания в предстоящие годы.

Различий между современными и старыми автомобильными двигателями

Вы когда-нибудь задумывались, в чем разница между старыми и новыми автомобильными двигателями внутреннего сгорания? Оказывается, довольно много.

Несмотря на то, что базовая концепция осталась относительно неизменной, современные автомобили со временем претерпели ряд улучшений. Здесь мы остановимся на 4 наиболее интересных примерах.

В чем разница между старыми и новыми автомобилями?

Основные принципы самых первых автомобилей используются и сегодня.Одно из основных отличий заключается в том, что современные автомобили были разработаны в результате стремления улучшить мощность двигателей и, в конечном итоге, их топливную экономичность.

Источник: Ник Видал-Холл / Flickr

Это отчасти было вызвано рыночным давлением со стороны потребителей, а также более крупными рыночными силами, такими как изменение цены на нефть с течением времени, а также налоговой политикой правительства и другими нормативными требованиями.

Но, прежде чем мы углубимся в подробности, было бы полезно изучить, как работает двигатель внутреннего сгорания.

Двигатель внутреннего сгорания, по сути, берет источник топлива, такой как бензин, смешивает его с воздухом, сжимает его и воспламеняет. Это вызывает серию небольших взрывов (отсюда и название двигателя внутреннего сгорания), которые, в свою очередь, приводят в движение набор поршней вверх и вниз.

Эти поршни прикреплены к коленчатому валу, который преобразует возвратно-поступательное поступательное движение поршней во вращательное движение путем поворота коленчатого вала. Затем коленчатый вал передает это движение через трансмиссию, которая передает мощность на колеса автомобиля.

Интересно, что в преобразовании возвратно-поступательной силы во вращательную силу нет ничего нового. Очень ранний паровой двигатель был изобретен героем Александрии в I веке нашей эры (на фото ниже).

Герой ранней паровой машины Александрии Эолипил. Источник: Evangelos Papadopoulos / Research Gate

Это устройство использовало пар для поворота небольшой металлической сферы, прикрепленной к оси, путем выпуска пара из пары сопел, расположенных под углом, или выхлопов, расположенных на противоположных сторонах сферы.Хотя Hero никогда не развивал его дальше, это было интересное раннее применение паровой технологии.

Некоторые другие базовые концепции автомобильных двигателей, такие как коленчатый вал, тоже очень старые концепции. Некоторые данные свидетельствуют о том, что некоторые из первых примеров, возможно, возникли во времена династии Хань в Китае.

Современные автомобили более эффективны, чем старые автомобили

Сжигание топлива, такого как бензин, не особенно эффективно. Из всей потенциальной химической энергии в нем только около 12-30% преобразуется в энергию, которая фактически приводит в движение автомобиль.Остальное теряется из-за холостого хода, других паразитных потерь, тепла и трения.

Чтобы помочь в борьбе с этим, современные двигатели прошли долгий путь, чтобы выжать из топлива как можно больше энергии. Например, технология прямого впрыска не обеспечивает предварительного смешивания топлива и воздуха до достижения цилиндра, как в старых двигателях.

Напротив, топливо впрыскивается непосредственно в цилиндры, что обеспечивает повышение эффективности использования топлива на 12% и .

Источник: Edmund Vermeule / Flickr

Еще одним интересным усовершенствованием автомобильных двигателей является разработка турбонагнетателей.Эти устройства используют выхлопные газы для питания турбины, которая нагнетает дополнительный воздух (то есть больше кислорода) в цилиндры, чтобы повысить эффективность до 25% (хотя улучшения обычно намного скромнее).

Однако бывают случаи, когда турбокомпрессоры могут быть хуже обычных атмосферных двигателей.

Регулируемые фазы газораспределения и отключение цилиндров дополнительно повышают эффективность, позволяя двигателю использовать столько топлива, сколько ему действительно нужно.

Новые автомобильные двигатели мощнее

Хотя некоторые могут так считать, оказывается, что в среднем современные двигатели не только более эффективны, но и относительно более мощные.

Шевроле Малибу 2013 года выпуска. Источник: IFCAR / Wikimedia Commons

Например, у Chevrolet Malibu 1983 года был 3,8-литровый двигатель V-6 , который мог выдавать 110 лошадиных сил . Для сравнения, версия 2005 года имела 2,2-литровый рядный четырехцилиндровый двигатель мощностью 144 лошадиных силы.

Современные автомобильные двигатели намного меньше, чем у старых автомобилей.

Этот привод, не каламбур, предназначенный для повышения эффективности двигателей, также со временем уменьшился в размерах.Это не совпадение. Производители автомобилей поняли, что не нужно делать что-то большее, чтобы сделать его более мощным. Все, что вам нужно сделать, это заставить объект работать умнее.

Те же технологии, которые сделали двигатели более эффективными, имеют побочный эффект — они уменьшаются в размерах. Грузовики Ford F-серии — отличный тому пример. В 2011 году у F-150 было две версии; 3,5-литровый двигатель V-6 , который генерирует 365 лошадиных сил, и 5,0-литровый V-8 , который генерирует 360 лошадиных сил .

Однако следует отметить, что та же серия также имела 6,2-литровый V-8 , который генерировал 411 лошадиных сил r. Но, относительно говоря, меньший V-6 сопоставим по мощности с обоими V-8, хотя он значительно меньше.

Источник: Джордж Томас / Flickr

Интересно также отметить, что современные автомобили в целом часто считаются тяжелее своих более старых аналогов. Однако, учитывая, что они также больше по размеру и оснащены дополнительным оборудованием для обеспечения безопасности, средний вес большинства моделей практически не увеличился.Что изменилось, так это повышение топливной экономичности, безопасности, выбросов и удобства.

Современные двигатели надежнее

Современные двигатели также являются результатом постепенной замены механических частей на электронные. Это связано с тем, что электрические детали в среднем менее подвержены износу, чем механические.

Детали, такие как насосы, все чаще заменяются на детали с электронным управлением, а не на их механических предков.Это помогло снизить потребность в замене деталей в течение всего срока службы двигателя автомобиля.

Современные двигатели с большим количеством электроники также требуют менее частой настройки по сравнению со старыми двигателями.

Другие ключевые компоненты двигателя, такие как карбюраторы, также были переделаны в электронном виде.

Карбюраторы заменены на дроссельные заслонки и системы электронного впрыска топлива. Другие детали, такие как распределители и крышки, были заменены независимыми катушками зажигания, управляемыми ЭБУ.

Еще сенсоры более-менее все контролируют. Однако это стремление к большей изощренности могло сделать новые автомобили менее безопасными.

Современный двигатель BMW 320d. Источник: Энди / Эндрю Фогг / Flickr

На базовом уровне современные и старые автомобильные двигатели работают по одним и тем же принципам, однако очевидно, что современные двигатели со временем претерпели множество изменений.

Главной движущей силой была гонка за эффективностью над мощностью. Хороший набор побочных эффектов привел к тому, что современные двигатели стали относительно более мощными и, как правило, меньше.

Это отчасти благодаря замене старых механических аналоговых частей электронными аналогами.

В целом современные автомобильные двигатели более эффективны, меньше по размеру, относительно более мощные, умные и менее подвержены износу. С другой стороны, ремонт и обслуживание теперь требуют больше навыков и времени.

alexxlab / 12.06.1981 / Разное

Добавить комментарий

Почта не будет опубликована / Обязательны для заполнения *